Some Spectrum Properties in C*- Algebras

*N. SAGER ${ }^{1}$, H. AVCI ${ }^{1}$
Ondokuz Mayis University, Department of Mathematics, Faculty of Arts and Sciences, 55129 Samsun, Turkey
*nilay.sager@omu.edu.tr

(Received: 24.11.2014; Accepted: 10.03.2015)

Abstract

In this study, we show that a ${ }^{*}$ - homomorphism $\varphi: A \rightarrow B$ between unital commutative C^{*} - algebras A and B with $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$ satisfies the property to preserve spectrum and adjoint mapping $\varphi^{*}: \Delta(B) \rightarrow \Delta(A)$ is surjective, that is, φ^{*} maps maximal ideal space of B to maximal ideal space of A.

Keywords: C^{*} - algebra, Gelfand transform, maximal ideal, spectrum, complex homomorphism

C*- Cebirlerinde Bazı Spektrum Özellikleri

Özet

Bu çalışmada, birimli değişmeli A ve $B C^{*}$ - cebirleri arasında tanımlı $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$ şartını sağlayan bir φ * - homomorfizminin spektrumu koruma özelliğini sağladığı ve $\varphi^{*}: \Delta(B) \rightarrow \Delta(A)$ adjoint dönüşümünün örten olduğu yani B cebirinin maksimal idealler uzayını A cebirinin maksimal idealler uzayına dönüştürdüğü gösterildi.

Anahtar Kelimeler: C^{*} - cebiri, Gelfand dönüşümü, maksimal ideal, spektrum, kompleks homomorfizm

1. Introduction

There are many studies on invertible elements of C^{*} - algebras and the property to preserve spectrum of a homomorphism between C^{*} - algebras. The related studies can be found in references as [1-3]. In this paper, the relation between the property preserve spectrum of a homomorphism from one C^{*} - algebra to another, invertible elements of these C^{*} algebras and the mapping of their maximal ideals is examined.

In this section, basic definitions and properties related to C^{*} - algebras will be given.

Let A be a complex algebra. An involution on A is a mapping $*: x \rightarrow x^{*}$ from A into A satisfying the following conditions.
i. $(x+y)^{*}=x^{*}+y^{*}$,
ii. $(\lambda x)^{*}=\bar{\lambda} x^{*}$,
iii. $(x y)^{*}=y^{*} x^{*}$,
iv. $\left(x^{*}\right)^{*}=x$
for all $x, y \in A$ and $\lambda \in \mathbb{C}$. Then A is called a * - algebra or an algebra with involution.

If $*$ - algebra A is a Banach algebra and involution on it is isometric; that is, $\quad\left\|x^{*}\right\|=$ $\|x\|$ for all $x \in A$, then A is called a Banach $*_{-}$ algebra.

If * - algebra A is a Banach algebra and its norm satisfies the equation $\left\|x^{*} x\right\|=\|x\|^{2}$ for all $x \in A$, then A is said to be a C^{*} - algebra. [4]

Let A and B be C^{*} - algebras, $\varphi: A \rightarrow B$ be a mapping. If φ satisfies the following conditions for all $x, y \in A$ and $\lambda \in \mathbb{C}$, then this mapping is called a ${ }^{*}$ - homomorphism.
i. $\varphi(x+y)=\varphi(x)+\varphi(y)$,
ii. $\varphi(\lambda x)=\lambda \varphi(x)$,
iii. $\varphi(x y)=\varphi(x) \varphi(y)$,
iv. $\varphi\left(x^{*}\right)=\varphi(x)^{*}$.

It is said to be a * - isomorphism if a^{*} - homomorphism φ is a bijection. [5]

If A is a unital Banach algebra, then the set $\left\{\lambda \in \mathbb{C}:\left(x-\lambda 1_{A}\right) \notin A^{-1}\right\}$ is called spectrum of x in A, denoted by $\sigma_{A}(x)$, where A^{-1} denotes the set of invertible elements of $A . \sigma_{A}(x)$ is a nonempty compact subset of \mathbb{C} for every x in A. The resolvent set of x is defined by $\rho_{A}(x)=\mathbb{C} \backslash \sigma_{A}(x)$.

The spectral radius of x is characterized by $r_{A}(x)=\sup \left\{|\lambda|: \lambda \in \sigma_{A}(x)\right\}$.
If A is a unital commutative Banach algebra, then for every x in A, the limit

$$
r_{A}(x)=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}
$$

exists and $r_{A}(x) \leq\|x\|$. Also for every $x, y \in A, \quad r_{A}(x+y) \leq r_{A}(x)+r_{A}(y) \quad$ and $r_{A}(x y) \leq r_{A}(x) r_{A}(y)$.

When A is a commutative complex algebra with unit, every proper ideal of A is contained in a maximal ideal of A and every maximal ideal of A is closed. The set of all maximal ideals in A is denoted by $M(A)$.

Let A is a complex algebra and ϕ is a linear functional on A. If $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in A$, then ϕ is called a complex homomorphism on A. The set of nonzero complex homomorphisms on A is denoted by $\Delta(A)$.

