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Abstract

This article is dedicated to a refinement of the classical Jensen inequality by virtue of some
finite real sequences. Inequalities for various means are obtained from this refinement.
Also, from the proposed refinement, the authors acquire some inequalities for Csiszar W-
divergence and for Shannon and Zipf-Mandelbrot entropies. The refinement is further
generalized through several finite real sequences.
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1. Introduction

Mathematical inequalities particularly for convex functions have a lot of applications in
various areas of art, science and technology. Different interesting results regarding math-
ematical inequalities and their applications in various aspects can be found in [2,4-8, 16,
18,20,21,23,32,33,35,40-42]. Jensen’s inequality may be considered as one of the most
dominant inequalities because it gives at once the major part of some well known math-
ematical inequalities such as Young’s, Holder’s, Ky Fan’s, Levinson’s, and Minkowski’s
inequalities, etc [14], which can be deduced from this inequality by manipulating different
convex functions with some suitable substitutions. Furthermore, this inequality is com-
prehensively used in distinct areas of science and technology for example statistics [25],
qualitative theory of differential and integral equations [24], engineering [9], economics
[26], finance [3], information theory and coding [19, 36, 38] etc. In addition, there are
countless papers dealing with generalizations, refinements, counterparts and converse re-
sults of Jensen’s inequality, (see, for instance [11,12,17,31,34]). Therefore, it deserves to
be studied thoroughly and refine it from different point of views.
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Jensen’s inequality can be found in the literature of modern applied analysis and states
that [22]: if § C R is an interval, z; € G, ¢; > 0 (1 = 1,2,...,n) with }_i"; ¢; = 1 and
f:G6 — Ris a convex function. Then

f <i%$z> < zn:%'f(fﬁi). (1.1)
i=1 i=1

Particularly, several mathematicians have practiced through different angles to refine
Jensen’s inequality by determining certain mathematical expressions between the right
and left hand sides of this inequality. Motivated by these investigations, this paper deals
to refine this inequality by virtue of four finite real sequences. By taking such suitable
sequences, inequalities for different means are obtained from this refinement and are pre-
sented in Section 2. Section 3 assembles some interesting inequalities for Csiszar and
Rényi divergences, Relative and Shannon entropies, and variational distance etc. An
inclusive detail about Zipf’s law with inequalities for Zipf-Mandelbrot entropy and its re-
lated parametrics have been provided in its subsection. In Section 4, we further generalize
the proposed refinement through several finite real sequences. Section 5 is dedicated to
concluding remarks of the paper.

2. Main results

For an interval § C R, assume that f : § — R is a convex function. Let z; € § and
i, Wi, Mi, &, 0; € (0,00) for i =1,2,...,n with the restriction that >>1*; v; = 1, wi+n; = 1,
& +0;=1fori=1,2,...,n. Also, let I C {1,2,...,n} and setting J := {1,2,. n}/ﬂ
Setting the following functional for x = (z1,22,...,2,), @ = ((pl,g@,...,apn) n =

(M1yM2y e vy M), w = (W1, w2, ... ,wy), & = (£1,&,...,&) and @ = (01,04, ..,0,) as strictly
positive n-tuples:

z Wi Ly Zz i1 T4

= >ieg Piwi e > iy Pilli
@lfz 1 Z 5%91-:01-
+ &if 2ei€] PiSiTi + i f| 2. 2.1
% ’ ( ZZGJ pii lezg Ziej ©il; (2.1)

By virtue of the above defined real sequences a refinement has been proposed here in this
theorem.

Theorem 2.1. Let f : § — R be a convex function. Also, let x; € G, w;, &, mi, wi,0; €
(0,00) (i = 1,2,...,n) such that >0 @i = 1, & +60; =1, wi+mn, = 1 for alli €
{1,2,...,n}. Then, provided I C {1,2,...,n}, the following inequalities hold

n n
f <Z %%‘) < Z(fp,wn€,0,2;7) <> @if (z:). (2.2)
i=1 i=1
The inequality in (2.2) reverses for f as a concave function.
n
Proof. Since Y p;x; = > pixi+ . wix; and wi+n; =1, &+0; = 1Lforeachi =1,2,...,n
= : 2

€] i€d
thus f being a convex function, we have

Z(f,p,w,m,€,0,;7)

Z‘P(Uf< zEJ(Pzwzxz> +Z(P77 <Zi€5§0imxi>
= Wi i

ieJ Z’LEJ Piw; icd Ziej ©iN;
ie7 Pi&iTi Ziej ibix;
+ ) wi&if i) VIS ) i f | =L
; ( 2ici Pii % > ici pibi
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Wi T T
>f(z Pili- M + Z(pzm M

Py Yierpiwi 5o > icy Pilli
i&iT; 7 0itiz;
+ . zEJ + 0 ze )
2P e T el
=f ( D i+ Y pinii+ Y piiti+ Y %'Qiﬂcz‘)
i€’ = ic7 ic7

Zf(z pi(wi +m)zi + > @il + 91‘)1‘1)

i€J i€l
n
i=1

thus the first inequality in (2.2) directly follows.
Using Jensen’s inequality, one can get the following:

S owif(z) =) wif(z)+ Y eif (z:)
=1

= % Pi(wi + m)ﬁm) + Z @i(& + 0:) f ()

= ZZ piwif(zi) + Y somz-efj(xi) ) il f (@) + > @il f (i)
= €7 il ics
"L (ififf?)@ ()

:Z<f; (p7 w7 n7 67 07 x’ j)?
and here the second inequality in (2.2) follows. O

Remark 2.2. The Riemann integral version of the above theorem and its related results
can be seen in [37].

