Some Spectrum Properties in C*- Algebras

'N. SAGER1, H. AVCI1

Ondokuz Mayis University, Department of Mathematics, Faculty of Arts and Sciences, 55129 Samsun, Turkey

nilay.sager@omu.edu.tr

(Received: 24.11.2014; Accepted: 10.03.2015)

Abstract

In this study, we show that a * - homomorphism \(\varphi : A \rightarrow B \) between unital commutative C*- algebras A and B with \(A^{-1} = \varphi^{-1}(B^{-1}) \) satisfies the property to preserve spectrum and adjoint mapping \(\varphi^* : \Delta(B) \rightarrow \Delta(A) \) is surjective, that is, \(\varphi^* \) maps maximal ideal space of B to maximal ideal space of A.

Keywords: C*- algebra, Gelfand transform, maximal ideal, spectrum, complex homomorphism

C* - Cebirlerinde Bazı Spektrum Özellikleri

Özet

Bu çalışmada, birimli değişmişi A ve B C*- cebirleri arasında tanımlı \(A^{-1} = \varphi^{-1}(B^{-1}) \) şartını sağlayan bir \(\varphi \) * - homomorfizminin spektrumu koruma özelliğini sağladığı ve \(\varphi^* : \Delta(B) \rightarrow \Delta(A) \) adjoint dönüşümünün örten olduğu yani B cebirinin maksimal idealler uzayına A cebirinin maksimal idealler uzayına dönüştürdüğü gösterildi.

Anahtar Kelimeler: C*- cebiri, Gelfand dönüşümü, maksimal ideal, spektrum, kompleks homomorfizm

1. Introduction

There are many studies on invertible elements of C*- algebras and the property to preserve spectrum of a homomorphism between C*- algebras. The related studies can be found in references as [1-3]. In this paper, the relation between the property preserve spectrum of a homomorphism from one C*- algebra to another, invertible elements of these C*- algebras and the mapping of their maximal ideals is examined.

In this section, basic definitions and properties related to C*- algebras will be given.

Let A be a complex algebra. An involution on A is a mapping \(* : x \mapsto x^* \) from A into A satisfying the following conditions.

i. \((x + y)^* = x^* + y^* \),
ii. \((\lambda x)^* = \bar{\lambda} x^* \),
iii. \((xy)^* = y^* x^* \),
iv. \((x^*)^* = x \)

for all \(x, y \in A \) and \(\lambda \in \mathbb{C} \). Then A is called a *- algebra or an algebra with involution.

If *- algebra A is a Banach algebra and involution on it is isometric; that is, \(\|x\| = \|x^*\| \) for all \(x \in A \), then A is called a Banach *- algebra.

If *- algebra A is a Banach algebra and its norm satisfies the equation \(\|x^*x\| = \|x\|^2 \) for all \(x \in A \), then A is said to be a C*- algebra. [4]

Let A and B be C*- algebras, \(\varphi : A \rightarrow B \) be a mapping. If \(\varphi \) satisfies the following conditions for all \(x, y \in A \) and \(\lambda \in \mathbb{C} \), then this mapping is called a *- homomorphism.

\begin{align*}
\text{i. } & \varphi(x + y) = \varphi(x) + \varphi(y), \\
\text{ii. } & \varphi(\lambda x) = \lambda \varphi(x), \\
\text{iii. } & \varphi(xy) = \varphi(x)\varphi(y), \\
\text{iv. } & \varphi(x^*) = \varphi(x)^*.
\end{align*}

It is said to be a * - isomorphism if \(\varphi \) is a bijection. [5]

If A is a unital Banach algebra, then the set \(\{ \lambda \in \mathbb{C} : (x - \lambda 1_A) \notin A^{-1} \} \) is called spectrum of x in A, denoted by \(\sigma_A(x) \), where \(A^{-1} \) denotes the set of invertible elements of A. \(\sigma_A(x) \) is a nonempty compact subset of \(\mathbb{C} \) for every x in A. The resolvent set of x is defined by \(\rho_A(x) = \mathbb{C} \setminus \sigma_A(x) \).
The spectral radius of x is characterized by $r_A(x) = \sup \{ |\lambda| : \lambda \in \sigma_A(x) \}$.

If A is a unital commutative Banach algebra, then for every $x \in A$, the limit

$$r_A(x) = \lim_{n \to \infty} \|x^n\|^{1/n}$$

exists and $r_A(x) = \|x\|$. Also for every $x, y \in A$, $r_A(x + y) \leq r_A(x) + r_A(y)$ and $r_A(xy) \leq r_A(x)r_A(y)$.

When A is a commutative complex algebra with unit, every proper ideal of A is contained in a maximal ideal and every maximal ideal of A is closed. The set of all maximal ideals in A is denoted by $\mathcal{M}(A)$.

