
 International Journal of Environment and Geoinformatics 10(2):001-011 (2023)

1

Evaluation of Various Machine Learning Methods to Predict Istanbul’s Freshwater

Consumption

Mustafa Hekimoğlu* , Ayse Irem Cetin , Burak Erkan Kaya

Kadir Has University Department of Industrial Engineering, 34083 Cibali, Istanbul, TURKIYE

* Corresponding author: M. Hekimoğlu Received 24.01.2023

* E-mail: mustafa.hekimoglu@khas.edu.tr Accepted 27.03.2023

Abstract

Planning, organizing, and managing water resources are crucial for urban areas and metropolitans. Istanbul is one of the largest

megacities, with a population of over 15 million. The large volume of water demand and increasing scarcity of clean water resources

make long-term planning necessary for this city, as sustained water supply requires large-scale investment projects. Successful

investment plans require accurate projections and forecasting for freshwater demand. This study considers different machine learning

methods for freshwater demand forecasting for Istanbul. Using monthly consumption data provided by the municipality since 2009,

we compare forecasting accuracies of ARIMA, Holt-Winters, Artificial Neural Networks, Recursive Neural Networks, Long-Short

Term Memory, and Simple Recurrent Neural Network models. We find that the monthly freshwater demand of Istanbul is best

predicted by Multi-Layer Perceptron and Seasonal ARIMA. From the predictive modeling perspective, this result is another

indication of the combined usage of conventional forecasting models and novel machine learning techniques to achieve the highest

forecasting accuracy.

Keywords: Water Management, Machine Learning, Neural Networks, Autoregressive Models

Introduction

Increasing water demand, accompanied by resource

scarcity, is one of the main critical problems of today’s

societies. Water is not only vital for all living organisms,

but it is also crucial for sanitation, agriculture and almost

all other economic activities. From the urban water

management perspective, the water demand of a city is

mainly driven by the size of its population, climatic

conditions, distribution and wastewater collection

infrastructure, and the level of socio-economic

development of a city. Water demand forecasting is the

primary input for urban water management studies for all

cities (Essien et al., 2019). Water management and

planning are highly challenging to megacities like

Istanbul, and the results are more sensitive to forecast

errors in future water demand estimation.

Istanbul is suffering from water scarcity due to the

rapidly increasing population. As Turkey's most

populous and industrious city, Istanbul offers many

opportunities to locals, refugees, and tourists, such as

education, jobs in various areas, and tourism. This

stimulates the population growth of the city.

Additionally, climate change affects precipitation rates

in the surrounding areas of the city, and that is directly

related to water levels in the reservoirs and dams

(Gazioğlu et al., 1998; Yücel, et al., 2002). All of these

factors compel decision-makers to take necessary

precautions to overcome Istanbul’s water management

problems, and a reliable water demand prediction is the

key input to designate the water management policy

(Goksel, et al., 2006; Burak et al., 2021).

In this paper, we consider Istanbul's medium-term water

forecasting problem. Using the historical water

consumption data provided by Istanbul Water and

Sewerage Administration (ISKI), we employ classical

forecasting models, Holt-Winters, Seasonal

Autoregressive Integrated Moving Average (S-ARIMA)

and Naive forecasting, as well as two different types of

Artificial Neural Network methods to obtain

consumption predictions for the city. Our results show

that among the great variety of models considered for the

monthly consumption data of Istanbul, the best result is

provided by SARIMA whereas the second-best

performance is obtained from Multi-Layer Perceptron

(MLP) with our parameterization.

Consideration of classical and novel methods of

forecasting freshwater demand forecasting of Istanbul is

the main contribution of this study. Interestingly,

classical and novel methods perform very close to each

other for monthly freshwater demand, indicating the

importance of considering existing methods together

with the novel machine learning methodologies from the

literature (Celik and Gazioğlu, 2022).

This paper consists of six sections. Section 2 briefly

reviews the literature and some applications of various

machine learning methods used for water demand

forecasting. The data set is introduced and explained in

Section 3. In Section 4, a detailed presentation of

Reaserch Article

How to cite: Hekimoğlu, et al. (2023). Evaluation of Various Machine Learning Methods to Predict Istanbul’s Freshwater Consumption.

International Journal of Environment and Geoinformatics (IJEGEO), 10(2):001-011, doi. 10.30897/ijegeo.1270228

https://orcid.org/0000-0001-9446-0582
https://orcid.org/0000-0002-9298-0565
https://orcid.org/0000-0002-9110-0765

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

2

forecasting models is presented. Validation and

verification of our models are given in Section 5. Results

and discussion are in Section 6, and the conclusion is

given in Section 7.

Water demand forecasting has long been studied, and

researchers consider different models and methods for

the problem. In the literature, different regressors are

considered for predicting water demand in the future.

Specifically, Adamowski (2008) used climatic variables,

past water demand, and population variables with linear

regression models, time series models (ARIMA), and

Artificial Neural Networks (ANNs) models. More

specifically, the maximum daily temperature, the daily

amount of rainfall, and population variables were used in

the model (Adamowski, 2008).

Recent papers in this area mostly compare classical

models with the current ANN models or just focus on the

ANNs and their variations. ANN model was applied by

Liu et al., (2003) predict water demand in Weinan City

with these parameters, water consumption per month,

water and wastewater prices in effect, household size,

and household income. Tiwari, and Adamwoski (2013)

used Wavelet Neural Networks and Bootstrap Neural

Networks on average daily and monthly demand,

maximum temperature, and total precipitation

parameters and compared their performance with

ARIMA and ARIMAX. Caiado (2010) applied classical

models such as ARIMA, Holt Winter (HW), and

Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) with double seasonal

univariate time series data and examined the

performance of the daily water demand in Granada,

Spain.