Remark 2.3. Following is an equivalent form of inequality (2.2).
Z(f, p,w 0,z;7
ngl Z ¢7£3Cn{13';{, n} (7907 77’767 s )7
and

(Z% z) suocin | Z(Le.w,n.€.0.2:9).

Corollary 2.4. For an arbitrary interval J, assume that f : J — R is a convexr function
and let z; € I, @i, &,mi, wi,0; € (0,00), i = 1,2,...,n with the following conditions
Siapi=1,&+0;=1,wi+mn =1 foreachi =1,2,...,n. Then

n
> PiWiTi — PRWETE

Z iz min Zn: piw; — ppwy ) f | = + o1& f (wr)
1(3m) < (2 )

n
he{l2n} 2. piwi — Wi




Refinement of the classical Jensen inequality using finite sequences 611

n
> Pt — PRNKTk

n
+<Z%m @k%)f . + ok f (1)
i=1 > Qi — PRk
n
1 n 21 PiWiT; — PRWETk n
—<> (Z%wz @k%)f — + > ol f(an)
= k=1 > piwi — pRw k=1
=1
n
n o, on 21 PiNiTi — PRMETE n
+> (Z ini — sﬁkﬁk)f — + > oubif (1)
k=1 ti=l 2 Pilli = PR k=1
1=

n
Y PiiT; — PRWETE

n
<  max (Z piw; — QDka) fl =5 + o1& f (k)
i=1

ke{1,2,....,n} Z VWi — PEWE
=1

n
2 P — PrNKTk

+<Zs@mi - <Pk"7k>f L + o1k f (1)
i=1 ; ©iNi — PEMk
<> wif (@) (2.3)
=1

Proof. Taking J = {k}, I = {1,2,...,n}\{k}, k € {1,2,...,n}, we have the following

functional

Zk(fv S07w7"776307x) :Z(f’ Soawanagvo Z; {k})

Z PiWi g
1#
Z ‘Pzwzf — | + ‘Pkgkf(xk)
i=1,i#k Z ©;W;
175k
Z PiTi Ly
“ ot
+ > eimif | T | + eubif (z1)
i=1,i#k Z Pin;
Z;ék

n
n 21 PiWiT; — PRWETE
= ( > piwi — sokwk> fl == + i f (k)
i=1 Zl PiW; — PRWE
=

n
n ; PiNiT; — PRMKTE
+ (Z Pini — Spknk)f — + orOr f (w1).
i=1 Zl ©iNi — KMk
1=

From above Remark 2.3, using the following fact by taking maximum and minimum over

k

min

1 n
— < max Qg
ke{1,2,...n } n z_: ’

T ke{1,2,...,n}
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we obtain inequality (2.3). O

Definition 2.5. Let x = (z1,22,...,2,), © = (¢1,92,- -+, n) and 9 = (91,12, ..., M) be
positive n-tuples. Further suppose that J is a nonempty subset of {1,2,...,n}. For r € R
as the order, the power mean is defined as:

1
(Ziej so;ﬁ) ' , ifr#£0,
i€J Tt
M;.q(p; ) = -
©; Ziej #i .
[Licgx!™ , ifr=0,
(o) e
M[r;fﬂ (‘Pﬂ,-’l’) = Zl
©in;
(Hzeﬂ lpml) i ) if r = 0,

and

1
<%”1 w;fo)T ’ if r 7é 07
M[T;n] ((P,x) - =
( n =1 ngZ) 3 lf T = O

The following corollary provides some inequalities for power mean.

Corollary 2.6. Let x;, v;, &, i, wi, 0; be strictly positive n-tuples in interval I when i =
1,2,...,n with the following restrictions Y i 1 p;i =1, & +60; = 1, w; +n; = 1 for all
i€{1,2,...,n}. Let o, B be some real numbers such that 8 > «, then

M[a;n] (‘pv > { (Z ‘Pzwz) M[ﬁj p.w; 27 (Z S‘%m) B 18:7] <P n.z )

1€ €]
(Z (szz) l (06 ) (Z i ) 5(0.8; w)}
1€] 1€]
M[B;n] (<p;:1:), (0% 7é 0. (2.4)

M) (5 ) <exp { (Z %‘%’) log Mg (p.w;z) + (Z %m) log Mg.)(-m; Z)

€] i€

i€J i€
SM[B;n](w;x)v a=0. (2.5)

(Z %&) log M55 (¢ € %) (Z i z) log M4 (w-ﬁ;w)}

M., (p; _{(szwz) b (pwi ) + (Z%m) b (o3 )

€] i€J

(Z‘Pz&z) [a;7] SOE, (ZW@ 7,) (7] <p0 .’L‘)}
1€J 1€J

=
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Mo, (5 ) > exp { (Z %‘%‘) log Mqg)(p-w; ) + (Z %‘Uz‘) log M9 (¢0-m; T)

i€] i€]

+ (Z gozﬁz) log M[a;ﬁ] (p&;x) + (Z <Pz‘9i> log M[a;ﬁ] ((p.a;m)}

i€d i€J
EM[a;n](w;m)a p=0. (27)

Proof. A: First we discuss the convexity of the function f(z) = z%, z>0,a,f R
and 8 # 0 as follows :

Case 1: If% >1and a < 3, then f(z) = z%, z > 0 is convex for o, 8 € R™.
Therefore, utilizing (2.2) for f(z) and z; — 7, then letting % as power , one
can obtain (2.4).

