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Abstract 

Planning, organizing, and managing water resources are crucial for urban areas and metropolitans. Istanbul is one of the largest 

megacities, with a population of over 15 million. The large volume of water demand and increasing scarcity of clean water resources 

make long-term planning necessary for this city, as sustained water supply requires large-scale investment projects. Successful 

investment plans require accurate projections and forecasting for freshwater demand. This study considers different machine learning 

methods for freshwater demand forecasting for Istanbul. Using monthly consumption data provided by the municipality since 2009, 

we compare forecasting accuracies of ARIMA, Holt-Winters, Artificial Neural Networks, Recursive Neural Networks, Long-Short 

Term Memory, and Simple Recurrent Neural Network models. We find that the monthly freshwater demand of Istanbul is best 

predicted by Multi-Layer Perceptron and Seasonal ARIMA. From the predictive modeling perspective, this result is another 

indication of the combined usage of conventional forecasting models and novel machine learning techniques to achieve the highest 

forecasting accuracy. 
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Introduction 

Increasing water demand, accompanied by resource 

scarcity, is one of the main critical problems of today’s 

societies. Water is not only vital for all living organisms, 

but it is also crucial for sanitation, agriculture and almost 

all other economic activities. From the urban water 

management perspective, the water demand of a city is 

mainly driven by the size of its population, climatic 

conditions, distribution and wastewater collection 

infrastructure, and the level of socio-economic 

development of a city. Water demand forecasting is the 

primary input for urban water management studies for all 

cities (Essien et al., 2019). Water management and 

planning are highly challenging to megacities like 

Istanbul, and the results are more sensitive to forecast 

errors in future water demand estimation. 

Istanbul is suffering from water scarcity due to the 

rapidly increasing population. As Turkey's most 

populous and industrious city, Istanbul offers many 

opportunities to locals, refugees, and tourists, such as 

education, jobs in various areas, and tourism. This 

stimulates the population growth of the city. 

Additionally, climate change affects precipitation rates 

in the surrounding areas of the city, and that is directly 

related to water levels in the reservoirs and dams 

(Gazioğlu et al., 1998; Yücel, et al., 2002). All of these 

factors compel decision-makers to take necessary 

precautions to overcome Istanbul’s water management 

problems, and a reliable water demand prediction is the 

key input to designate the water management policy 

(Goksel, et al., 2006; Burak et al., 2021).   

In this paper, we consider Istanbul's medium-term water 

forecasting problem. Using the historical water 

consumption data provided by Istanbul Water and 

Sewerage Administration (ISKI), we employ classical 

forecasting models, Holt-Winters, Seasonal 

Autoregressive Integrated Moving Average (S-ARIMA) 

and Naive forecasting, as well as two different types of 

Artificial Neural Network methods to obtain 

consumption predictions for the city. Our results show 

that among the great variety of models considered for the 

monthly consumption data of Istanbul, the best result is 

provided by SARIMA whereas the second-best 

performance is obtained from Multi-Layer Perceptron 

(MLP) with our parameterization.  

Consideration of classical and novel methods of 

forecasting freshwater demand forecasting of Istanbul is 

the main contribution of this study. Interestingly, 

classical and novel methods perform very close to each 

other for monthly freshwater demand, indicating the 

importance of considering existing methods together 

with the novel machine learning methodologies from the 

literature (Celik and Gazioğlu, 2022).   

This paper consists of six sections. Section 2 briefly 

reviews the literature and some applications of various 

machine learning methods used for water demand 

forecasting. The data set is introduced and explained in 

Section 3. In Section 4, a detailed presentation of 
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forecasting models is presented. Validation and 

verification of our models are given in Section 5. Results 

and discussion are in Section 6, and the conclusion is 

given in Section 7. 

Water demand forecasting has long been studied, and 

researchers consider different models and methods for 

the problem. In the literature, different regressors are 

considered for predicting water demand in the future. 

Specifically, Adamowski (2008) used climatic variables, 

past water demand, and population variables with linear 

regression models, time series models (ARIMA), and 

Artificial Neural Networks (ANNs) models. More 

specifically, the maximum daily temperature, the daily 

amount of rainfall, and population variables were used in 

the model (Adamowski, 2008).  

Recent papers in this area mostly compare classical 

models with the current ANN models or just focus on the 

ANNs and their variations. ANN model was applied by 

Liu et al., (2003) predict water demand in Weinan City 

with these parameters, water consumption per month, 

water and wastewater prices in effect, household size, 

and household income. Tiwari, and Adamwoski (2013) 

used Wavelet Neural Networks and Bootstrap Neural 

Networks on average daily and monthly demand, 

maximum temperature, and total precipitation 

parameters and compared their performance with 

ARIMA and ARIMAX. Caiado (2010) applied classical 

models such as ARIMA, Holt Winter (HW), and 

Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) with double seasonal 

univariate time series data and examined the 

performance of the daily water demand in Granada, 

Spain.  