In addition to classical models and neural networks,

machine learning models are used for water demand

forecasting in the literature. Smolak et al., (2010) utilize

Support Vector Machine (SVM), tree-based models,

Random Forest and Extra Trees, and Blind Approach.

They compared the models' performance with ARIMA

models on seven-day and 24-hour forecasts. Chen (2011)

utilizes a Least Squared Support Vector Machine (LS-

SVM), a modified version of SVM, and examined its

performance on the hourly water demand forecasts with

Back Propagate Neural Networks. Bata and Carriveau

(2020) consider two different ANNs models, and

Nonlinear Autoregressive with Exogenous (NARX)

model with historical demand. They examine

performances on short-term water demand forecasting

(Bata et al., 2020). Altunkaynak et al. (2004) studied TS

Fuzzy time series analysis on nine years of monthly

water consumption records of Istanbul city.

Moreover, deep learning models such as RNNs are used

to forecast water demand models. Guo et al. (2018)

utilize ANNs, SARIMA, and the GRUN models. GRUN

consists of Gated Recurrent Units, a type of RNN, as the

core. GRUN is built on three layers of GRU, a layer of

merge layer, a part of many dense layers, and a

connection module. Rectified Linear Unit (ReLu) and

linear functions were used as activation functions. The

model used two water demand datasets collected from

different parts (residential or industrial) of the city of

Changzhou in China. They examined the performances

of the models on two datasets by using 15-minute and

24-hour forecasting periods (Guo et al., 2018). Mu et al.

(2020) examined LSTM with ARIMA, support vector

regression SVR and Random Forest (RF) models based

on predictions of hourly and daily water demands for

Hefei City in China. Hu et al., (2019) discussed

Convolutional Neural Network (CNNs) and

Bidirectional LSTM (Bi-LSTM) hybrid model over

CNNs, LSTM, Bi-LSTM, CNN-LSTM and Sparse

Autoencoder (SAE) models on urban water demand

prediction with historical urban water demand data and

meteorological data. Savun-Hekimoğlu et al. (2021)

consider an ARIMA model for forecasting the water

demand of Istanbul. In our paper, we consider many of

the methods in the literature for forecasting the monthly

consumption of Istanbul to obtain medium to long-term

water demand predictions for the city. To the best of our

knowledge, classical and novel methods have never been

compared in a water demand forecasting study with

monthly consumption data before.

Dataset

In our study, we considered monthly consumption data

provided by the open platform of Istanbul Metropolitan

Municipality. The dataset includes the monthly

freshwater consumption levels of Istanbul between 2009

and 2019. In total, the dataset consists of 132 rows.

After a careful review, we decided to remove the value

of December 2019 due to inaccurate measurement. The

resulting dataset consists of 131 point-univariate time

series. In Table 1, descriptive statistics of the dataset are

provided.

Table 1. Descriptive statistics of 131 Months of

Freshwater Consumption.

Seasonality and trend analysis of the water consumption

data of Istanbul reveals that water demand has increased

over the recent years, and there is a significant

seasonality in the dataset. Seasonality analysis is

performed with stl routine in R Gui. This routine

decomposes a time series into its trend and seasonality

components using locally polynomial regression fitting

(Cleveland et al., 1990). We assume additive model for

this decomposition as it is simpler and more effective

compared to the multiplicative one. The result of the

seasonality decomposition is presented in Figure 1. The

increasing trend can be explained by the increasing

urban population in Istanbul, whereas cyclic behaviour is

mainly due to the effect of temperature. The non-

Descriptive Statistic Value (1000*𝒎𝟑)

Mean 76579.1

Standart Deviation 10269.3

Minimum 50838.0

Lower Quartile 68021.5

Middle Quartile 77285.0

Upper Quartile 84256.5

Maximum 96028.0

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

3

stationarity of the consumption time series is checked

with Augmented Dickey-Fuller Test (ADF). We applied

the ADF test using R-Gui and observed that the p-value

is close to 1, which shows that our dataset is non-

stationary.

Forecasting Water Demand

To obtain water demand forecasts for Istanbul, we

examined classical models, (ARIMA and Holt Winter’s

(HW)), machine learning models (Naïve Bayes), and

deep learning models (ANNs and RNNs). The classical

models are traditional prediction tools for the time series

forecasting because they are easy to use and understand

the statistics behind them. More importantly, these tools

provide satisfying results. Machine learning and deep

learning models present new approaches to time series

problems, and they outperform the conventional methods

especially in short-term forecasting problems.

Fig. 1. Decomposed representation of the dataset

Fig. 2. Autocorrelation function and residual plot.

5
0
0
0
0

7
0
0
0
0

9
0
0
0
0

o
b

s
e

rv
e

d

6
0
0
0
0

7
5
0
0
0

tr
e

n
d

-1
0
0
0
0

0
5
0
0
0

s
e

a
s
o

n
a

l

-4
0
0
0

0
2
0
0
0

2010 2012 2014 2016 2018 2020

ra
n

d
o

m

Time

Decomposition of additive time series

-10000

-5000

0

5000

10000

2010 2012 2014 2016 2018

Residuals from Naive method

-0.50

-0.25

0.00

0.25

0.50

0.75

12 24 36

Lag

A
C

F

0

10

20

30

-15000-10000 -5000 0 5000 10000 15000

residuals

c
o
u
n
t

4

In contrast to the classical models, these models have

more complex mathematical structures, and they can

signal issues such as overfitting. Tuning these input

parameters and finding the best-fit combination is

another optimization problem and require more work

time than classical models (Hekimoğlu, 2022). Detailed

explanations about the applications of the models can be

founded in the appendix. In this section, we first provide

a detailed presentation of the classical forecasting

models and their applications to water demand

prediction for Istanbul. Afterwards, we discuss the

application of machine learning techniques for the

problem.