Case 2: If 0 < § <1and a < f3, then f(z) = 28, 2 > 0 is concave function for
o, B € RY. Therefore, utilizing (2.2) for f(z) and x; — 2;” and then letting
1 as power, one may also obtain (2.4).

Case 3: If § < —1 and a < f3, then the function f(z) = 25 for z > 0 is convex
provided that 8 € RT and o € R™. Thus using (2.2) for f(2) and z; — z;°,

then letting é as power, some one can also obtain (2.4).
For a = 0, assuming limO in (2.4), we get (2.5).
o—

B: Here, we discuss the convexity of the function f(z) = zg, z >0, a,8 € R with
a # 0 as follows:
Case 1: Ifg > 1 and a < S, then f(z) = z
a, 3 € RT. Hence, using (2.2) for f(z) and x; — 2;* and letting % as power
we obtain (2.6).
Case 2: If 0 < g < land a < g, then f(z) = zg, z > 0 is concave function for
a, € R™. Hence, using (2.2) for f(z) and x; — ;% and letting % as power
we obtain (2.6).
Case 3: Similarly, If g < —1 and a < §, then f(z) = zg, z > 0 is convex
function for « € R, B € R*. Hence, using (2.2) for f(z) and z; — z;* and
letting % as power we obtain (2.6).

B . .
a, z > 0 is convex function for

For 8 = 0, assume that limg_,o in (2.6), we get (2.7).
U

Definition 2.7. Let ¢ = (p1,92,...,¢,) and 9 = (n1,72,...,M,) be strictly positive
n-tuples. If a function ¢ : [a,b] — R is continuous and strictly monotone, and x =
(x1,m2,...,2y) € [a,b]”, while J is nonempty subset of {1,2,...,n}, then the mathematical
form of quasi-arithmetic mean is given by

Npp) — o—1 Yicy pig(@i)
M (p;z) =g ( S )

MJ} n;x) = -1 M ,
Hpmz) =g S

and

M (i) = g_1<2?:1 wg(wi)) 28

n
i=1 %

The following are some inequalities for quasi-arithmetic mean.



614 Z.M.M.M. Sayed, M. Adil Khan, S. Khan, J. Pecari¢

Corollary 2.8. Let Wog™ ' : G — R be a convex function for g as a strictly monotone
and continuous function. Also, let x;, p;, &, ni,wi, 0; be strictly positive n-tuples for each
i =1,2,...,n such that g(z;) € G, > 0i =1, &+6; =1, wi+mn =1 foralli €
{1,2,...,n}. Then for I C {1,2,...,n}, the following inequalities hold

‘P(M[” Pz ) > iU (M[Jcpwm>+2s0mz ( M (.n; 2 ))

€] 1€J

+Zsoz£z ( m‘pfz>+2¢i9i\1’< MU <p9z> Zsoz ). (2.9)
€]

1

The inequalities in (2.9) reverse if the function W o g~ is considered as concave.

Proof. Letting z; — g(z;) and f — Wog™! in (2.2), the required result can be established.
O

3. Applications in information theory

Keeping in mind that in the applied and theoretical statistical inference and data pro-
cessing problems, the information theoretic divergence measures play the role of problem
solving oriented tools. The Csiszar’s divergence is a general divergence measure ([1,10]),
which provides various relations and can be used in a binary experiment for the mea-
surement of separation of the distributions understudied. The Csiszar’s W-divergence
functional is given by

Definition 3.1 (Csiszar Divergence). Let ¥ : [y1,72] C R — R be a convex function and
assume v = (v1,vo,...,0y), 6 = (01,09,...,0,) are “positive probability distributions
(PPDs)”, then the Csiszar ¥- divergence functional is given by

Son(2)

provided that % € [y,72) fori=1,2,....n

satisfying the conditions which explicated undefined expression by Dragomir [13] as
follow:

0
() = lim U(), 0¥ (-)=0
© = jim v, ov(g)=o
w(o‘> — lim E\Il(a>:ozlim 0 s
0 e—ot £ t—oo

Because of the rapid growing interest and significance of divergences in statistics, informa-
tion theory and probability theory, the general theory of W-divergences deserves attention.
The Csiszar divergence functional in their natural form can be entertained as a series of
some well-known entropies, divergences and distances which are dependent on Jensen’s
inequality for general and some conditional expectations. These are actually complicated
if they are strictly formulated for all recommended functions W(t).

This section gives some important applications for the most familiar among them of our
main result.