In addition to classical models and neural networks, 

machine learning models are used for water demand 

forecasting in the literature. Smolak et al., (2010) utilize 

Support Vector Machine (SVM), tree-based models, 

Random Forest and Extra Trees, and Blind Approach. 

They compared the models' performance with ARIMA 

models on seven-day and 24-hour forecasts. Chen (2011) 

utilizes a Least Squared Support Vector Machine (LS-

SVM), a modified version of SVM, and examined its 

performance on the hourly water demand forecasts with 

Back Propagate Neural Networks. Bata and Carriveau 

(2020) consider two different ANNs models, and 

Nonlinear Autoregressive with Exogenous (NARX) 

model with historical demand. They examine 

performances on short-term water demand forecasting 

(Bata et al., 2020). Altunkaynak et al. (2004) studied TS 

Fuzzy time series analysis on nine years of monthly 

water consumption records of Istanbul city. 

Moreover, deep learning models such as RNNs are used 

to forecast water demand models. Guo et al. (2018) 

utilize ANNs, SARIMA, and the GRUN models. GRUN 

consists of Gated Recurrent Units, a type of RNN, as the 

core. GRUN is built on three layers of GRU, a layer of 

merge layer, a part of many dense layers, and a 

connection module. Rectified Linear Unit (ReLu) and 

linear functions were used as activation functions. The 

model used two water demand datasets collected from 

different parts (residential or industrial) of the city of 

Changzhou in China. They examined the performances 

of the models on two datasets by using 15-minute and 

24-hour forecasting periods (Guo et al., 2018). Mu et al. 

(2020) examined LSTM with ARIMA, support vector 

regression SVR and Random Forest (RF) models based 

on predictions of hourly and daily water demands for 

Hefei City in China. Hu et al., (2019) discussed 

Convolutional Neural Network (CNNs) and 

Bidirectional LSTM (Bi-LSTM) hybrid model over 

CNNs, LSTM, Bi-LSTM, CNN-LSTM and Sparse 

Autoencoder (SAE) models on urban water demand 

prediction with historical urban water demand data and 

meteorological data. Savun-Hekimoğlu et al. (2021) 

consider an ARIMA model for forecasting the water 

demand of Istanbul. In our paper, we consider many of 

the methods in the literature for forecasting the monthly 

consumption of Istanbul to obtain medium to long-term 

water demand predictions for the city. To the best of our 

knowledge, classical and novel methods have never been 

compared in a water demand forecasting study with 

monthly consumption data before. 

Dataset 

In our study, we considered monthly consumption data 

provided by the open platform of Istanbul Metropolitan 

Municipality.  The dataset includes the monthly 

freshwater consumption levels of Istanbul between 2009 

and 2019.  In total, the dataset consists of 132 rows.  

After a careful review, we decided to remove the value 

of December 2019 due to inaccurate measurement.  The 

resulting dataset consists of 131 point-univariate time 

series.  In Table 1, descriptive statistics of the dataset are 

provided. 

Table 1. Descriptive statistics of 131 Months of 

Freshwater Consumption. 

Seasonality and trend analysis of the water consumption 

data of Istanbul reveals that water demand has increased 

over the recent years, and there is a significant 

seasonality in the dataset. Seasonality analysis is 

performed with stl routine in R Gui. This routine 

decomposes a time series into its trend and seasonality 

components using locally polynomial regression fitting 

(Cleveland et al., 1990). We assume additive model for 

this decomposition as it is simpler and more effective 

compared to the multiplicative one. The result of the 

seasonality decomposition is presented in Figure 1. The 

increasing trend can be explained by the increasing 

urban population in Istanbul, whereas cyclic behaviour is 

mainly due to the effect of temperature.  The non-

Descriptive Statistic Value (1000*𝒎𝟑)

Mean 76579.1 

Standart Deviation 10269.3 

Minimum 50838.0 

Lower Quartile 68021.5 

Middle  Quartile 77285.0 

Upper  Quartile 84256.5 

Maximum 96028.0 
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stationarity of the consumption time series is checked 

with Augmented Dickey-Fuller Test (ADF).  We applied 

the ADF test using R-Gui and observed that the p-value 

is close to 1, which shows that our dataset is non-

stationary.  

Forecasting Water Demand 

To obtain water demand forecasts for Istanbul, we 

examined classical models, (ARIMA and Holt Winter’s 

(HW)), machine learning models (Naïve Bayes), and 

deep learning models (ANNs and RNNs). The classical 

models are traditional prediction tools for the time series 

forecasting because they are easy to use and understand 

the statistics behind them. More importantly, these tools 

provide satisfying results.  Machine learning and deep 

learning models present new approaches to time series 

problems, and they outperform the conventional methods 

especially in short-term forecasting problems.  