When interpreting the reliability of a model Mean

Squared Error (MSE), Mean Absolute Error (MAPE),

and Root Mean Square Error (RMSE) are used

frequently. The mathematical definitions of these

accuracy measures are provided in Equations (1-3)

𝑀𝑆𝐸 =
1

𝑛
∑ (µ − 𝜀𝑡)2𝑛

𝑡=1 , (1)

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (µ − 𝜀𝑡)2𝑛

𝑡=1 |
µ−𝑦𝑡

µ
|, (2)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (µ − 𝜀𝑡)2𝑛

𝑡=1

2
 .

(3)

Throughout this study, MSE, MAPE, and RMSE values

are also used to measure the performances of forecasting

methods. For a reliable method, these values are required

to be as much as small. MSE, MAPE, and RMSE values

for the naïve method are 251044254, 0.336, and

15844.38, respectively; these can be thought of as very

high values intuitively.

Classic Forecasting Models

Autoregressive Integrated Moving Average

The Autoregressive Integrated Moving Average model

(ARIMA) is a standard model that is used in statistics,

economics, and particularly time series analysis. This

model has been a lead model in many areas of time

series forecasting for over a half-century. The model is a

generalization for the autoregressive (AR) and moving

average (MA) methods. These models are suitable for

understanding the data and predicting future points.

Although models require stationary series, non-

stationary series can be transformed into stationary series

using the differencing method. Differencing can be

defined as computing the difference between consecutive

observations, which is also called the random walk

method. Differencing helps to stabilize the mean of the

series by removing shifts in the data and reducing trend

and seasonality. ARIMA is the linear combination of AR

and MA models. In AR models, the prediction of the

values depends on the linearly combined past values of

variables. In Equation (4) AR is represented, where ε𝑡 is

error (white noise) value, y𝑡 is predicted value, 𝑐 is the

mean difference between consecutive observations, and

ϕ𝑡 is the predictor such like multiple regression. For AR,

finding the best 𝑝 value is essential. 𝑝 value is called as

order of the AR, and AR(𝑝) is called the autoregressive

model of order p.

y𝑡 = c + ϕ1y𝑡−1 + ϕ2y𝑡−2 + ⋯ + ϕ𝑝y𝑡−𝑝 + ε𝑡. (4)

Structurally MA is similar to AR. The main difference

between the two models is that AR considers previous

forecasting errors as predictors instead of the previous

values. MA model is presented in Equation (5). As in

AR models, finding the right number of predictors is an

essential task for building accurate model while avoiding

the risk of overfitting. 𝑞 value is the order of the MA and

MA(q) is moving average of order q.

𝑦𝑡 = c + ε𝑡 + θ1ε𝑡−1 + θ2ε𝑡−2 + ⋯ + θ𝑞ε𝑡−𝑞. (5)

Combining differencing with AR and MA, the non-

seasonal ARIMA is provided. This combination is linear

and represented in Equation (6) where y′𝑡 represents the

differenced data. In ARIMA, the integration order, 𝑑,

should be considered. In ARIMA (𝑝, 𝑑, 𝑞), 𝑝 is the

number of the lagged terms of y𝑡, 𝑞 is the number of

lagged terms of ε, and 𝑑 is the degree of the

differencing.

y′𝑡 = c + ∑ ϕ𝑗y′𝑡−𝑗

p

j=1

+ ∑ θ𝑖

q

i=1

ε𝑡−𝑖 + ε𝑡.

(6)

By using features explained above, ARIMA can be used

for seasonal data. At this point, ARIMA has a new

parameter called m, which represents the seasonal part of

the model. ARIMA (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)m represents the

seasonal ARIMA (Ho et al., 2002; Contreras et al.,

2003; Stevenson, 2007).

Because the handled time series in this study is non-

stationary, we applied the seasonal ARIMA. Firstly, the

best 𝑝, 𝑑, and 𝑞 parameters are found, then Akaike’s

Information Criteria (AIC), corrected AIC (AICc), and

Bayesian Information Criteria (BIC) values are used to

check the model. AIC is an assessment method of the

goodness of the model in the prediction period and is a

useful method in selecting the process of the predictors

and order parameters. Additionally, BIC or AICc can be

used for the same purpose. We inspected these values of

models to observe whether there is a change. Auto-

ARIMA function in the python programming language is

used to find the best-fitting values of these parameters. A

graphical representation of residual values of the

resulting ARIMA model is given in Figure 2. Further

details on the parameter estimation of the ARIMA model

are given in Appendix. We also performed manual

search methods for these parameters. More than one

well-resulted parameter value was founded in the manual

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

5

search, and cross-validation was performed with these

parameters.

Holt-Winters

Holt-Winters’ model (HW) is a common and simple

projection method to deal with trend and seasonality.

HW depends on a forecasting equation and three

smoothing equations for level (ℓ𝑡), trend (𝑏𝑡), and

seasonal component (𝑠𝑡) with corresponding smoothing

parameters 𝛼, 𝛽∗ and 𝛾. Additionally, it denotes the

frequency of seasonality. HW deals with seasonality

with two different methods. The additive method (AM)

is preferred when seasonal variations are constant

through the series, and the multiplicative method (MM)

is used when seasonal variations change proportionally

to the level of the series. While the seasonal component

in AM is expressed as absolute values, it is expressed as

relative terms like percentage in MM (Chatfield, 1978;

Chatfield and Mohammed, 1988). AM is presented in

Equations (4-6) and MM is represented in Equations (7-

10).

