Some Spectrum Properties in C*- Algebras

*N. SAGER¹, H. AVCI¹

Ondokuz Mayis University, Department of Mathematics, Faculty of Arts and Sciences, 55129 Samsun, Turkey *nilay.sager@omu.edu.tr

(Received: 24.11.2014; Accepted: 10.03.2015)

Abstract

In this study, we show that a * - homomorphism $\varphi : A \to B$ between unital commutative C^* - algebras A and B with $A^{-1} = \varphi^{-1}(B^{-1})$ satisfies the property to preserve spectrum and adjoint mapping $\varphi^* : \Delta(B) \to \Delta(A)$ is surjective, that is, φ^* maps maximal ideal space of B to maximal ideal space of A.

Keywords: C*- algebra, Gelfand transform, maximal ideal, spectrum, complex homomorphism

C*- Cebirlerinde Bazı Spektrum Özellikleri

Özet

Bu çalışmada, birimli değişmeli A ve B C^* - cebirleri arasında tanımlı $A^{-1} = \varphi^{-1}(B^{-1})$ şartını sağlayan bir φ * - homomorfizminin spektrumu koruma özelliğini sağladığı ve φ^* : $\Delta(B) \to \Delta(A)$ adjoint dönüşümünün örten olduğu yani B cebirinin maksimal idealler uzayını A cebirinin maksimal idealler uzayına dönüştürdüğü gösterildi.

Anahtar Kelimeler: C*- cebiri, Gelfand dönüşümü, maksimal ideal, spektrum, kompleks homomorfizm

1. Introduction

There are many studies on invertible elements of C*- algebras and the property to preserve spectrum of a homomorphism between C*- algebras. The related studies can be found in references as [1-3]. In this paper, the relation between the property preserve spectrum of a homomorphism from one C*- algebra to another, invertible elements of these C*- algebras and the mapping of their maximal ideals is examined.

In this section, basic definitions and properties related to C^* - algebras will be given.

Let A be a complex algebra. An involution on A is a mapping $*: x \to x^*$ from A into A satisfying the following conditions.

i.
$$(x + y)^* = x^* + y^*$$
,

ii.
$$(\lambda x)^* = \bar{\lambda} x^*$$
,

iii.
$$(xy)^* = y^*x^*$$
,

iv.
$$(x^*)^* = x$$

for all $x, y \in A$ and $\lambda \in \mathbb{C}$. Then A is called a * - algebra or an algebra with involution.

If * - algebra A is a Banach algebra and involution on it is isometric; that is, $||x^*|| = ||x||$ for all $x \in A$, then A is called a Banach * - algebra.

If * - algebra A is a Banach algebra and its norm satisfies the equation $||x^*x|| = ||x||^2$ for all $x \in A$, then A is said to be a C^* - algebra. [4]

Let A and B be C^* - algebras, $\varphi: A \to B$ be a mapping. If φ satisfies the following conditions for all $x, y \in A$ and $\lambda \in \mathbb{C}$, then this mapping is called a * - homomorphism.

i.
$$\varphi(x + y) = \varphi(x) + \varphi(y)$$
,

ii.
$$\varphi(\lambda x) = \lambda \varphi(x)$$
,

iii.
$$\varphi(xy) = \varphi(x)\varphi(y)$$
,

iv.
$$\varphi(x^*) = \varphi(x)^*$$
.

It is said to be a * - isomorphism if a * - homomorphism φ is a bijection. [5]

If A is a unital Banach algebra, then the set $\{\lambda \in \mathbb{C} : (x-\lambda 1_A) \notin A^{-1}\}$ is called spectrum of x in A, denoted by $\sigma_A(x)$, where A^{-1} denotes the set of invertible elements of A. $\sigma_A(x)$ is a nonempty compact subset of \mathbb{C} for every x in A. The resolvent set of x is defined by $\rho_A(x) = \mathbb{C} \setminus \sigma_A(x)$.

The spectral radius of x is characterized by $r_A(x) = \sup\{ |\lambda| : \lambda \in \sigma_A(x) \}.$

If A is a unital commutative Banach algebra, then for every x in A, the limit

$$r_A(x) = \lim_{n \to \infty} ||x^n||^{\frac{1}{n}}$$

exists and $r_A(x) \le ||x||$. Also for every $x, y \in A$, $r_A(x + y) \le r_A(x) + r_A(y)$ and $r_A(xy) \le r_A(x)r_A(y)$.

When A is a commutative complex algebra with unit, every proper ideal of A is contained in a maximal ideal of A and every maximal ideal of A is closed. The set of all maximal ideals in A is denoted by M(A).