Theorem 3.2. Let ¥ : [y1,72] CR — R be a convex functz’on and v = (v1,v2,...,0,) €
R", 0 = (01,02,...,04) € RY with 337" 105 =1, 22 € [y1,72] fori € {1,2,...,n}. Also,

let w = (wlana R 7wn); n= (771,7723 s 777n); f (£1)£27- . agn) and = (9130% B 70n) be
some strictly positive tuples with the following conditions & + 6; = 1, w; +m; = 1 for all

ie€{1,2,...,n}, then

Zaw ( zejwzvl>+zan (Zieﬂﬁi%’)
(Aad2 Z ' .

i€J i€] Tt i€J 2iey OiMi
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§ivi g 8;v;
+ ;&0 dSy + A ’e > v vi]. (3.1

g (Zzeﬂ oii Z > ic70ibi 121 )
Proof. Taking (2.2) for § = [y1,7], f =V, z; = U—:, pi = o; fori € {1,2,...,n}, we
obtain (3.1). 0

Corollary 3.3. Let v = (v1,v2,...,v,) € R" and 0 = (01,02,...,0,) € R} with
rioi =1, and let n = (m,m2y- .., Mn), W = (Wi,w2,...,wn), & = (£1,&2,...,&n) and

0 = (61,02,...,0,) be some positive tuples with the following restrictions & + 6; = 1,

wi+n=1G=1,2,...,n). Also, let ¥ : [y1,72] = R be a convex function, then

n > Wil — WrUg
i=1 Uk
Cy(v,0) > max Z ow; —opwy |V | = + o0&V | —
ke{1,2,...,n} P S 0w — TRWE Ok
i=1

n
> Mivi — MUk

n n
—i—(zaim - Uknk>\11 e R TN (?) > (Z%) .
k i=1

i=1 > 0N — Ok
=1

Proof. Taking J = {k}, k€ {1,2,...,n} in (3.1), we obtain (3.2). O

Definition 3.4 (Shannon entropy). Taking a PPD ¢ = (01,09,...,0,), the Shannon

entropy is defined as:
n
— Z oilogo;.
i=1

Corollary 3.5. Assume that o = (01,09,...,0p) is a PPD with U% € [y,7] € R
for i = 1,2,....,n. Also, suppose that 1 = (m1,M2,.-.,Mn), W = (Wi,wW2,...,wy), & =
(&1,82,...,&n) and @ = (01,02,...,0,) are some strictly positive tuples with the following
restrictions & + 0; = 1, wi +m; = 1 for alli € {1,2,...,n}, then

o) < Z oiw; log (Z’G:]%) + Z oin;ilog <m>

icJ Eiej OiWi icg Ziej il

s -0
+ Zai& log (ZZEJ&> + Zaﬂi log (Zlejz> <log(n). (3.3)
icT Zlej O-iéi ic7 ZlEj O-igi
Proof. Taking ¥(z) = —logz, 2 > 0, v; = 1 for i = 1,2,...,n in (3.1), result (3.3) is
established. I
Corollary 3.6. Assume that 6 = (01,09,...,0,) is a PPD. Also, suppose that n =

(M,m2, M), W = (W1, wa, ... ,wyn), &= (&1,82,...,&) and 8 = (61,02, ...,60,) are pos-
itive tuples and & +6; =1, w; +1n; =1 fori=1,2,...,n, the following inequalities are
satisfied

n
n Z Wi — W
S(o) < max <Z oiw; — Ukwk> log nlzl — o0& log o,
kE{l,Z,...,n} i=1 Z O-i(.Ui _ O_kwk
. i=1
n Z i —
+ ( Z oin; — Uld?k) log | ==L | — o logoy p <log(n).  (3.4)
i=1 Zl oini — KMk
i=

Proof. Taking J = {k}, k € {1,2,...,n} in (3.3), we get (3.4). O
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Definition 3.7 (Kullback-Leibler divergence (Relative entropy)). Assuming v = (v1,va, ..., Un),
o = (01,092,...,0p) as some PPDs, then the mathematical form of Kullback-Leibler di-
vergence is given by

n .
KL(v,o) = Z v; log v
i=1 i

Corollary 3.8. Letv = (v1,v2,...,0,) and o = (01,09, ...,0,) be some PPDs with % €

[71’72] C R+' AZSO’ assume 1 = (77177727 .. '57771)’ w = (wl’w27 cee ’wn)’ £ = (515525 v 7571)
and @ = (01,04, ...,0,) as positive tuples but with the conditions that §;+6; = 1, w;+n; = 1
forallie {1,2,...,n}, then

KL(v,0) =) wivilog (Zei’““> 3 v log (Zeﬂﬁv)

pyt Dieroiwi ) i 2ie1 Tilli

+ Z{wi log (W) + Zﬁwi log (W) > 0. (3.5)

icd Zzej O"Lfi icd 2265 O'iai
Proof. Taking ¥(z) = zlog(z), z € [y1,72] in (3.1) we obtain (3.5). O

Corollary 3.9. Letting the assumptions of Corollary 3.8, the following inequalities are
satisfied.

n
Y Wil — WUk

n
KL(v,0) > max (Zwm - Wk'Uk> log | 5+ - Gku log (Uk>
ke{1,2,...,n} i=1 Z OiW; — OpWk Tk
i=1

n
Zl iV — NMkVk

= = v
+ ( Z iV; — nkvk) log | &==————— | + v log (k) >0.(3.6)
; Ok
i=1 '21 oM — Ok
1=

Proof. 1f we take 3 = {k}, k € {1,2,...,n} in (3.5), then we get (3.6). O
Remark 3.10. It is obvious that