Fig. 1. Decomposed representation of the dataset 

Fig. 2. Autocorrelation function and residual plot. 
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In contrast to the classical models, these models have 

more complex mathematical structures, and they can 

signal issues such as overfitting. Tuning these input 

parameters and finding the best-fit combination is 

another optimization problem and require more work 

time than classical models (Hekimoğlu, 2022). Detailed 

explanations about the applications of the models can be 

founded in the appendix. In this section, we first provide 

a detailed presentation of the classical forecasting 

models and their applications to water demand 

prediction for Istanbul. Afterwards, we discuss the 

application of machine learning techniques for the 

problem.  

When interpreting the reliability of a model Mean 

Squared Error (MSE), Mean Absolute Error (MAPE), 

and Root Mean Square Error (RMSE) are used 

frequently. The mathematical definitions of these 

accuracy measures are provided in Equations (1-3)  

𝑀𝑆𝐸 =
1

𝑛
∑ (µ − 𝜀𝑡)2𝑛

𝑡=1 , (1) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (µ − 𝜀𝑡)2𝑛

𝑡=1 |
µ−𝑦𝑡

µ
|,        (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (µ − 𝜀𝑡)2𝑛

𝑡=1

2
 .        

(3) 

Throughout this study, MSE, MAPE, and RMSE values 

are also used to measure the performances of forecasting 

methods. For a reliable method, these values are required 

to be as much as small. MSE, MAPE, and RMSE values 

for the naïve method are 251044254, 0.336, and 

15844.38, respectively; these can be thought of as very 

high values intuitively. 

Classic Forecasting Models 

Autoregressive Integrated Moving Average 

The Autoregressive Integrated Moving Average model 

(ARIMA) is a standard model that is used in statistics, 

economics, and particularly time series analysis. This 

model has been a lead model in many areas of time 

series forecasting for over a half-century. The model is a 

generalization for the autoregressive (AR) and moving 

average (MA) methods. These models are suitable for 

understanding the data and predicting future points. 

Although models require stationary series, non-

stationary series can be transformed into stationary series 

using the differencing method. Differencing can be 

defined as computing the difference between consecutive 

observations, which is also called the random walk 

method. Differencing helps to stabilize the mean of the 

series by removing shifts in the data and reducing trend 

and seasonality. ARIMA is the linear combination of AR 

and MA models. In AR models, the prediction of the 

values depends on the linearly combined past values of 

variables. In Equation (4) AR is represented, where ε𝑡 is

error (white noise) value, y𝑡 is predicted value, 𝑐 is the

mean difference between consecutive observations, and 

ϕ𝑡 is the predictor such like multiple regression. For AR,

finding the best 𝑝 value is essential. 𝑝 value is called as 

order of the AR, and AR(𝑝) is called the autoregressive 

model of order p. 

y𝑡 = c + ϕ1y𝑡−1 + ϕ2y𝑡−2 + ⋯ + ϕ𝑝y𝑡−𝑝 + ε𝑡. (4) 

Structurally MA is similar to AR. The main difference 

between the two models is that AR considers previous 

forecasting errors as predictors instead of the previous 

values. MA model is presented in Equation (5). As in 

AR models, finding the right number of predictors is an 

essential task for building accurate model while avoiding 

the risk of overfitting. 𝑞 value is the order of the MA and 

MA(q) is moving average of order q. 

𝑦𝑡 = c + ε𝑡 + θ1ε𝑡−1 + θ2ε𝑡−2 + ⋯ + θ𝑞ε𝑡−𝑞. (5) 

Combining differencing with AR and MA, the non-

seasonal ARIMA is provided. This combination is linear 

and represented in Equation (6) where y′𝑡 represents the

differenced data. In ARIMA, the integration order, 𝑑, 

should be considered. In ARIMA (𝑝, 𝑑, 𝑞), 𝑝 is the 

number of the lagged terms of  y𝑡, 𝑞 is the number of

lagged terms of ε, and  𝑑 is the degree of the 

differencing. 

y′𝑡 = c + ∑ ϕ𝑗y′𝑡−𝑗

p

j=1

+ ∑ θ𝑖

q

i=1

ε𝑡−𝑖 + ε𝑡.

(6) 

By using features explained above, ARIMA can be used 

for seasonal data. At this point, ARIMA has a new 

parameter called m, which represents the seasonal part of 

the model. ARIMA (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)m represents the 

seasonal ARIMA (Ho et al., 2002; Contreras  et al., 

2003; Stevenson, 2007). 