�̂�𝑡+h|t = 𝑙𝑡 + h𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1). (7)

𝑙𝑡 = α(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − α)(𝑙𝑡−1 + 𝑏𝑡−1). (8)

𝑏𝑡 = β∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − β∗)𝑏𝑡−1. (9)

𝑠𝑡 = γ(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − γ)𝑠𝑡−𝑚. (10)

We applied HW model on the time series data. Firstly,

we built the model with default parameters (α=0.3,

β=0.1, and γ=0.1 are used when starting optimization

and HW function in R programming language to detect

optimal α, β, and γ values for optimization) for our data.

Then we performed the cross validation to control the

goodness of the fit to the model and different data points.

�̂�𝑡+h|t = 𝑙𝑡 + h𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1). (11)

𝑙𝑡 = α
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − α)(𝑙𝑡−1 + 𝑏𝑡−1). (12)

𝑏𝑡 = β∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − β∗)𝑏𝑡−1. (13)

𝑠𝑡 = γ
𝑦𝑡

(𝑙𝑡−1+𝑏𝑡−1)
+ (1 − γ)𝑠𝑡−𝑚. (14)

Artificial Neural Networks

Artificial neural networks (ANNs) are the most used

deep learning concept. They can be easy to use and

understand. Most importantly, they can be adapted for

many problems, such as linear-nonlinear models or

supervised-unsupervised problems. The idea underlying

ANNs is simply the working principle of the human

brain and nervous system. ANNs learn and make

meaningful assumptions from examples, even if there are

errors in the input data (Falah et al., 2019). ANNs are

computational models with varied degrees of complexity

(Hassoun and Hassoun, 1995). ANNs consist of one

input layer, one or more hidden layers, and one output

layer. These layers can contain more than one neuron,

affecting the model's complexity. The idea of mimicking

real neurons was proposed by McCulloch and Pitts

(1943). They defined computational neurons with binary

threshold unit. The mathematical neuron computes the

weighted sum of n inputs and returns 1 if the output of

the sum is above a certain threshold value, otherwise 0.

As can be seen in Equation (15), 𝜃(.) is the unit step

function, and 𝑤𝑘 is the weight of the 𝑘𝑡ℎ input value. The

last term threshold 𝜇 represents another weight 𝑤0 that

attached to constant input 𝑖0 = 1.

𝑦 = 𝜃(∑ 𝑤𝑘𝑖𝑘 − 𝜇𝑛
𝑘=1). (15)

ANNs provide many advantages and efficient solutions

when traditional methods fail and become impractical.

Requiring less formal statistical training, the ability to

implicitly detect complex nonlinear relationships

between dependent and independent variables, the ability

to detect efficient interactions between predictor

variables and the availability of multiple training

algorithms can be counted in these advantages. When

there is a large data set, ANNs give better results in

finding patterns in the data set than standard methods.

The nonlinear nature of the ANNs offers better results

against complex problems than linear techniques.

Additionally, identification and learning correlated

patterns between input and target values are possible for

ANNs, and they are useable to predict the output of new

inputs.

Even though ANNs have many advantages, there are still

some disadvantages that should be considered. Because

of the structure, ANNs have a black box and empirical

nature. They can be burdened computationally and prone

to overfit. Input-output table of an ANNs model can be

without a solid analytical basis because the relationship

between input and output variables is not developed by

theoretical judgment. The overtraining problem can

occur to create a model well in unseen inputs. This

causes an over-complex and over-specified model and

needs the capacity of the network to exceed free

parameters.

It is possible to differentiate neural networks and use

different types of them by not only adding multiple

hidden layers, nodes and changing functions. In this

manner, three types of neural networks are studied and

used by Jain et al. (2016). We applied these models to

our data with different parameters and observed the

reactions of these changes.

Feed-Forward Neural Network

One of the most used types of neural networks is feed-

forward neural networks (FFNNs). FFNNs consist of

sequential layers of function architecture. In this

structure, the outputs of the current layer are inputs of

the next layer. They can be single-layered or multi-

layered forms based on model design. Single-layered

networks are called shallow neural networks (SNNs);

meanwhile, multi-layered networks are called deep

neural networks (DNNs). SNNs have a simple structure

and activation functions, or step activation functions of

the nodes; the multiplication of inputs and weights feeds

those. In Figure 3, a generic structure for an FFNN

model is presented. In general, multi-layered neural

network models might have complex architecture,

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

6

whereas single-layer neural networks have only one

hidden layer between inputs and output (Figure 4).

FFNNs is easy to use and maintain, fast and not too

complex. However, it is not powerful enough when the

problems get complicated because of the lack of dense

layers and backpropagation (Tang and Fishwick, 1993).

Various numerical experiments were made to find a

model that gives the best results. Firstly, we convert time

series data to supervised data because ANNs models

need supervised data. We created a supervised data

matrix with predictions and real values from the time

series data. This matrix is created by shifting the data

points one by one. Thus, the previous data point is the

input parameter of the model for the current state, and

the current data point is the real value to validate the

model’s output. For the second step, we split the data

into train and test sets and built the first model with

logarithmic values of the training set. We did

experiments on the different models with the data

matrix, which we produced in the previous step. Then

we performed a parameter search for the number of

hidden neurons, decay, the number of iterations, and

initial weights.

Next, we applied similar searches on the dataset that

shifted by two, three and four points, we compared the

fourth parameter search results and observed that eight

hidden neurons model with shifted data by three points

gave the best result out of these results. Additionally, we

applied Box-Cox Transformation to the matrix. We

experimented with the models on the transformed data

matrix and observed the effects of the transformation on

the models.