Dicg Wil >_icg Mivi
0 1 (S 0 1 S
qﬁ;ﬁjcr?lggf...,n} {iezjwzvl 0og ( + anvz 0og

Dieroiwi ) 4 2 ieq Ol
Es O
+> &vilog Zie1biti + Y fivilog it Ot
— > ici oiki — >icioibi
i€d €] i€J i€d
n
n 2. Wil — Wk g
> max (Z Wiv; — wkvk> log 121 + &ug log <k>
k6{1,2 ..... TL} i=1 Z O_sz _ O_kwk Uk
i=1
n
n 21 NiVi — MUk o
+ ( > v — nkvk> log [ G| + vkbxlog (0>
=1 > Oini — Ok k
i=1
Definition 3.11 (Rényi divergence). Suppose that v = (v1,v2,...,0,),0 = (01,02,...,0p)

are PPDs and a > 1, then the mathematical formula of Rényi divergence is given as

n
Ra(’U,U) = Z Uiadil_a.
=1
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Corollary 3.12. Letting the assumptions of Corollary 3.8 and further o > 1, the following
inequality holds:

11—« @ 1-a @
o) > (Z ini) (Z Wivi) + (Z Gim) (Z mw)
=i icd = =
l—« « 11—« «
+ (Z Uz&) (Z §ivi) + (Z Ui9i> (Z 91‘%’) > 0. (3.7)
i€l i€d i€d i€d

Proof. For the function ¥(z) = 2% a > 1 and z € [y1,72], we have ¥ (2) = a(a —
1)z®~2 > 0, which implies that ¥ is convex function. Thus, using (3.1) for ¥(z) = 2%, we
obtain (3.7). O

Corollary 3.13. Letting again the assumptions of Corollary 3.8 and taking o > 1, the
following inequality also holds:

-« n a
Ry(v,0) > ke{rlr}gtx w { (Z ojw; — kak> (; W;v; — wkvk>
n l1—a n «a
+ (Z oin; — Ukﬁk) <Z niv; — 771#%) +op o (& + ek)} >0. (3.8)
i=1

i=1
Proof. 1f we take 3 = {k}, k € {1,2,...,n} in (3.7), then we get (3.8). O
Definition 3.14 (Variational distance). Let v = (v1,v2,...,v,), 0 = (01,02,...,0,) be

PPDs, then the mathematical formula of Variational distance is given as

n
0‘) = Z‘Ul — Ui|-
i=1

Corollary 3.15. Considering the assumptions of Corollary 3.8, the following inequality
1s satisfied.

0') > Zwivi — Zaiwi

+ D nivi =Y o

i€d = = i€d
+ 1) Gui =Y oi&| +|D_0vi — > oibi (3.9)
i€J = i€d =
Proof. Using ¥(z) = |z — 1|, z € [y1,72] in (3.1) we obtain (3.9). O
Corollary 3.16. The following inequality holds by assuming the assumptions of Corollary
3.8:
n
V(v,o) > ke{rlr}?’x ) { szvl ; owi — wi(vg — ok)| + &k |vk — ok
Ui — Zolm 77k Vi — O'k) + Ok |vg, — o% } . (3.10)
Proof. Taking J = {k}, k € {1,2,...,n} in (3.9), we get (3.10). O

Definition 3.17 (Jeffrey’s distance). Suppose that v = (vy,ve,...,v,),0 = (01,092,...,0,)
are some PPDs, then the mathematical form of Jeffrey’s distance is given by
n
U;
J(v,0) = ; — o) log —.
( ,0) Z(Uz ;) log o

=1 v
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Corollary 3.18. The following inequality holds by considering the assumptions of Corol-
lary 3.8:

szvz anvl
1V — A% 1 = Ui — 104 1 =
Z(iezng %wo) og<zawz>+<iezjnv 1623170) 0g<20_ml>
Zfz Uy Zavz
S g = &0y ) log (ZEJ ) 291)1 > 0,0; ) log (’ej )
<z€9 i€l ) % oili ( i€d > ZEZJUZ ‘
>0. (3.11)

Proof. Using the function ¥U(z) = (z — 1) log z, z € [y1,72] in (3.1), we obtain (3.11). O
Corollary 3.19. The following inequality holds by considering the assumptions of Corol-
lary 3.8:

n
2. Wil — Wk
J(v,0) > max [(Z w;U; — Z ow; — wi(vg — Uk)) log Zzl

i=1 > ojw; — oW

n
> MV — MUk

n
+ (Z iV — Z o — 77k Vi — Uk)) log zzl
i=1

> Ol — Ok
i=1
U,
+ (vg — o) (& + Ok) log p > 0. (3.12)
k
Proof. 1f we take 3 = {k}, k € {1,2,...,n} in (3.11), then we get (3.12). O
Definition 3.20 (Bhattacharyya coefficient). The mathematical formula for the Bhat-
tacharyya coefficient is given for two PPDs v = (v1,v9,...,v,) and 0 = (01,02, ...,04)

by
0‘) = Z \/Ui0;.
i=1

Corollary 3.21. The following inequality holds by taking the assumptions of Corollary

3.8:

Zwivizwigi =+ vaiz:m(fi

i€d i€l i€l i€d

+ Zgzsz&az + Zeivizgiai. (3.13)
i€d i€d i€d i€d
Proof. The function ¥(z) = —/z, z € [y1,72] is convex, because U (z) = L > 0. Using
422

U(Z) in (3.1), we obtain (3.13). O

Corollary 3.22. The following inequality holds by taking the assumptions of Corollary
3.8:

B(v,0) < max {\J (éwm - WkUk> (iwmi - wk:O'k) + &kV/OK UK

ke{1,2,...,n}

+\J (vai - 77kUk> (Zmai - 77k0'k:> + 9k\/0kzvk} - (3.14)
i=1 =1
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Proof. 1f we take J = {k} for k € {1,2,...,n} in (3.13), the we obtain (3.14). O
Definition 3.23 (Hellinger distance). The mathematical formula of the Hellinger distance
is given for two PPDs v = (v1,ve,...,v,) and 0 = (01,09, ...,0,) by
n
H(v,0) = > (/o5 — Vai)?.
i=1

Corollary 3.24. The following inequality holds by taking the assumptions of Corollary

3.8:
H(v,0) = (\/%Wivi_\/iezjwmi> + <\/iezjﬁwi—\/iezjmoi)
o (([Sen- [Son) + (S Som)

=0 (3.15)

Proof. Using the function ¥(z) = (y/z — 1), 2 € [y1,72] in (3.1), we obtain (3.15). O

Corollary 3.25. The following inequality holds by letting the assumptions of Corollary

3.8:
n n 2 2
H.0)> max { <J s v~ J > o~ akwk> +& <ﬁ - @)
n n 2 2
+<\J > mivi — nevk — \lztfﬂh‘ - Uk??k) + Ok <\/17 - \/Uk) } > 0. (3.16)
i=1 i=1
Proof. If we take J = {k}, k € {1,2,...,n} in (3.15), then we get (3.16). O

Definition 3.26 (Triangular discrimination). The mathematical form of the Triangular
discrimination is given for two PPDs v = (v1,v2,...,v,) and o = (01, 09,...,0,) by

n

A = (v —0y)?
D= (v,0) = Z .

= Vi + o;

Corollary 3.27. The following inequality holds by keeping the assumptions of Corollary
3.8:

2 2
(Z Wiv; — Zwi0i> <Z n;V; — me)
0<

icd icl i€l icd
T Y wivi + > wio; > Mivi + > nio;
icl icl = icl

2 2
(Z_fivz‘ - Z_fifh‘) (Z_Hivz‘ - Z_&m)
i€ ic] L \ied i€l

_|_
> &ivi + > &io; > 0ivi + > 004
ieJ =i ieJ =
<D?(v,0). (3.17)

Proof. 1f the function ¥(z) = (”:rll)Q, z € [y1,72], then U’ (2) = ﬁ > 0, so definitely

the function ¥(z) is convex. Therefore, using the function in (3.1), we obtain (3.17). O
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Corollary 3.28. The following inequality holds under the assumptions of Corollary 3.8:

(; wivi = 3 o = an(v — ak))Q

2
D2 (v,0) Zk max - —i—&’k.(vk +Uk)
e{l2..n} ‘21 w;iv; + 21 oiw; — Wi (v + o) Uk Tk
= =
(35 i 3 oo~ meto o))
‘ —‘ il — NMk\Vk — Ok 32
= e )
> mivi + Z oini — Mk(Vk + o) Uk T Ok

1

-
I

Proof. Taking J = {k}, k € {1,2,...,n} in (3.17), we obtain the result of Corollary
3.28. ]

3.1. Applications for the Zipf-Mandelbrot entropy

In information science, Zipf’s law may be considered as one of the most important and
basic laws. Zipf’s law says that largest occurrence of the event that is the size of 2" is
inversely proportional to it’s rank (i.e f(i) = 1/i®, where f(i) represents the number of
occurrences of the i'® ranked and s takes a positive value close to unit). As by assuming
v and p as rank and frequency of the word respectively then in linguistics, Zipf obtained
by the constant: C = p.y (see [39]).

This law can also be used to obtain web site traffic, solar flare intensity, the size of moon
craters, earthquake magnitude, city populations and this has also some useful applications
in geology.

In 1966, a well-known mathematician Benoit Mandelbrot gave generalized form of the
Zipf law, which is now called as the Zipf-Mandelbrot Law. This law actually provided a
generalization regarding low-rank words in corpus [29]: ¢(i) = m, where ¢ < 100 and
if we substitute w = 0, will obtain Zipf’s law. For some interesting applications of the
Zipf-Mandelbrot law, the following references can be found ([15,27,28,30]).

The following is well-known mathematical form of the Zipf-Mandelbrot entropy:

5 = log(i + w)
Qn,w,s (Z + )

ZME(Q,W,S) = +loanwS7 (318)

i=1
n

where 0 < w, 0 < s, n is a positive integer, Qn.ms = > ﬁ and the probability mass
i=1

function (Zipf-Mandelbrot law) is defined by: G(i,n,w,s) = %

Now here the Zipf-Mandelbrot entropy is estimated through some inequalities as follows:

Corollary 3.29. Let 0 < w, s,0; >0, i =1,2,...,n with }_;"y 0; = 1. Further assume
thatn = (n1,m2, ..., M), w = (W1,wa,...,wy), &€ = (&1,82,...,&n) and @ = (01,02,...,0,)

are some suitable positive tuples with the following conditions &+0; = 1, w; +n; = 1 when
ie{l,2,...,n}, then

P e
n
log o, o & T
- ZuEe(Q,w,s) — > . lo
(Q ; Z + w) Qn w,s 1,623 (7' + w)sQn,w,s & Z OiWj
i€J
&