Because the handled time series in this study is non-

stationary, we applied the seasonal ARIMA. Firstly, the 

best  𝑝, 𝑑, and 𝑞 parameters are found, then Akaike’s 

Information Criteria (AIC), corrected AIC (AICc), and 

Bayesian Information Criteria (BIC) values are used to 

check the model. AIC is an assessment method of the 

goodness of the model in the prediction period and is a 

useful method in selecting the process of the predictors 

and order parameters. Additionally, BIC or AICc can be 

used for the same purpose. We inspected these values of 

models to observe whether there is a change. Auto-

ARIMA function in the python programming language is 

used to find the best-fitting values of these parameters. A 

graphical representation of residual values of the 

resulting ARIMA model is given in Figure 2. Further 

details on the parameter estimation of the ARIMA model 

are given in Appendix. We also performed manual 

search methods for these parameters. More than one 

well-resulted parameter value was founded in the manual 

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023) 
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search, and cross-validation was performed with these 

parameters. 

Holt-Winters 

Holt-Winters’ model (HW) is a common and simple 

projection method to deal with trend and seasonality. 

HW depends on a forecasting equation and three 

smoothing equations for level (ℓ𝑡), trend (𝑏𝑡), and

seasonal component (𝑠𝑡) with corresponding smoothing

parameters 𝛼, 𝛽∗ and 𝛾. Additionally, it denotes the

frequency of seasonality. HW deals with seasonality 

with two different methods. The additive method (AM) 

is preferred when seasonal variations are constant 

through the series, and the multiplicative method (MM) 

is used when seasonal variations change proportionally 

to the level of the series. While the seasonal component 

in AM is expressed as absolute values, it is expressed as 

relative terms like percentage in MM (Chatfield, 1978; 

Chatfield and Mohammed, 1988). AM is presented in 

Equations (4-6) and MM is represented in Equations (7-

10). 

𝑦̂𝑡+h|t = 𝑙𝑡 + h𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1). (7) 

𝑙𝑡 = α(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − α)(𝑙𝑡−1 + 𝑏𝑡−1). (8) 

𝑏𝑡 = β∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − β∗)𝑏𝑡−1. (9) 

𝑠𝑡 = γ(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − γ)𝑠𝑡−𝑚. (10) 

We applied HW model on the time series data. Firstly, 

we built the model with default parameters (α=0.3, 

β=0.1, and γ=0.1 are used when starting optimization 

and HW function in R programming language to detect 

optimal α, β, and γ values for optimization) for our data. 

Then we performed the cross validation to control the 

goodness of the fit to the model and different data points.  

𝑦̂𝑡+h|t = 𝑙𝑡 + h𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1). (11) 

𝑙𝑡 = α
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − α)(𝑙𝑡−1 + 𝑏𝑡−1). (12) 

𝑏𝑡 = β∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − β∗)𝑏𝑡−1. (13) 

𝑠𝑡 = γ
𝑦𝑡

(𝑙𝑡−1+𝑏𝑡−1)
+ (1 − γ)𝑠𝑡−𝑚. (14) 

Artificial Neural Networks 

Artificial neural networks (ANNs) are the most used 

deep learning concept. They can be easy to use and 

understand. Most importantly, they can be adapted for 

many problems, such as linear-nonlinear models or 

supervised-unsupervised problems. The idea underlying 

ANNs is simply the working principle of the human 

brain and nervous system. ANNs learn and make 

meaningful assumptions from examples, even if there are 

errors in the input data (Falah et al., 2019). ANNs are 

computational models with varied degrees of complexity 

(Hassoun and Hassoun, 1995). ANNs consist of one 

input layer, one or more hidden layers, and one output 

layer. These layers can contain more than one neuron, 

affecting the model's complexity. The idea of mimicking 

real neurons was proposed by McCulloch and Pitts 

(1943). They defined computational neurons with binary 

threshold unit. The mathematical neuron computes the 

weighted sum of n inputs and returns 1 if the output of 

the sum is above a certain threshold value, otherwise 0.  

As can be seen in Equation (15), 𝜃(. ) is the unit step 

function, and 𝑤𝑘 is the weight of the 𝑘𝑡ℎ input value. The

last term threshold 𝜇 represents another weight 𝑤0 that

attached to constant input 𝑖0 = 1.

𝑦 =  𝜃(∑ 𝑤𝑘𝑖𝑘 − 𝜇𝑛
𝑘=1 ). (15) 

ANNs provide many advantages and efficient solutions 

when traditional methods fail and become impractical. 

Requiring less formal statistical training, the ability to 

implicitly detect complex nonlinear relationships 

between dependent and independent variables, the ability 

to detect efficient interactions between predictor 

variables and the availability of multiple training 

algorithms can be counted in these advantages. When 

there is a large data set, ANNs give better results in 

finding patterns in the data set than standard methods. 

The nonlinear nature of the ANNs offers better results 

against complex problems than linear techniques. 

Additionally, identification and learning correlated 

patterns between input and target values are possible for 

ANNs, and they are useable to predict the output of new 

inputs. 