Let A is a complex algebra and ϕ is a linear functional on A. If $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in A$, then ϕ is called a complex homomorphism on A. The set of nonzero complex homomorphisms on A is denoted by $\Delta(A)$.

For $x \in A$, $\hat{x} : \Delta(A) \to \mathbb{C}$, Gelfand transform of x, is defined by $\hat{x}(h) = h(x)$ for every h in $\Delta(A)$. The set $\hat{A} = \{\hat{a} : a \in A\}$ is called the set of Gelfand transforms on A. [6]

The ε -open neighbourhood $U_{\varepsilon}(h_0, a_1, ..., a_n)$ at any $h_0 \in \Delta(A)$ with respect to the Gelfand topology is given

$${h \in \Delta(A): |\hat{a}_i(h_0) - \hat{a}_i(h)| < \varepsilon}$$

where $\varepsilon > 0$, $n \in \mathbb{N}$ and $a_1, ..., a_n$ are arbitrary elements of A. [7]

The following is true when A is a unital commutative Banach algebra.

- i. Every maximal ideal of *A* is the kernel of some $h \in \Delta(A)$.
- ii. If $h \in \Delta(A)$, then the kernel of h is a maximal ideal of A.
- iii. An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta(A)$.
- iv. $\lambda \in \sigma(x)$ if and only if $h(x) = \lambda$ for some $h \in \Delta(A)$. [6]

2. Spectrum Properties in C*- Algebras

In this section, it will be obtained that under what conditions equality $\sigma_A(x) = \sigma_B(\varphi(x))$ for any $x \in A$, the property to preserve spectrum of $\varphi : A \to B$, will be satisfied when A and B are

unital commutative C^* - algebras and φ is a * - homomorphism from A to B.

Proposition 2.1. Let A and B be unital commutative C^* - algebras, φ be a * - homomorphism from A to B and $\varphi(1_A) = 1_B$. Then for every $x \in A$, $\sigma_B(\varphi(x)) \subset \sigma_A(x)$. [5]

Theorem 2.2. Let A and B be unital commutative C^* - algebras, $\varphi: A \to B$ be a * - homomorphism with $\varphi(1_A) = 1_B$. Then $\varphi(x) \in B^{-1}$ for any $x \in A^{-1}$.

Proof. $0 \notin \sigma_A(x)$ for an arbitrary $x \in A^{-1}$. $0 \notin \sigma_B(\varphi(x))$ follows from Proposition 2.1 and this proves $\varphi(x) \in B^{-1}$.

Corollary 2.3. $A^{-1} \subset \varphi^{-1}(B^{-1})$.

Theorem 2.4. Let A and B be unital commutative C^* - algebras, $\varphi: A \to B$ be a * - homomorphism with $\varphi(1_A) = 1_B$. In this case, $A^{-1} = \varphi^{-1}(B^{-1})$ if and only if $0 \notin \sigma_A(x)$ whenever $0 \notin \sigma_B(\varphi(x))$ for any $x \in A$.

Proof. Let $A^{-1} = \varphi^{-1}(B^{-1})$. Suppose that $0 \notin \sigma_B(\varphi(x))$ for an arbitrary $x \in A$. In this case, $\varphi(x) \in B^{-1}$ and hence $x \in A^{-1}$ so that $0 \notin \sigma_A(x)$ for every $x \in A$.

Conversely, assume that $0 \notin \sigma_A(x)$ whenever $0 \notin \sigma_B(\varphi(x))$ for any $x \in A$. $a \in \varphi^{-1}(B^{-1}),$ $0 \notin \sigma_B(\varphi(a))$ for any $a \in A^{-1}$ hypothesis by and hence $\varphi^{-1}(B^{-1}) \subset A^{-1}$. According to Corollary 2.3, $A^{-1} = \varphi^{-1}(B^{-1}).$

Corollary 2.5. Let A and B be unital commutative C^* - algebras, $\varphi: A \to B$ be a * - homomorphism with $\varphi(1_A) = 1_B$. Then $\sigma_A(x) = \sigma_B(\varphi(x))$ for every $x \in A$ if and only if $A^{-1} = \varphi^{-1}(B^{-1})$.

Proof. First, suppose that $\sigma_A(x) = \sigma_B(\varphi(x))$ for every $x \in A$. In that case, one says $0 \notin \sigma_B(\varphi(a))$ for any $a \in \varphi^{-1}(B^{-1})$. Hence $\sigma_A(a) = \sigma_B(\varphi(a))$ implies $0 \notin \sigma_A(a)$, that is, $a \in A^{-1}$. Then $\varphi^{-1}(B^{-1}) \subset A^{-1}$. Again, using Corollary 2.3, it follows that $A^{-1} = \varphi^{-1}(B^{-1})$.