L G G L =)0
i iy T s &i i€l s
+ g —Jog | & | + E , log
il (’L + w)SQn,w,s ( Z ;i > i (’L + w)SQn,w,s E Uz’fz’

i€J =i
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v 011
+ Z 01 10 z%:j (Z+W)5Qn,w,s > 0 (3 19)
= (Z + w)sQn w,s 8 Z O'iei .
1€J T e
i€d
Proof. We have the following identity for v; = m, ie{l,2,...,n}.
- 1 ° log o;
v; lo , N et
; ‘ gaz ; Z+w ans log (Z+w)Sans i—1 (Z+w)sQn,w,s

1 - log o;

—lo i+ w =, —_—
Y ey, =) Q) =3 g —
slog (i + w)

slog(4 @) g~ 108Qnms Z bg—%

=1 Z+w ans i=1 (i+w)sQn,W,S = Z+w ans

s " log (i + @)  1og Qnw,s " 1 Z": log o;
Qn,w,s i=1 (Z + w)s Qn,w,s i=1 (Z + w

i=1 Z—f—?ﬂ ans
= — Zup(Q,w,s) _i&
ME y Wy pt (i+w)8Qn7w7s’

Mﬁ Mﬁ

n n
where Qp s = ‘21 m, and 21 m = 1. Therefore, utilizing (3.5) for v; =
1= 1= T
m, i:1,2,...,n, we Obtain (319) D

Corollary 3.30.

The following inequalities hold by taking the assumptions of Corollary
3.29:

n

log o;
- Z , T, S) —Z
mEe(Q ; (T =) Qs

n

i wj o Wi
( 3 Wi Wk ) =1 (i+w)SQ"’wvs (k+w)SQn,w,s
max Z . — log
ke{1,2,...,n} p (1 +@)°Qnws (k+)Qnews

> Oiw; — ORWy
=1

i . U _ Nk
+<§é L "k )1 = @) @nws  (FHw)*Qne.s
=1 (Z + w)sQn7w7s (k + w)SQn,w,s

Zl ol — KMk
1=

(& + Ok) 1
b+ @) Qus % (Uk.(k: T w)SQn,W) } 2 0. (3.20)

Proof. Taking J = {k}, k € {1,2,..

.,n} in (3.19), we get (3.20). O
Remark 3.31. By using Remark 3.10, we also have

w; 7% (Z+w)sQn,w,s
max Z . log
$£IC{12,m} | 45 (i +@)*Qn,w,s ST ow;
€]
i £
2 ) Qs ¢, L ) Qe
+ ——log| ————— | + - log
Z Z + YD Qn w,8 Z ;1 ; (Z + w)sQn,w,S Z 0i&;i
€]

=i
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0; icd
L S| i€
* % (Z + w)sQn,w,s °8 < Zaiei

i€]

0;
Z%)

n Wi
>
o kE{Ilr}Za:Xm} { (; Z + w Qn w,s (k + w)sQn,w,s)
21

w; . Wi
14+w)Qn,w,s (k4+@)%Qn,w,s

x log | =L
‘21 OiW; — OLW
n .
+< - ni _ us ) log El (s el % e
S (i+@)Qnms  (k+®)Qnws

n
> 0N — Ok
=1

(&k + Ok) 1
! (k + w)sQn7w7s o <U’f'(k + w)sQn,w,s> } (3‘21)

The Zipf-Mandelbrot entropy is also estimated through Zipf’s law for different param-
eters as follows:

Corollary 3.32. Let wi,we > 0, s1,82 > 0. Also, let n = (n1,m2,...,Mn), W =
(w1, wa,...,wn), & = (£&1,&2,...,&n), 0 = (01,02,...,0,) be positive tuples with the re-
strictions that & +6; = 1, w; +n; =1 for alli € {1,2,...,n}, then

" log((i + w2)82 Qn,wmsz)
i=1 (i + @1)% Qn,m1 51

—ZyvE(Q, w1, 81) +

PP
>Z ] log | & (451)*1 Qn,1 51
P (Z + wl)len,wl,Sl Z%;] (i+w2)$;}bn,w2,52

i€J

Z _ 74
i€d (i+w1)"1 Q"*wlvsl

4
7% (i+w2)52 Qn,WQ,SQ

+ lo
Z Z + wl SlQn 001,51 5

&i
Eﬁ (i+w1)51 Qn,wl,sl

+ log _
Z Z+W1 81627117}1751 Z G &
7

5 'L"FWZ)SQ Qn,w2,52

0;

91‘ ,Ej (i+w1)len,wl,sl
+ . log :
g (Z + wl)sl Qmthl Z G b

< 7/+w2)s2 Qn,w2,52

>0. (3.22)

1 1
(Z"f’wl)SlQn,wl,sl (i+w2)S2Qn,w2,52

1,2,...,n, then analogously in the proof of Corollary 3.29, we get

Proof. Suppose that we have v; = and o; = for ¢ =

1 1
v; logv; = log —
Z s Z (i + wl)len w1,51 s (i + wl)len,WLﬁ

=1

- _ZME(Qa w1, 31)7
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and

ZUZ log o; —Z ! log — !