Multi-Layer Perceptron

Perceptron is the earliest and the simplest version of the

ANNs forms. A perceptron forms a single neuron that

may have input values and return an output. On the other

hand, a multilayer perceptron (MLP) is a more complex

structure that can be built on a different number of layers

and neurons. MLP is a special type of FFNNs. MLP and

FFNNs are fully connected models; any neuron in a

layer is connected to all neurons in the next layer. In

some definitions, MLPs are defined with the same

number of neurons in each hidden layer and with the

same activation function across the hidden layers. As

shown in Figure 3, weighted input layer values are

presented to hidden layers to feed activation functions.

Both forward and back propagation are usable for MLP.

Due to the fully connected structure and

backpropagation method, MLP is a powerful solution for

deep learning problems. However, there are a couple of

points that should be considered. One of them is the

number of layers and neurons that can affect the speed of

the algorithm. Other is the fully connected structure that

can be complex and cause maintenance issues.

Speech recognition and complex classification are some

problems that can be solved by MLP. We applied MLP

in a similar manner to ARIMA and HW. We did not

convert time series data to a matrix because the model

requires time series data. After splitting the data to train

and test sets, we built the first examples of the MLP

model and did experiments with them. In these

experiments, we observed models’ behaviours while

changing the number of layers and neurons in each layer.

We tried to use deterministic seasonality dummies

parameter in our models and observed its effects on the

models. We observed ‘trg’ method for adding

seasonality dummies that gave the best results.

Additionally, we performed a parameter search on the

models and validated the results by using the cross-

validation method.

Fig. 3. A Generic Structure of Feed Forward Neural

Network (FFNN) Model.

Fig. 4. Structure of a RNNs unit.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are another type of

artificial neural network. RNNs are designed by

considering the detailed analogy of the brain modules.

The primary things that separate from each other are

simply the memory property of the RNNs. In the

structure of RNNs, there are internal loops that provide

to remember output from the previous neurons. These

feedback loops are the characteristic feature of the RNNs

and make them powerful computational models and

universal approximators (Xia et al., 2018). Although

ANNs are designed to take a fixed size of the input

vector, RNNs can analyze data streams with no

predetermined limit and process variable lengths of

sequences or even infinite lengths of sequences (DiPietro

and Hager, 2020). RNNs can perform well against

problems such as speech recognition, sentiment analysis,

and image processing. However, RNNs have some

modeling weaknesses and computational issues, such as

vanishing gradient problems. Gradient descent is an

optimization algorithm that is used to find the global

minimum of a differentiable function.

RNNs are using this function to find global minimum of

the cost function and update the weights for setting up

the optimal network. Finding lower gradient takes more

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

7

time for the algorithm, and it is more difficult for the

model to finalize the results. This problem called

vanishing gradient problem and affects to model training

negatively. In Figure 5, the structure of a RNN unit is

depicted. Long short-term memory units (LSTM)

overcome these weaknesses and improve the model. In

the structure of the LSTM, there are memory blocks that

include memory cells. These self-connected cells store

temporal network states with special multiplicative units.

These units are called gates. Every memory block

includes two types of gates; input and output gates. Input

gates control the flow of inputs toward memory cells,

whereas output cells control the output flow of cell

activations toward the rest of the network. Afterward,

forget cells are added to the memory block. Input

modulation gates provide a range to the state using the

hyperbolic tangent activation function and allow the cell

state to forget the memory. This may turn into a

weakness and prevent LSTM models from processing

continuous input streams (Sak et al., 2014).

Self-recurrent connections of the cell add the internal

states as input to the cell after it is scaled by a forget cell;

thus memory of the cell resets by forget cell. Peephole

connections were added to the architecture of the modern

LSTM. Peephole connections learn the exact timing of

the outputs from internal cells to the gates of the same

cell. LSTM solves the vanishing gradients problem of

the RNNs. Time and memory are essential needs for

LSTM. Because of the architecture of the model, they

need high memory bandwidth. Additionally, they tend to

overfit training data.

Fig. 5. Structure of an LSTM Unit

Firstly, to be able to apply RNNs models, we convert

time series data to the data matrix. This step is required

as RNNs models do not work with time series data.

Once data is converted to the required shape and scaled

selected range, we built the first examples of simple

RNNs and LSTM models.

In the early stages of our experiments, we try a different

number of time steps as input to investigate the model's

behaviour. We create a new data matrix with the best

time step value and use it as a time series generator in

the next steps. Next, we perform the parameter search on

created models to calculate the number of layers and

neurons, epoch, batch size activation function, loss

function, and optimizer.

Activation functions determine the output of the neurons.

In our study, we observed that ReLu activation function

fits better than the other functions in the literature. ReLu

function returns the maximum number between two

numbers that can be shown mathematically as

max(0, 𝑥).

In the neural networks, optimizers are used ,to optimize

the loss or cost functions to evaluate the predictions of a

model mathematically. Predictions are evaluated based

on their differences from the real values Among many

defined loss functions in the literature, we use mean

squared error loss function in our study. Mean squared

error function (MSE) is represented mathematically as

follows

:
1

𝑛
∑ (𝑦𝑖 − �̃�𝑖)

2𝑛
𝑖=1 .

In the training process of parametric models, optimizers

search over a parameter space to minimize the loss

function. In our study, we used Adaptive moment

estimation (ADAM) optimizer, an extension of the

classical stochastic gradient descent method. ADAM

uses first and second-order moments. We observed that

functions explained before affected our models better

than other alternative combinations in our case (Kingma

and Ba, 2015).