Even though ANNs have many advantages, there are still 

some disadvantages that should be considered. Because 

of the structure, ANNs have a black box and empirical 

nature. They can be burdened computationally and prone 

to overfit. Input-output table of an ANNs model can be 

without a solid analytical basis because the relationship 

between input and output variables is not developed by 

theoretical judgment. The overtraining problem can 

occur to create a model well in unseen inputs. This 

causes an over-complex and over-specified model and 

needs the capacity of the network to exceed free 

parameters.  

It is possible to differentiate neural networks and use 

different types of them by not only adding multiple 

hidden layers, nodes and changing functions. In this 

manner, three types of neural networks are studied and 

used by Jain et al. (2016). We applied these models to 

our data with different parameters and observed the 

reactions of these changes. 

Feed-Forward Neural Network 

One of the most used types of neural networks is feed-

forward neural networks (FFNNs). FFNNs consist of 

sequential layers of function architecture. In this 

structure, the outputs of the current layer are inputs of 

the next layer. They can be single-layered or multi-

layered forms based on model design. Single-layered 

networks are called shallow neural networks (SNNs); 

meanwhile, multi-layered networks are called deep 

neural networks (DNNs). SNNs have a simple structure 

and activation functions, or step activation functions of 

the nodes; the multiplication of inputs and weights feeds 

those. In Figure 3, a generic structure for an FFNN 

model is presented. In general, multi-layered neural 

network models might have complex architecture, 
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whereas single-layer neural networks have only one 

hidden layer between inputs and output (Figure 4). 

FFNNs is easy to use and maintain, fast and not too 

complex. However, it is not powerful enough when the 

problems get complicated because of the lack of dense 

layers and backpropagation (Tang and Fishwick, 1993). 

Various numerical experiments were made to find a 

model that gives the best results. Firstly, we convert time 

series data to supervised data because ANNs models 

need supervised data. We created a supervised data 

matrix with predictions and real values from the time 

series data. This matrix is created by shifting the data 

points one by one. Thus, the previous data point is the 

input parameter of the model for the current state, and 

the current data point is the real value to validate the 

model’s output. For the second step, we split the data 

into train and test sets and built the first model with 

logarithmic values of the training set. We did 

experiments on the different models with the data 

matrix, which we produced in the previous step. Then 

we performed a parameter search for the number of 

hidden neurons, decay, the number of iterations, and 

initial weights.  

Next, we applied similar searches on the dataset that 

shifted by two, three and four points, we compared the 

fourth parameter search results and observed that eight 

hidden neurons model with shifted data by three points 

gave the best result out of these results. Additionally, we 

applied Box-Cox Transformation to the matrix. We 

experimented with the models on the transformed data 

matrix and observed the effects of the transformation on 

the models. 

Multi-Layer Perceptron 

Perceptron is the earliest and the simplest version of the 

ANNs forms. A perceptron forms a single neuron that 

may have input values and return an output. On the other 

hand, a multilayer perceptron (MLP) is a more complex 

structure that can be built on a different number of layers 

and neurons. MLP is a special type of FFNNs. MLP and 

FFNNs are fully connected models; any neuron in a 

layer is connected to all neurons in the next layer. In 

some definitions, MLPs are defined with the same 

number of neurons in each hidden layer and with the 

same activation function across the hidden layers. As 

shown in Figure 3, weighted input layer values are 

presented to hidden layers to feed activation functions. 

Both forward and back propagation are usable for MLP.  

Due to the fully connected structure and 

backpropagation method, MLP is a powerful solution for 

deep learning problems. However, there are a couple of 

points that should be considered. One of them is the 

number of layers and neurons that can affect the speed of 

the algorithm. Other is the fully connected structure that 

can be complex and cause maintenance issues.  

Speech recognition and complex classification are some 

problems that can be solved by MLP. We applied MLP 

in a similar manner to ARIMA and HW. We did not 

convert time series data to a matrix because the model 

requires time series data. After splitting the data to train 

and test sets, we built the first examples of the MLP 

model and did experiments with them. In these 

experiments, we observed models’ behaviours while 

changing the number of layers and neurons in each layer. 

We tried to use deterministic seasonality dummies 

parameter in our models and observed its effects on the 

models. We observed ‘trg’ method for adding 

seasonality dummies that gave the best results. 

Additionally, we performed a parameter search on the 

models and validated the results by using the cross-

validation method. 

Fig. 3. A Generic Structure of Feed Forward Neural 

Network (FFNN) Model. 

Fig. 4. Structure of a RNNs unit. 

Recurrent Neural Networks 

Recurrent neural networks (RNNs) are another type of 

artificial neural network. RNNs are designed by 

considering the detailed analogy of the brain modules. 