Let A be a complex algebra and ϕ is a linear functional on A. If $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in A$, then ϕ is called a complex homomorphism on A. The set of nonzero complex homomorphisms on A is denoted by $\Delta(A)$.

For $x \in A$, $\hat{x} : \Delta(A) \to \mathbb{C}$, Gelfand transform of x, is defined by $\hat{x}(h) = h(x)$ for every h in $\Delta(A)$. The set $\hat{A} = \{ \hat{a} : a \in A \}$ is called the set of Gelfand transforms on A. [6]

The ε-open neighbourhood $U_{\varepsilon}(h_0, a_1, ..., a_n)$ at any $h_0 \in \Delta(A)$ with respect to the Gelfand topology is given

$$\{ h \in \Delta(A) : |\hat{a}_i(h_0) - \hat{a}_i(h)| < \varepsilon \}$$

where $\varepsilon > 0$, $n \in \mathbb{N}$ and $a_1, ..., a_n$ are arbitrary elements of A. [7]

The following is true when A is a unital commutative Banach algebra.

i. Every maximal ideal of A is the kernel of some $h \in \Delta(A)$.

ii. If $h \in \Delta(A)$, then the kernel of h is a maximal ideal of A.

iii. An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta(A)$.

iv. $\lambda \in \sigma(x)$ if and only if $h(x) = \lambda$ for some $h \in \Delta(A)$. [6]

2. Spectrum Properties in C^*- Algebras

In this section, it will be obtained that under what conditions equality $\sigma_A(x) = \sigma_B(\varphi(x))$ for any $x \in A$, the property to preserve spectrum of $\varphi : A \to B$, will be satisfied when A and B are unital commutative C^*- algebras and φ is a $*-$ homomorphism from A to B.

Proposition 2.1. Let A and B be unital commutative C^*- algebras, φ be a $*-$ homomorphism from A to B and $\varphi(1_A) = 1_B$. Then for every $x \in A$, $\sigma_B(\varphi(x)) \subset \sigma_A(x)$. [5]

Theorem 2.2. Let A and B be unital commutative C^*- algebras, $\varphi : A \to B$ be a $*-$ homomorphism with $\varphi(1_A) = 1_B$. Then $\varphi(x) \in B^{-1}$ for any $x \in A^{-1}$.

Proof. $0 \notin \sigma_A(x)$ for an arbitrary $x \in A^{-1}$. $0 \notin \sigma_B(\varphi(x))$ follows from Proposition 2.1 and this proves $\varphi(x) \in B^{-1}$.

Corollary 2.3. $A^{-1} \subset \varphi^{-1}(B^{-1})$.

Theorem 2.4. Let A and B be unital commutative C^*- algebras, $\varphi : A \to B$ be a $*-$ homomorphism with $\varphi(1_A) = 1_B$. In this case, $A^{-1} = \varphi^{-1}(B^{-1})$ if and only if $0 \notin \sigma_A(x)$ whenever $0 \notin \sigma_B(\varphi(x))$ for any $x \in A$.

Proof. Let $A^{-1} = \varphi^{-1}(B^{-1})$. Suppose that $0 \notin \sigma_B(\varphi(x))$ for an arbitrary $x \in A$. In this case, $\varphi(x) \in B^{-1}$ and hence $x \in A^{-1}$ so that $0 \notin \sigma_A(x)$ for every $x \in A$.

Conversely, assume that $0 \notin \sigma_A(x)$ whenever $0 \notin \sigma_B(\varphi(x))$ for any $x \in A$. Since $0 \notin \sigma_B(\varphi(a))$ for any $a \in \varphi^{-1}(B^{-1})$, $a \in A^{-1}$ by hypothesis and hence $\varphi^{-1}(B^{-1}) \subset A^{-1}$. According to Corollary 2.3, $A^{-1} = \varphi^{-1}(B^{-1})$.

Corollary 2.5. Let A and B be unital commutative C^*- algebras, $\varphi : A \to B$ be a $*-$ homomorphism with $\varphi(1_A) = 1_B$. Then $\sigma_A(x) = \sigma_B(\varphi(x))$ for every $x \in A$ if and only if $A^{-1} = \varphi^{-1}(B^{-1})$.

Proof. First, suppose that $\sigma_A(x) = \sigma_B(\varphi(x))$ for every $x \in A$. In that case, one says $0 \notin \sigma_B(\varphi(a))$ for any $a \in \varphi^{-1}(B^{-1})$. Hence $\sigma_A(a) = \sigma_B(\varphi(a))$ implies $0 \notin \sigma_A(a)$, that is, $a \in A^{-1}$. Then $\varphi^{-1}(B^{-1}) \subset A^{-1}$. Again, using Corollary 2.3, it follows that $A^{-1} = \varphi^{-1}(B^{-1})$.