After the parameter estimation, we perform cross

validation on both simple RNNs and LSTM models. We

observe that SRNN with ten hidden neurons in a single

layer, gave the best results, and the LSTM model,

including three and two neurons in two layers, gave the

best results. To avoid the risk of overfitting, we add a

dropout regularization parameter to our model. Dropout

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

8

regularization provides neurons randomly in each

training session with a given probability distribution. In

our model training studies, we find that adding a dropout

regularization parameter does not affect the results. We

apply a differencing method to the data to reach a more

effective model. With differencing, we aimed to remove

the trend from the data. After this step, we converted

new stationary data to supervised data by shifting one or

two data points and followed by a normalization step.

We build models with same functions, batch size and

epoch values.

Validation and Verification

In the literature, different validation techniques are

suggested to validate machine learning and deep learning

models and verify the results. k-Fold Cross Validation,

Leave One Out Cross Validation are only two examples

of the most used techniques. In this study, we used cross

validation techniques using the original dataset.

Fig. 6. Time series Cross Validation Process Chart

k-Fold CV technique splits the data into k groups and

iteratively use a group as a test set while keeping others

in the training set. This process is repeated k times until

every k
th

 part left as test. Once this process is complete,

the average of these k results represents the predictive

power of the model. In time series cross validation, same

process is applied with a little adaptation. In the time

series cross validation, model is trained with previous

observations. As shown in Figure 6, orange parts

represent the training sets and pink parts represent test

sets (Altunkaynak et al., 2004). In this study, we used 5-

fold time series cross validation on our models to verify

the results.

Results and Discussion

In Table 2, we summarize performances of the studied

models. As shown as in the table, MLP is the best

performing model while SARIMA has the second-best

performance. Good performance of MLP models can be

attributed to its capability of modeling seasonal

variations. Similarly, SARIMA model is a higher-

dimension version of the ARIMA model incorporating

seasonality coefficients The importance of seasonality

for forecasting water demand can be observed from the

poor performance of ARIMA models, which omit

seasonality.

Additionally, as shown in Table 2, the results of the

SRNN and LSTM models are not good. All these

models, ARIMA with Box-Cox transformation gave the

worst results. In our experimentations with different

model structures, we consider adding dropout

regularization parameter to RNN models to improve

their forecast accuracy. Our results reveal that the

forecast accuracy of LSTM can be marginally improved

with regularization whereas SRNN’s forecast results are

rather insensitive to this modification.

Table 2. Results of the models.

Cross Validation k=5

Model
Detailed

Description
MAPE MSE RMSE

MLP 3 layers 0.018 3.8 E+06 1902.9

SARIMA 0.019 3.9 E+06 1857.1

HW 0.022 5.1 E+06 2111.3

ANNs
Box-Cox

Transform.
0.043 1.8 E+07 4066.4

SRNN 0.047 2.2E+07 4435.4

SRNN
Dropout

regularization
0.049 2.9E+07 4998.6

ANNs 0.058 6.9E+07 6151.1

LSTM 2 layers 0.06 3.8E+07 5776.6

SRNN 2 layers 0.064 4.0E+07 6052.2

LSTM
Dropout

regularization
0.087 6.9E+07 7851.2

LSTM 0.11 1.1E+08 9545.1

LSTM
Differencing by

1
0.112 1.3E+08 10068.6

LSTM
2 layers and

differencing by 1
0.112 1.3E+08 9912.4

ARIMA
Box-Cox
Transform.

0.123 1.0E+08 10150

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

9

Conclusion

Istanbul is a megacity including residential, industrial,

and agricultural areas, housing more than 16 million

people. In addition, the city experiences occasional

droughts with increasing frequencies mainly due to

climate change. Therefore, it is important to make

medium- and long-term plans for ensuring the city's

water supply by utilizing the right combinations of

infrastructure investments. Planning such investment

activities requires accurate forecasts for the city's future

water demand.

In this paper, classical models such as ARIMA and HW,

and deep learning models such as ANNs, MLP and

RNNs models are investigated for forecasting water

consumption of Istanbul. ARIMA, HW and MLP require

input data as time series, while ANNs and RNNs require

input in a matrix form. We train our models by using

approximately 95% of the entire data set. After finding

satisfying parameters for each model, five-fold cross-

validation is applied. Additionally, ARIMA and ANNs

models are combined with the Box Cox transformation.

We observed that RNNs and LSTM models tend to

return inconsistent results. We verified that this

instability is mainly due to the non-stationary

characteristic of the data. Differencing method is used to

alleviate the effect of non-stationarity.

The results of cross-validation were examined for every

model. Our results reveal MLP and SARIMA models

have successful forecasting accuracy as they can capture

the increasing trend and seasonality of water

consumption levels. In addition, LSTM and RNNs have

reasonable performance on the training set, whereas they

perform poorly in cross-validation. After the

differencing method, LSTM models produced more

stable results. To our knowledge, the literature consists

of studies focusing on short-term predictions with

classical or deep learning models. In this paper, we

consider classical and novel models for the long-term

prediction of the freshwater demand in Istanbul. Our

predictive models are trained on the data set of monthly

freshwater consumption of the city. We observe that a

classical forecasting model and a novel machine learning

technique outperform the other models. This result

strongly indicates the potential of utilizing statistical

models and machine learning techniques to achieve the

best result.

References

Adamowski, J. F. (2008). Peak daily water demand

forecast modeling using artificial neural networks.

Journal of Water Resources Planning and

Management, 134(2), 119-128.

Altunkaynak, A., Özger, M., Çakmakci, M. (2005).

Water consumption prediction of Istanbul city by

using fuzzy logic approach. Water resources

management, 19, 641-654.

Bata, M. T. H., Carriveau, R., Ting, D. S. K. (2020).

Short-term water demand forecasting using nonlinear

autoregressive artificial neural networks. Journal of

Water Resources Planning and Management, 146(3),

04020008.