The primary things that separate from each other are 

simply the memory property of the RNNs. In the 

structure of RNNs, there are internal loops that provide 

to remember output from the previous neurons. These 

feedback loops are the characteristic feature of the RNNs 

and make them powerful computational models and 

universal approximators (Xia et al., 2018). Although 

ANNs are designed to take a fixed size of the input 

vector, RNNs can analyze data streams with no 

predetermined limit and process variable lengths of 

sequences or even infinite lengths of sequences (DiPietro 

and Hager, 2020). RNNs can perform well against 

problems such as speech recognition, sentiment analysis, 

and image processing. However, RNNs have some 

modeling weaknesses and computational issues, such as 

vanishing gradient problems. Gradient descent is an 

optimization algorithm that is used to find the global 

minimum of a differentiable function.  

RNNs are using this function to find global minimum of 

the cost function and update the weights for setting up 

the optimal network. Finding lower gradient takes more 
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time for the algorithm, and it is more difficult for the 

model to finalize the results. This problem called 

vanishing gradient problem and affects to model training 

negatively. In Figure 5, the structure of a RNN unit is 

depicted. Long short-term memory units (LSTM) 

overcome these weaknesses and improve the model. In 

the structure of the LSTM, there are memory blocks that 

include memory cells. These self-connected cells store 

temporal network states with special multiplicative units. 

These units are called gates. Every memory block 

includes two types of gates; input and output gates. Input 

gates control the flow of inputs toward memory cells, 

whereas output cells control the output flow of cell 

activations toward the rest of the network. Afterward, 

forget cells are added to the memory block. Input 

modulation gates provide a range to the state using the 

hyperbolic tangent activation function and allow the cell 

state to forget the memory. This may turn into a 

weakness and prevent LSTM models from processing 

continuous input streams (Sak et al., 2014). 

Self-recurrent connections of the cell add the internal 

states as input to the cell after it is scaled by a forget cell; 

thus memory of the cell resets by forget cell. Peephole 

connections were added to the architecture of the modern 

LSTM. Peephole connections learn the exact timing of 

the outputs from internal cells to the gates of the same 

cell. LSTM solves the vanishing gradients problem of 

the RNNs. Time and memory are essential needs for 

LSTM. Because of the architecture of the model, they 

need high memory bandwidth. Additionally, they tend to 

overfit training data.  

Fig. 5. Structure of an LSTM Unit 

Firstly, to be able to apply RNNs models, we convert 

time series data to the data matrix. This step is required 

as RNNs models do not work with time series data.   

Once data is converted to the required shape and scaled 

selected range, we built the first examples of simple 

RNNs and LSTM models.  

In the early stages of our experiments, we try a different 

number of time steps as input to investigate the model's 

behaviour. We create a new data matrix with the best 

time step value and use it as a time series generator in 

the next steps. Next, we perform the parameter search on 

created models to calculate the number of layers and 

neurons, epoch, batch size activation function, loss 

function, and optimizer. 

Activation functions determine the output of the neurons. 

In our study, we observed that ReLu activation function 

fits better than the other functions in the literature. ReLu 

function returns the maximum number between two 

numbers that can be shown mathematically as 

max(0, 𝑥). 

In the neural networks, optimizers are used ,to optimize 

the loss or cost functions to evaluate the predictions of a 

model mathematically. Predictions are evaluated based 

on their differences from the real values Among many 

defined loss functions in the literature, we use mean 

squared error loss function in our study. Mean squared 

error function (MSE) is represented mathematically as 

follows 

: 
1

𝑛
∑ (𝑦𝑖 − 𝑦̃𝑖)

2𝑛
𝑖=1 . 

In the training process of parametric models, optimizers 

search over a parameter space to minimize the loss 

function. In our study, we used Adaptive moment 

estimation (ADAM) optimizer, an extension of the 

classical stochastic gradient descent method. ADAM 

uses first and second-order moments. We observed that 

functions explained before affected our models better 

than other alternative combinations in our case (Kingma 

and Ba, 2015). 

After the parameter estimation, we perform cross 

validation on both simple RNNs and LSTM models. We 

observe that SRNN with ten hidden neurons in a single 

layer, gave the best results, and the LSTM model, 

including three and two neurons in two layers, gave the 

best results. To avoid the risk of overfitting, we add a 

dropout regularization parameter to our model. Dropout 
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regularization provides neurons randomly in each 

training session with a given probability distribution. In 

our model training studies, we find that adding a dropout 

regularization parameter does not affect the results. We 

apply a differencing method to the data to reach a more 

effective model. With differencing, we aimed to remove 

the trend from the data.  After this step, we converted 

new stationary data to supervised data by shifting one or 

two data points and followed by a normalization step. 

We build models with same functions, batch size and 

epoch values. 

Validation and Verification 

In the literature, different validation techniques are 

suggested to validate machine learning and deep learning 

models and verify the results. k-Fold Cross Validation, 

Leave One Out Cross Validation are only two examples 

of the most used techniques. In this study, we used cross 

validation techniques using the original dataset.   