Conversely, let $A^{-1} = \varphi^{-1}(B^{-1})$. Given any $\lambda \in \mathbb{C} - \sigma_B(\varphi(x))$, $\varphi(x - \lambda 1_A) \in B^{-1}$ for
any \(x \in A \), that is, \(x - \lambda 1_A \in \varphi^{-1}(B^{-1}) \) for any \(x \in A \) and hence it is clear that \(\lambda \notin \sigma_A(x) \), since \(x - \lambda 1_A \in A^1 \) by hypothesis. Thus, we have seen that \(\sigma_A(x) \subset \sigma_B(\varphi(x)) \) for every \(x \in A \) and we obtain \(\sigma_A(x) = \sigma_B(\varphi(x)) \) for every \(x \in A \) by Proposition 2.1.

Corollary 2.6. If \(A^{-1} = \varphi^{-1}(B^{-1}) \), then \(r_A(x) = r_B(\varphi(x)) \) for every \(x \in A \).

3. Mapping of Maximal Ideals in \(C^* \)- Algebras

Let \(\varphi \) be a \(* \)-homomorphism between unital commutative \(C^* \)-algebras \(A \) and \(B \) and also \(A^* \) and \(B^* \) be algebraic duals of \(A \) and \(B \), respectively. Surjectivity of \(\varphi^* : \Delta(B) \to \Delta(A) \) which is obtained from \(\varphi^* : B^* \to A^* \) means that \(\varphi^* \) maps \(M(B) \) to \(M(A) \). In this section, it will be obtained that under what conditions this property will be satisfied.

Theorem 3.1. Let \(A \) and \(B \) be unital commutative \(C^* \)-algebras, \(\varphi : A \to B \) be a \(* \)-homomorphism. Then \(\varphi^* f \) is also a \(* \)-homomorphism for every \(f \in \Delta(B) \).

Proof. For every \(f \in \Delta(B) \) and \(x, y \in A \),

\[
(\varphi^* f)(xy) = f(\varphi(x)y)
\]

\[
= f(\varphi(x))f(\varphi(y))
\]

\[
= (\varphi^* f)(x)(\varphi^* f)(y)
\]

and hence \(\varphi^* f \in \Delta(A) \). Also, since

\[
(\varphi^* f)(x^*) = f(\varphi(x)^*)
\]

\[
= f(\varphi(x))^*
\]

\[
= f(\varphi(x))
\]

\[
= (\varphi^* f)(x)
\]

for every \(f \in \Delta(B) \) and \(x \in A \), it is clear that \(\varphi^* f \) is a \(* \)-homomorphism.

Corollary 3.2. Let \(A \) and \(B \) be unital commutative \(C^* \)-algebras, \(\varphi : A \to B \) be a \(* \)-homomorphism. Then \(\varphi^* \Delta(B) \subset \Delta(A) \).

Theorem 3.3. Let \(A \) and \(B \) be unital commutative \(C^* \)-algebras, \(\varphi : A \to B \) be a \(* \)-homomorphism with \(\varphi(1_A) = 1_B \).

In that case, \(A^{-1} = \varphi^{-1}(B^{-1}) \) if and only if \(\varphi^* \Delta(B) = \Delta(A) \).

Proof. Let \(A^{-1} = \varphi^{-1}(B^{-1}) \). Then for every \(g \in \Delta(A) \), there exists \(l \in M(A) \) such that \(Kerg = I \). If we denote by \(J_0 \) the smallest ideal of \(B \) containing \(\varphi(I) \), then \(J_0 = B \) or \(J_0 \neq B \). If \(J_0 \neq B \), then there exists \(f \in M(B) \) such that \(J_0 \subset f \) and also \(f \in \Delta(B) \) such that \(Kerg = I \). Since \(l \in M(A) \) and \(A/l \equiv \mathbb{C} \), there exists \(\lambda \in \mathbb{C} \) and \(t \in I \) such that \(a = \lambda + t \) for any \(a \in A \). Therefore,

\[
(\varphi^* f)(a) = (\varphi^* f)(\lambda + t) = \lambda + f(\varphi(t)).
\]

Again for \(t \in I \), \(\varphi(t) \in Kerg \) and hence \((\varphi^* f)(a) = \lambda \). Thus, we can write \(a = (\varphi^* f)(a) = 1 + t \).

Using the fact that \(t \in I = Kerg \), \(g(a) = (\varphi f)(a) \). Then it is easily seen that \(g = \varphi^* f \in \varphi^* \Delta(B) \) and obtained that \(\Delta(A) \subset \varphi^* \Delta(B) \).