] (z+w1)51Qn w1,81 (l+w2)52Qn,wz,s2
Z log((i + @2)*2Qn,n,5,)

i=1 (Z + wl)sl Qn7w1731

)

n n
where Z?:l V; = Z W =1 and Z?:l g; = Z W =1. Therefore,
’L:l nl,WI,Sl i:l ‘ n,w2,52
utlllZIHg (35) for v; = m and o; = m7 1= ]., 2, ..o, n, We obtain
(3.22). g
Corollary 3.33. The following inequalities hold by letting the assumptions of Corollary

log((i + @2)™Qn,ws,55)
-7 .
mE(Q, @1, 51) +Z (i + 1)1 Qn o161

52
> max (gk + ek) log (k + w?) Qn,wz,sz
ke{1,2,...,n} (k + wl)len,w1,s1 (k + wl)sl Qn,wl,sl

+ ( i k ) (3.23)

(1 + w1>len 1,81 (k + @1)%1Qn,wy 51
a x log

M:

-
Il

N =
10| L0]s

Wy

_ Wi
(i+w1)51Qn,w1,sl (k+wl)51‘Qn,w1,sl

Wi _ Wi
(i+w2)52Qn,w2,52 (k+w2)52Qn,w2,52

+
7 N

ﬁ
Il
—

i Nk )
) Qn , 01,51 (k + wl)sl Qn,w1,51

+
§

o

N
Il
fa

x log

i _ Nk
(i+‘W1)len,w1,sl (k-‘r‘LTJI)SlQn,wl,sl }

s

s
Il
i

_ i3 _ Nk
(l+w2)S2Qn,w2¢32 (k+w2)S2Qn,w2,32

>0. (3.24)
Proof. Taking J = {k}, k € {1,2,...,n} in (3.22), we obtain (3.24). O
4. Further Generalization

Theorem 4.1. Suppose that f is a real valued convex function defined on G. Also, let
si € Gypu; > 0,(0 =1,2,...,n) and ug be some positive tuples for £ = 1,2,...,m and

r=1,2,...,s with and H = Y"1 | u;, Z uy = 1, for each r. Suppose that L1, Lo, ..., Ly

are some nonempty subsets of {1,2, .. m} with the condition that LyNL; = () for different
values of k and t while Ui_ L, = {1 2,...,m}. Furthermore if J1,32,...,ds are some
nonempty subsets of {1,2,...,n} with the condition that Jx N Jy = O for different values
of k and t while US_,3, = {1,2,...,n}, then the following inequalities hold:

i;uz’f(si)

;g% U%Misi ;z% U%Mz’Si

L | g X |
Z > up buif .

SO0 ujpu S0 upp
31 el A L J1 €L, 7 e L
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1 ;EXL: UZ i S; . ;é% U118
clq 2 2 tELs
D SPOR Y Lo, FRRES 5 )
H > X ujp H > ugh
J2 LeLy g LEL e Jz tels J2 L€Ls e
+
. 32421:: UACER ) ;42]3 Uy i Si
s tely s s tels
+ 3 wipf | T |+ o wppf | T —
s 1 s s

1 (e 2mn). (@)
i=1

The direction of inequalities reverses in (4.1) for f as a concave function.

m
Proof. Since it is given that ) u; = > wuy; = 1foreachr =1,2,...,s, therefore for
=1 teUs_ L,
the subsets J, of {1,2,...,n}, one has
n
> nif(si)
i=1
=D wppif(s) Y. D wpmif(s) o+, Y, uipif(si)
0 teUs_ L, o LeUs_, L, Js teUs_ L,
=3O wgpif(s) 4 D> > wppif(si)
J1 tely J1 LeLs
D uppif(si) 4+ > Y ugpif(si)
Jd2 Lelq J2 feLls
+
DD wipif(si) D> uipif(si). (4.2)
Js €Ly Js C€Ls

If we use the integral Jensen inequality in the terms of right hand side of (4.2), then we
get the following result

1 n
= > uif(s)
g{iZI
) ?62 upHisi ;ZZ ugHiSi
1 1 el 1 1 £€Lg
z?f(ZZ““”f Sy | T 2
f el 5l du ek o1 (ELs
3252 ugisi 32(2 ugpisi
2 2 el 2 o €Ly
PR L i\ | R 2 e | S s
92 el el gz LeLs el
+
;zg Ui Si %:Zg]:: U HLiSi
s 1 s s
e S | e v | S5
Js tehn el Js el el
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Zf(;cz ZU%MSML---Jr%Z ZU%Hi5i+%Z > ujps

J1 L€l d1 eLs J2 Lely
1 1 1
H H H
32 EELS Hs EELl 33 EGLS
1>
=/ (i}f Z#isz’),
=1
which gives the result (4.1). O

Remark 4.2. Taking m = s = 2 in Theorem 4.1, one may obtain Theorem 2.1. Similar
applications of Theorem 4.1 can be acquired as acquired for Theorem 2.1 in the previous
sections.

5. Conclusion

Being a part of modern applied analysis, Jensen’s inequality has been proved to be
very useful tool for the solution of different problems in various areas of science, art and
technology. From 1906, occasionally a lot of mathematicians tried to refine, generalize,
improve or extend this inequality. In this flow, based on some suitable and real sequences
we have obtained a new refinement of this inequality. Then various interesting inequalities
for different means are also obtained. The proposed refinement also enabled us to acquire
inequalities for the class of Csiszar W- divergence. This refinement is further generalized
through several finite real sequences. The idea further motivates the mathematicians to
establish such results in the future.
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