Fig. 6. Time series Cross Validation Process Chart 

k-Fold CV technique splits the data into k groups and 

iteratively use a group as a test set while keeping others 

in the training set. This process is repeated k times until 

every k
th

 part left as test. Once this process is complete, 

the average of these k results represents the predictive 

power of the model. In time series cross validation, same 

process is applied with a little adaptation. In the time 

series cross validation, model is trained with previous 

observations. As shown in Figure 6, orange parts 

represent the training sets and pink parts represent test 

sets (Altunkaynak et al., 2004). In this study, we used 5-

fold time series cross validation on our models to verify 

the results.  

Results and Discussion 

In Table 2, we summarize performances of the studied 

models. As shown as in the table, MLP is the best 

performing model while SARIMA has the second-best 

performance. Good performance of MLP models can be 

attributed to its capability of modeling seasonal 

variations. Similarly, SARIMA model is a higher-

dimension version of the ARIMA model incorporating 

seasonality coefficients The importance of seasonality 

for forecasting water demand can be observed from the 

poor performance of ARIMA models, which omit 

seasonality.  

Additionally, as shown in Table 2, the results of the 

SRNN and LSTM models are not good. All these 

models, ARIMA with Box-Cox transformation gave the 

worst results. In our experimentations with different 

model structures, we consider adding dropout 

regularization parameter to RNN models to improve 

their forecast accuracy.  Our results reveal that the 

forecast accuracy of LSTM can be marginally improved 

with regularization whereas SRNN’s forecast results are 

rather insensitive to this modification.  

Table 2. Results of the models. 

Cross Validation k=5 

Model 
Detailed 

Description 
MAPE MSE RMSE 

MLP 3 layers 0.018 3.8 E+06 1902.9 

SARIMA 0.019 3.9 E+06 1857.1 

HW 0.022 5.1 E+06 2111.3 

ANNs 
Box-Cox 

Transform. 
0.043 1.8 E+07 4066.4 

SRNN 0.047 2.2E+07 4435.4 

SRNN 
Dropout 

regularization 
0.049 2.9E+07 4998.6 

ANNs 0.058 6.9E+07 6151.1 

LSTM 2 layers 0.06 3.8E+07 5776.6 

SRNN 2 layers 0.064 4.0E+07 6052.2 

LSTM 
Dropout 

regularization 
0.087 6.9E+07 7851.2 

LSTM 0.11 1.1E+08 9545.1 

LSTM 
Differencing by 

1 
0.112 1.3E+08 10068.6 

LSTM 
2 layers and 

differencing by 1 
0.112 1.3E+08 9912.4 

ARIMA 
Box-Cox 
Transform. 

0.123 1.0E+08 10150 
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Conclusion 

Istanbul is a megacity including residential, industrial, 

and agricultural areas, housing more than 16 million 

people. In addition, the city experiences occasional 

droughts with increasing frequencies mainly due to 

climate change. Therefore, it is important to make 

medium- and long-term plans for ensuring the city's 

water supply by utilizing the right combinations of 

infrastructure investments. Planning such investment 

activities requires accurate forecasts for the city's future 

water demand. 

In this paper, classical models such as ARIMA and HW, 

and deep learning models such as ANNs, MLP and 

RNNs models are investigated for forecasting water 

consumption of Istanbul. ARIMA, HW and MLP require 

input data as time series, while ANNs and RNNs require 

input in a matrix form. We train our models by using 

approximately 95% of the entire data set. After finding 

satisfying parameters for each model, five-fold cross-

validation is applied. Additionally, ARIMA and ANNs 

models are combined with the Box Cox transformation. 

We observed that RNNs and LSTM models tend to 

return inconsistent results. We verified that this 

instability is mainly due to the non-stationary 

characteristic of the data. Differencing method is used to 

alleviate the effect of non-stationarity. 

The results of cross-validation were examined for every 

model. Our results reveal MLP and SARIMA models 

have successful forecasting accuracy as they can capture 

the increasing trend and seasonality of water 

consumption levels. In addition, LSTM and RNNs have 

reasonable performance on the training set, whereas they 

perform poorly in cross-validation. After the 

differencing method, LSTM models produced more 

stable results. To our knowledge, the literature consists 

of studies focusing on short-term predictions with 

classical or deep learning models. In this paper, we 

consider classical and novel models for the long-term 

prediction of the freshwater demand in Istanbul. Our 

predictive models are trained on the data set of monthly 

freshwater consumption of the city. We observe that a 

classical forecasting model and a novel machine learning 

technique outperform the other models. This result 

strongly indicates the potential of utilizing statistical 

models and machine learning techniques to achieve the 

best result. 
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Appendix 

A.1 Classical Models 
We applied classical models by using R. First, we built 

auto-ARIMA and ARIMA models. Since the data has a 

seasonal characteristic, we used the seasonal ARIMA 

model. To find the (p, d, q) parameters of ARIMA, we 

run the auto-ARIMA routine in R Gui. The auto-ARIMA 

performs a manual parameter search on different 

ARIMA models and compares them using Akaike 

Information Criterion (AIC). A close investigation into 

the auto ARIMA results reveals that  (p,d,q)=(0, 1, 1) 

gives the best cross-validation result. As the second 

model, we applied Holt-Winter’s model. We find that the 

additive method suits more than the multiplicative 

method to the data. 