If \(J_0 \) were all of \(B \), then there would be \(b_1, b_2, ..., b_n \in B \) and \(a_1, a_2, ..., a_n \in I \) such that

\[
\sum_{i=1}^{n} b_i \varphi(a_i) = 1.
\]

Since \(b_i \| a_i \| \in B \) and \(\frac{a_i}{\| a_i \|} \in I \), we can assume that \(\| a_i \| = 1 \) for each \(i = 1, 2, ..., n \). Let

\[
\max_{i \leq n} \| b_i \| = M
\]

and a neighbourhood \(U \) at \(g \in \Delta(A) \) with respect to the Gelfand topology for \(0 < \varepsilon < 1 \) be

\[
\{ h \in \Delta(A) : |\hat{a}_i(h) - \hat{a}_i(g)| < \frac{\varepsilon}{M \cdot n}, 1 \leq i \leq n \}.
\]

Then, since \(a_i \in I = Kerg \) for each \(i = 1, 2, ..., n \),

\[
U = \{ h \in \Delta(A) : |\hat{a}_i(h)| < \frac{\varepsilon}{M \cdot n}, 1 \leq i \leq n \}
\]

As \(A \) is regular, there is a \(m \in A \) such that

\[
\hat{m}(h) = \begin{cases}
1 & h = g \\
0 & h \in \Delta(A) - U \\
\leq 1 & \text{otherwise}
\end{cases}
\]

Thus for any \(k \in \Delta(A) \),

\[
|\{a_i, m\}^*(k) = |\hat{a}_i(k), \hat{m}(k)| = |\hat{a}_i(k)|, \hat{m}(k)|
\]

29
and hence
\[\sup\{ |(a_i, m)^\sim(k)| : k \in \Delta(A) \} < \frac{\varepsilon}{M \cdot n}. \]

Also
\[
\begin{align*}
 r(a_i m) &= \sup\{ |k(a_i, m)| : k \in \Delta(A) \} \\
 &= \sup\{ |(a_i, m)^\sim(k)| : k \in \Delta(A) \}
\end{align*}
\]

implies
\[r(a_i m) < \frac{\varepsilon}{M \cdot n}. \]

On the other hand, if we remember
\[\sum_{i=1}^{n} b_i, \varphi(a_i) = 1, \]
then it is clear that
\[
\begin{align*}
 \varphi(m) &= \varphi(m) \sum_{i=1}^{n} b_i, \varphi(a_i) \\
 &= \sum_{i=1}^{n} b_i, \varphi(a_i) \cdot \varphi(m) \\
 &= \sum_{i=1}^{n} b_i, \varphi(a_i m).
\end{align*}
\]

Then,
\[
\begin{align*}
 r(\varphi(m)) &= r\left(\sum_{i=1}^{n} b_i, \varphi(a_i m) \right) \\
 &\leq \sum_{i=1}^{n} r(b_i) r(\varphi(a_i m)) \\
 &\leq \sum_{i=1}^{n} \|b_i\| r(\varphi(a_i m)) \\
 &\leq M \cdot \sum_{i=1}^{n} \frac{\varepsilon}{M \cdot n} \\
 &= \varepsilon
\end{align*}
\]

and hence
\[r(\varphi(m)) < \varepsilon < 1. \] Moreover, since
\[
\begin{align*}
 r(m) &= \sup\{ |k(m)| : k \in \Delta(A) \} \\
 &= \sup\{ |\tilde{m}(k)| : k \in \Delta(A) \} \\
 &= 1,
\end{align*}
\]

\[r(\varphi(m)) = 1 \] by hypothesis, which is a contradiction. This contradiction shows that
\[J_0 \neq B. \] Consequently, \(\varphi^* \Delta(B) = \Delta(A) \) by Corollary 3.2.

Conversely, let \(\varphi^* \Delta(B) = \Delta(A) \). For any point \(x \in \varphi^{-1}(B^{-1}) \) and \(h \in \Delta(A) \), \(\varphi(x) \in B^{-1} \) and there exists \(u \in \Delta(B) \) such that \(\varphi^* u = h \). Thus \(u(\varphi(x)) \neq 0 \), so that \(\varphi^* u(x) = h(x) \neq 0 \) and hence \(x \in A^{-1} \). Thus it is obtained that \(\varphi^{-1}(B^{-1}) \subset A^{-1} \) and \(\varphi^{-1}(B^{-1}) = A^{-1} \) by Corollary 2.3.

Corollary 3.4. \(A^{-1} = \varphi^{-1}(B^{-1}) \) if and only if \(\varphi^* M(B) = M(A) \).

4. References