Burak, ZS., Bilge, A.H., Ülker, D. (2021). Assessment

and simulation of water transfer for the megacity

Istanbul, Phys. Geogr., 43(6): 784-808.

Caiado, J. (2010). Performance of combined double

seasonal univariate time series models for forecasting

water demand. Journal of Hydrologic Engineering,

15(3), 215-222.

Celik, OI., Gazioglu, C. (2022). Coast type based

accuracy assessment for coastline extraction from

satellite image with machine learning classifiers, The

Egyptian Journal of Remote Sensing and Space

Science, 25 (1), 289-299.

Chatfield, C. (1978). The Holt‐winters forecasting

procedure. Journal of the Royal Statistical Society:

Series C (Applied Statistics), 27(3), 264-279.

Chatfield, C., Yar, M. (1988). Holt‐Winters forecasting:

some practical issues. Journal of the Royal Statistical

Society: Series D (The Statistician), 37(2), 129-140.

Chen, L. (2011). Genetic least squares support vector

machine approach to hourly water consumption

prediction. Journal of Zhejiang University

(Engineering Science), 45(6), 1100-1103.

Cleveland, R. B., Cleveland, W. S., McRae, J. E.,

Terpenning, I. (1990). STL: A seasonal-trend

decomposition. J. Off. Stat, 6(1), 3-73.

Contreras, J., Espínola, R. Member, S., Nogales, FJ

(2003). ARIMA models to predict next-day electricity

prices, 18(3), 1014-1020.

DiPietro, R., Hager, G. D. (2020). Deep learning: RNNs

and LSTM. In Handbook of medical image

computing and computer assisted intervention (pp.

503-519). Academic Press.

Essi̇en, E., Jesse, E., Igbokwe, J. (2019). Assessment of

Water Level in Dadin Kowa Dam Reservoir in

Gombe State Nigeria Using Geospatial Techniques,

International Journal of Environment and

Geoinformatics, 6(1), 115-130. doi.10.30897/ijegeo.

487885.

Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E.,

Daliakopoulos, I. N., Pourghasemi, H. R. (2019).

Artificial neural networks for flood susceptibility

mapping in data-scarce urban areas. In Spatial

modeling in GIS and R for Earth and Environmental

Sciences (pp. 323-336). Elsevier.

Gazioğlu, C., Yücel, Z.Y., Doğan, E. (1998). Uydu

Verileri İle İstanbul Boğazi ve Yakin Çevresindeki

İçme Suyu Havzalarina Genel Bir Bakiş.,

Büyükşehirlerde atık su yönetimi ve deniz kirlenmesi

kontrolu sempozyumu. 18-20 Kasim 1998,

Goksel, C., Musaoglu, N., Gurel, M., Ulugtekin, N.,

Tanik, A., Seker, D. Z. (2006). Determination of

land-use change in an urbanized district of Istanbul

via remote sensing analysis. Fresenius

Environmental Bulletin, 15(8 A), 798–805. 4

Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R., Zhu, X.

(2018). Short-term water demand forecast based on

deep learning method. Journal of Water Resources

Planning and Management, 144(12), 04018076.

Hassoun, M. H. (1995). Fundamentals of artificial

neural networks. MIT press.

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

10

Hekimoğlu, M. (2022). Markdown Optimization with

Generalized Weighted Least Squares Estimation.

International Journal of Computational Intelligence

Systems, 15(1), 109.

Ho, S. L., Xie, M., Goh, T. N. (2002). A comparative

study of neural network and Box-Jenkins ARIMA

modeling in time series prediction. Computers &

Industrial Engineering, 42(2-4), 371-375.

Hu, P., Tong, J., Wang, J., Yang, Y., de Oliveira Turci,

L. (2019, June). A hybrid model based on NN and

Bi-LSTM for urban water demand prediction. In

2019 IEEE Congress on evolutionary computation

(CEC) (pp. 1088-1094). IEEE.

Jain, A. K. M., J., Mohiuddin, KM (1996). Artificial

Neural Networks: A Tutorial. IEEE Computer

Society (29), 31-44.

Kingma, D. P., Adam, B. J. (2015). A method for

stochastic optimization. CoRR. 2014; abs/1412.6980.

ArXiv preprint arXiv:1412.6980.

Liu, J., Savenije, H. H., Xu, J. (2003). Forecast of water

demand in Weinan City in China using WDF-ANN

model. Physics and Chemistry of the Earth, Parts

A/B/C, 28(4-5), 219-224.

McCulloch, W. S. y Pitts, W (1943), A logical calculus

of the ideas immanent in nervous activity. Bull. of

Math. Biophysics, 5, 116.

Mu, L., Zheng, F., Tao, R., Zhang, Q., Kapelan, Z.

(2020). Hourly and daily urban water demand

predictions using a long short-term memory based

model. Journal of Water Resources Planning and

Management, 146(9), 05020017.

Sak, H., Senior, A., Beaufays, F. (2014). Long short-

term memory based recurrent neural network

architectures for large vocabulary speech recognition.

arXiv preprint arXiv:1402.1128.

Savun-Hekimoğlu, B., Erbay, B., Hekimoğlu, M., Burak,

S. (2021). Evaluation of water supply alternatives for

Istanbul using forecasting and multi-criteria decision

making methods. Journal of Cleaner Production,

287, 125080.

Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W.,

Siła-Nowicka, K., Kopańczyk, K. (2020). Applying

human mobility and water consumption data for

short-term water demand forecasting using classical

and machine learning models. Urban Water Journal,

17(1), 32-42.

Stevenson, S. (2007). A comparison of the forecasting

ability of ARIMA models. Journal of Property

Investment & Finance, 25(3), 223-240.

Tang, Z., Fishwick, P. A. (1993). Feedforward neural

nets as models for time series forecasting. ORSA

journal on computing, 5(4), 374-385.