A.2. Feed Forward Network 

We applied feed-forward neural networks by using the 

nnet library in R. In our application, we first applied data 

preparation steps. Next, we built shallow feed-forward 

neural network models and ran parameter searches for 

them. During the parameter search step, we focused on 

the number of neurons, decay, and maximum iteration 

parameters. Also, we set Linout and Hess parameters to 

true because the expected output is linear. Additionally, 

we tried different values for the decay and maximum 

iteration, and initial weights parameters. We determined 

to use zero for initial weights, and decay is 1e-2 with 

1000 maximum iteration. We observed that with those 

parameters, eight hidden neurons yielded the best results 

on the shifted data by three points. 

A.3 Multilayer Perceptron 

We used the mlp function from R to build models. We 

used the data as time series data without changing. We 

performed a parameter search for the function. In our 

application, we used deterministic seasonality dummies. 

From the type of the deterministic seasonality dummies, 

the ‘trg’ type gave the best results, meaning the sin-

cosine pair is used. After the cross-validation was 

applied, we observed that model with three layers with 

two neurons in each gave the best results among the 

MLP models and all the other models. 

A.4 Recurrent Neural Networks 

We used Python and Keras library to build our models 

and do data pre-processing steps. After building the 

models, we performed a parameter search for the number 

of neurons, number of layers, activation function, loss 

function, and optimizer parameters.   

According to Keras documentation, ReLu activation 

function of the library takes four input arguments. These 

are x, alpha, max value, and the threshold value. x input 

argument represents the input tensor or variable, and 

alpha is a float controlling the input slope below the 

threshold value. While the maximum value represents 

the largest value the function returns, the threshold input 

argument represents a float that the function set the 

lower values to this threshold value or as default to zero. 

ADAM optimizer takes five input parameters. These 

parameters are learning rate, beta 1, beta 2, and epsilon. 

The learning rate is also called step size and are used to 

update the model weights. Beta 1 and beta 2 parameters 

are used as exponential decay rates regarding to the first 

and second-order moments. Epsilon is a small number 

that is used to prevent division by zero. This parameter is 

an addition to the original algorithm. 

In addition to these parameters, the input shape for the 

input layer is an important parameter and must be 

indicated. For the first model, we used a time series 

generator which provides generated matrix from the 

given time series with determined time steps and batch 

size. We searched for the time steps and batch size. After 

that, we determined to use a twelve-time step as a 

number of inputs and one for the batch size. For the 

models, the input shape is an important parameter and 

must be determined in the input layer. The number of 

inputs should be the same as the generator, and the 

number of features is determined as one because the data 

is univariate data. Besides, we observed that larger epoch 

values did not affect the results noticeably in our 

parameter search for epoch number, and we used smaller 

epoch values because of performance concerns. We 

determined the epoch as twenty. Moreover, for the multi-

layered models, the return sequence parameter should be 

set as true. At last, we observed that single-layered 

SRNN from SRNN models with ten hidden neurons gave 

the best result with these parameters, while two-layered 

LSTM with respectively three and two hidden neurons 

gave the best results from LSTM models. Because of the 

difference between general prediction results and cross-

validation results, we suspected overfitting, and we 

added a dropout regularization parameter. We tried 

different values for this parameter. However, it did not 

affect our models positively. In general, SRNN model 

has the best results out of RNN models. However, we 

observed a high variation issue for SRNN and LSTM 

models and SRNN tends to be affected more from this 

issue. 

In the second method that we used for only LSTMs, we 

used differenced data, and we converted the data to 

supervised matrix type manually rather than using the 

generator. We changed the data preparation step to get 

rid of the variation issue. Additionally, we set the 

stateful parameter to true. Stateful parameters are used to 

save the current state of the neurons and use it in the next 

training session. After that, we used mostly the same 

parameters. We only changed the input shape parameters 

to batch input shape, which is mostly the same as the 

previous one. We needed to change because we did not 

use a time series generator anymore. Instead of defining 

batch size in the generator, we added the batch size to 

the input shape parameter. As a result, we observed that 

single-layered LSTM models gave better results than 

multi-layered results. The model with two hidden 

neurons in a single-layered model gave the best results. 

In addition to the superior performance of the single-

layered model, the high variation of the results decreases 

noticeably. Besides, different shifting points do not yield 

noticeable effects on the results. 