Conversely, let $A^{-1} = \varphi^{-1}(B^{-1})$. Given any $\lambda \in \mathbb{C} - \sigma_B(\varphi(x)), \ \varphi(x - \lambda 1_A) \in B^{-1}$ for

any $x \in A$, that is, $x - \lambda 1_A \in \varphi^{-1}(B^{-1})$ for any $x \in A$ and hence it is clear that $x - \lambda 1_A \in A^{-1}$ by $\lambda \notin \sigma_A(x)$, since hypothesis. Thus, have seen that $\sigma_A(x) \subset \sigma_B(\varphi(x))$ for every $x \in A$ and we obtain $\sigma_A(x) = \sigma_B(\varphi(x))$ for every $x \in A$ by Proposition 2.1.

Corollary 2.6. If $A^{-1} = \varphi^{-1}(B^{-1})$, then $r_A(x) = r_B(\varphi(x))$ for every $x \in A$.

3. Mapping of Maximal Ideals in C*- Algebras

Let φ be a * - homomorphism between unital commutative C^* - algebras A and B and also A^* and B^* be algebraic duals of A and B, respectively. Surjectivity of $\varphi^*: \Delta(B) \to \Delta(A)$ which is obtained from $\varphi^*: B^* \to A^*$ means that φ^* maps M(B) to M(A). In this section, it will be obtained that under what conditions this property will be satisfied.

Theorem 3.1. Let A and B be unital commutative C^* - algebras, $\varphi: A \to B$ be a * - homomorphism. Then φ^*f is also a * - homomorphism for every $f \in \Delta(B)$.

Proof. For every $f \in \Delta(B)$ and $x, y \in A$,

$$(\varphi^* f)(xy) = f(\varphi(xy))$$

$$= f(\varphi(x))f(\varphi(y))$$

$$= (\varphi^* f)(x)(\varphi^* f)(y)$$

and hence $\varphi^* f \in \Delta(A)$. Also, since

$$(\varphi^* f)(x^*) = f(\varphi(x^*))$$

$$= f(\varphi(x)^*)$$

$$= f(\varphi(x))$$

$$= (\varphi^* f)(x)$$

for every $f \in \Delta(B)$ and $x \in A$, it is clear that $\varphi^* f$ is a * - homomorphism.

Corollary 3.2. Let A and B be unital commutative C^* - algebras, $\varphi: A \to B$ be a *-homomorphism. Then $\varphi^*\Delta(B) \subset \Delta(A)$.

Theorem 3.3. Let A and B be unital commutative C^* - algebras, $\varphi: A \to B$ be a * - homomorphism with $\varphi(1_A) = 1_B$.

In that case, $A^{-1} = \varphi^{-1}(B^{-1})$ if and only if $\varphi^*\Delta(B) = \Delta(A)$.

Proof. Let $A^{-1} = \varphi^{-1}(B^{-1})$. Then for every $g \in \Delta(A)$, there exists $I \in M(A)$ such that Kerg = I. If we denote by J_0 the smallest ideal of B containing $\varphi(I)$, then $J_0 = B$ or $J_0 \neq B$. If $J_0 \neq B$, then there exists $J \in M(B)$ such that $J_0 \subset J$ and also $f \in \Delta(B)$ such that Kerf = J. Since $I \in M(A)$ and $A/I \cong \mathbb{C}$, there exists $\lambda \in \mathbb{C}$ and $t \in I$ such that $a = \lambda \cdot 1 + t$ for any $a \in A$. Therefore,

$$(\varphi^* f)(a) = (\varphi^* f)(\lambda. 1 + t) = \lambda + f(\varphi(t)).$$

Again for $t \in I$, $\varphi(t) \in Kerf$ and hence $(\varphi^*f)(a) = \lambda$. Thus, we can write $a = (\varphi^*f)(a) \cdot 1 + t$.

Using the fact that $t \in I = Kerg$, $g(a) = (\varphi^* f)(a)$. Then it is easily seen that $g = \varphi^* f \in \varphi^* \Delta(B)$ and obtained that $\Delta(A) \subset \varphi^* \Delta(B)$.