Tiwari, M. K., Adamowski, J. (2013). Urban water

demand forecasting and uncertainty assessment using

ensemble wavelet‐bootstrap‐neural network models.

Water Resources Research, 49(10), 6486-6507.

Xia, Y., Xiang, M., Li, Z., Mandic, D. P. (2018). Echo

state networks for multidimensional data: Exploiting

noncircularity and widely linear models. In Adaptive

Learning Methods for Nonlinear System Modeling

(pp. 267-288). Butterworth-Heinemann.

Yücel, Z.Y. Gazioğlu, C., Doğan, E., Kaya, H. (2002).

Uzaktan Algilama ve CBS/B ile Ömerli Baraji ve

Yakin Çevresinin İzlenmesi, Türkiye'nin Kıyı ve

Deniz Alanları IV Ulusal Konferansı Bildiriler Kitabı

Hekimoğlu et al., / IJEGEO 10(2): 0001-011 (2023)

11

Appendix

A.1 Classical Models
We applied classical models by using R. First, we built

auto-ARIMA and ARIMA models. Since the data has a

seasonal characteristic, we used the seasonal ARIMA

model. To find the (p, d, q) parameters of ARIMA, we

run the auto-ARIMA routine in R Gui. The auto-ARIMA

performs a manual parameter search on different

ARIMA models and compares them using Akaike

Information Criterion (AIC). A close investigation into

the auto ARIMA results reveals that (p,d,q)=(0, 1, 1)

gives the best cross-validation result. As the second

model, we applied Holt-Winter’s model. We find that the

additive method suits more than the multiplicative

method to the data.

A.2. Feed Forward Network

We applied feed-forward neural networks by using the

nnet library in R. In our application, we first applied data

preparation steps. Next, we built shallow feed-forward

neural network models and ran parameter searches for

them. During the parameter search step, we focused on

the number of neurons, decay, and maximum iteration

parameters. Also, we set Linout and Hess parameters to

true because the expected output is linear. Additionally,

we tried different values for the decay and maximum

iteration, and initial weights parameters. We determined

to use zero for initial weights, and decay is 1e-2 with

1000 maximum iteration. We observed that with those

parameters, eight hidden neurons yielded the best results

on the shifted data by three points.

A.3 Multilayer Perceptron

We used the mlp function from R to build models. We

used the data as time series data without changing. We

performed a parameter search for the function. In our

application, we used deterministic seasonality dummies.

From the type of the deterministic seasonality dummies,

the ‘trg’ type gave the best results, meaning the sin-

cosine pair is used. After the cross-validation was

applied, we observed that model with three layers with

two neurons in each gave the best results among the

MLP models and all the other models.

A.4 Recurrent Neural Networks

We used Python and Keras library to build our models

and do data pre-processing steps. After building the

models, we performed a parameter search for the number

of neurons, number of layers, activation function, loss

function, and optimizer parameters.

According to Keras documentation, ReLu activation

function of the library takes four input arguments. These

are x, alpha, max value, and the threshold value. x input

argument represents the input tensor or variable, and

alpha is a float controlling the input slope below the

threshold value. While the maximum value represents

the largest value the function returns, the threshold input

argument represents a float that the function set the

lower values to this threshold value or as default to zero.

ADAM optimizer takes five input parameters. These

parameters are learning rate, beta 1, beta 2, and epsilon.

The learning rate is also called step size and are used to

update the model weights. Beta 1 and beta 2 parameters

are used as exponential decay rates regarding to the first

and second-order moments. Epsilon is a small number

that is used to prevent division by zero. This parameter is

an addition to the original algorithm.

In addition to these parameters, the input shape for the

input layer is an important parameter and must be

indicated. For the first model, we used a time series

generator which provides generated matrix from the

given time series with determined time steps and batch

size. We searched for the time steps and batch size. After

that, we determined to use a twelve-time step as a

number of inputs and one for the batch size. For the

models, the input shape is an important parameter and

must be determined in the input layer. The number of

inputs should be the same as the generator, and the

number of features is determined as one because the data

is univariate data. Besides, we observed that larger epoch

values did not affect the results noticeably in our

parameter search for epoch number, and we used smaller

epoch values because of performance concerns. We

determined the epoch as twenty. Moreover, for the multi-

layered models, the return sequence parameter should be

set as true. At last, we observed that single-layered

SRNN from SRNN models with ten hidden neurons gave

the best result with these parameters, while two-layered

LSTM with respectively three and two hidden neurons

gave the best results from LSTM models. Because of the

difference between general prediction results and cross-

validation results, we suspected overfitting, and we

added a dropout regularization parameter. We tried

different values for this parameter. However, it did not

affect our models positively. In general, SRNN model

has the best results out of RNN models. However, we

observed a high variation issue for SRNN and LSTM

models and SRNN tends to be affected more from this

issue.

In the second method that we used for only LSTMs, we

used differenced data, and we converted the data to

supervised matrix type manually rather than using the

generator. We changed the data preparation step to get

rid of the variation issue. Additionally, we set the

stateful parameter to true. Stateful parameters are used to

save the current state of the neurons and use it in the next

training session. After that, we used mostly the same

parameters. We only changed the input shape parameters

to batch input shape, which is mostly the same as the

previous one. We needed to change because we did not

use a time series generator anymore. Instead of defining

batch size in the generator, we added the batch size to

the input shape parameter. As a result, we observed that

single-layered LSTM models gave better results than

multi-layered results. The model with two hidden

neurons in a single-layered model gave the best results.

In addition to the superior performance of the single-

layered model, the high variation of the results decreases

noticeably. Besides, different shifting points do not yield

noticeable effects on the results.