If J_0 were all of B, then there would be $b_1, b_2, ..., b_n \in B$ and $a_1, a_2, ..., a_n \in I$ such that

$$\sum_{i=1}^{n} b_i.\,\varphi(a_i) = 1.$$

Since b_i . $\|a_i\| \in B$ and $\frac{a_i}{\|a_i\|} \in I$, we can assume that $\|a_i\| = 1$ for each i = 1, 2, ..., n. Let

$$\max_{1 \le i \le n} ||b_i|| = M$$

and a neighbourhood U at $g \in \Delta(A)$ with respect to the Gelfand topology for $0 < \varepsilon < 1$ be

$$\left\{h \in \Delta(A): |\hat{a}_i(h) - \hat{a}_i(g)| < \frac{\varepsilon}{M \cdot n}, 1 \le i \le n\right\}.$$

Then, since $a_i \in I = Kerg$ for each i = 1, 2, ..., n,

$$U = \left\{ h \in \Delta(A) : \ |\hat{a}_i(h)| < \frac{\varepsilon}{M.n} \ , 1 \le i \le n \right\}$$

As A is regular, there is a $m \in A$ such that

$$\widehat{m}(h) = \begin{cases} 1 & , h = g \\ 0 & , h \in \Delta(A) - U \\ \leq 1 & , \text{otherwise} \end{cases}$$

Thus for any $k \in \Delta(A)$,

$$|(a_i.m)^{\hat{}}(k)| = |\hat{a}_i(k).\widehat{m}(k)|$$

= $|\hat{a}_i(k)|.|\widehat{m}(k)|$

$$<\frac{\varepsilon}{M n}$$

and hence

$$\sup\{ |(a_i.m)^{\hat{}}(k)| : k \in \Delta(A) \} < \frac{\varepsilon}{Mn}.$$

Also

$$r(a_i m) = \sup\{ |k(a_i m)| : k \in \Delta(A) \}$$
$$= \sup\{ |(a_i m)^{\hat{}}(k)| : k \in \Delta(A) \}$$

implies

$$r(a_i m) < \frac{\varepsilon}{M.n}$$

On the other hand, if we remember

$$\sum_{i=1}^{n} b_i \cdot \varphi(a_i) = 1,$$

then it is clear that

$$\varphi(m) = \varphi(m) \cdot \sum_{i=1}^{n} b_i \cdot \varphi(a_i)$$

$$= \sum_{i=1}^{n} b_i \cdot \varphi(a_i) \cdot \varphi(m)$$

$$= \sum_{i=1}^{n} b_i \cdot \varphi(a_i m).$$

Then,

$$r(\varphi(m)) = r\left(\sum_{i=1}^{n} b_{i}.\varphi(a_{i}m)\right)$$

$$\leq \sum_{i=1}^{n} r(b_{i})r(\varphi(a_{i}m))$$

$$\leq \sum_{i=1}^{n} ||b_{i}||.r(\varphi(a_{i}m))$$

$$\leq M.\sum_{i=1}^{n} \frac{\varepsilon}{M.n}$$

$$= \varepsilon$$

and hence $r(\varphi(m)) < \varepsilon < 1$. Moreover, since

$$r(m) = \sup\{ |k(m)| : k \in \Delta(A) \}$$

= \sup\{ |\hat{m}(k)| : k \in \Delta(A)\}
= 1,

 $r(\varphi(m)) = 1$ by hypothesis, which is a contradiction. This contradiction shows that $J_0 \neq B$. Consequently, $\varphi^*\Delta(B) = \Delta(A)$ by Corollary 3.2.

Conversely, let $\varphi^*\Delta(B) = \Delta(A)$. For any point $x \in \varphi^{-1}(B^{-1})$ and $h \in \Delta(A)$, $\varphi(x) \in B^{-1}$ and there exists $u \in \Delta(B)$ such that $\varphi^*u = h$. Thus $u(\varphi(x)) \neq 0$, so that $\varphi^*u(x) = h(x) \neq 0$ and hence $x \in A^{-1}$. Thus it is obtained that $\varphi^{-1}(B^{-1}) \subset A^{-1}$ and $\varphi^{-1}(B^{-1}) = A^{-1}$ by Corollary 2.3.

Corollary 3.4. $A^{-1} = \varphi^{-1}(B^{-1})$ if and only if $\varphi^*M(B) = M(A)$.

4. References

- Russo, B. (1966). Linear mappings of operator algebras. Proceedings of the American Mathematical Society, 17, 1019-1022.
- 2. Bresar, M. and Spenko, S. (2012). Determining elements in Banach algebras through spectral properties. Journal of Mathematical Analysis and Applications, 393(1), 144 150.
- 3. Kovacz, I. (2005). Invertibility preserving maps of C*- algebras with real rank zero. Abstract and Applied Analysis, 2005(6), 685-689.
- 4. Kaniuth, E. (2009). A Course in Commutative Banach Algebras. Springer - Verlag, New York, 353s
- 5. Dixmier, J. (1977). *C** Algebras. Elsevier North Holland Publishing Company, New York, 492s.
- 6. Rudin, W. (1991). Functional Analysis, Second Edition. McGraw Hill, New York, 424s.
- 7. Larsen, R. (1973). Banach Algebras: An Introduction. Marcel Dekker, New York, 345s.