For $x \in A, \hat{x}: \Delta(A) \rightarrow \mathbb{C}$, Gelfand transform of x, is defined by $\hat{x}(h)=h(x)$ for every h in $\Delta(A)$. The set $\hat{A}=\{\hat{a}: a \in A\}$ is called the set of Gelfand transforms on A. [6]

The ε-open neighbourhood $U_{\varepsilon}\left(h_{0}, a_{1}, \ldots, a_{n}\right)$ at any $h_{0} \in \Delta(A)$ with respect to the Gelfand topology is given

$$
\left\{h \in \Delta(A):\left|\hat{a}_{i}\left(h_{0}\right)-\hat{a}_{i}(h)\right|<\varepsilon\right\}
$$

where $\varepsilon>0, n \in \mathbb{N}$ and a_{1}, \ldots, a_{n} are arbitrary elements of A. [7]

The following is true when A is a unital commutative Banach algebra.
i. Every maximal ideal of A is the kernel of some $h \in \Delta(A)$.
ii. If $h \in \Delta(A)$, then the kernel of h is a maximal ideal of A.
iii. An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta(A)$.
iv. $\lambda \in \sigma(x)$ if and only if $h(x)=\lambda$ for some $h \in \Delta(A)$. [6]

2. Spectrum Properties in \mathbf{C}^{*} - Algebras

In this section, it will be obtained that under what conditions equality $\sigma_{A}(x)=\sigma_{B}(\varphi(x)) \quad$ for \quad any $\quad x \in A$, the property to preserve spectrum of $\varphi: A \rightarrow B$, will be satisfied when A and B are
unital commutative C^{*} - algebras and φ is a^{*} - homomorphism from A to B.

Proposition 2.1. Let A and B be unital commutative C^{*} - algebras, φ be a * - homomorphism from A to B and $\varphi\left(1_{A}\right)=1_{B}$. Then for every $\quad x \in A$, $\sigma_{B}(\varphi(x)) \subset \sigma_{A}(x) .[5]$

Theorem 2.2. Let A and B be unital commutative $C^{*_{-}}$algebras, $\varphi: A \rightarrow B$ be a * - homomorphism with $\varphi\left(1_{A}\right)=1_{B}$. Then $\varphi(x) \in B^{-1}$ for any $x \in A^{-1}$.

Proof. $0 \notin \sigma_{A}(x)$ for an arbitrary $x \in A^{-1}$. $0 \notin \sigma_{B}(\varphi(x))$ follows from Proposition 2.1 and this proves $\varphi(x) \in B^{-1}$.

Corollary 2.3. $A^{-1} \subset \varphi^{-1}\left(B^{-1}\right)$.
Theorem 2.4. Let A and B be unital commutative C^{*} algebras, $\varphi: A \rightarrow B$ be a * - homomorphism with $\varphi\left(1_{A}\right)=1_{B}$. In this case, $\quad A^{-1}=\varphi^{-1}\left(B^{-1}\right) \quad$ if and only if $0 \notin \sigma_{A}(x)$ whenever $0 \notin \sigma_{B}(\varphi(x))$ for any $x \in A$.

Proof. Let $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$. Suppose that $0 \notin \sigma_{B}(\varphi(x))$ for an arbitrary $x \in A$. In this case, $\varphi(x) \in B^{-1}$ and hence $x \in A^{-1} \quad$ so that $0 \notin \sigma_{A}(x)$ for every $x \in A$.
Conversely, assume that $0 \notin \sigma_{A}(x)$ whenever $0 \notin \sigma_{B}(\varphi(x)) \quad$ for any $\quad x \in A$. Since $0 \notin \sigma_{B}(\varphi(a)) \quad$ for \quad any $\quad a \in \varphi^{-1}\left(B^{-1}\right)$, $a \in A^{-1}$ by hypothesis and hence $\varphi^{-1}\left(B^{-1}\right) \subset A^{-1}$. According to Corollary 2.3, $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$.

Corollary 2.5. Let A and B be unital commutative C^{*} - algebras, $\varphi: A \rightarrow B$ be a ${ }^{*}$ - homomorphism with $\varphi\left(1_{A}\right)=1_{B}$. Then $\sigma_{A}(x)=\sigma_{B}(\varphi(x))$ for every $x \in A$ if and only if $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$.

Proof. First, suppose that $\sigma_{A}(x)=\sigma_{B}(\varphi(x))$ for every $x \in A$. In that case, one says $0 \notin \sigma_{B}(\varphi(a)) \quad$ for \quad any $\quad a \in \varphi^{-1}\left(B^{-1}\right)$. Hence $\sigma_{A}(a)=\sigma_{B}(\varphi(a))$ implies $0 \notin \sigma_{A}(a)$, that is, $\quad a \in A^{-1}$. Then $\varphi^{-1}\left(B^{-1}\right) \subset A^{-1}$. Again, using Corollary 2.3, it follows that $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$.
Conversely, let $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$. Given any $\lambda \in \mathbb{C}-\sigma_{B}(\varphi(x)), \varphi\left(x-\lambda 1_{A}\right) \in B^{-1} \quad$ for
any $x \in A$, that is, $x-\lambda 1_{A} \in \varphi^{-1}\left(B^{-1}\right) \quad$ for any $x \in A$ and hence it is clear that $\lambda \notin \sigma_{A}(x), \quad$ since $\quad x-\lambda 1_{A} \in A^{-1} \quad$ by hypothesis. Thus, we have seen that $\sigma_{A}(x) \subset \sigma_{B}(\varphi(x)) \quad$ for \quad every $\quad x \in A$ and we obtain $\sigma_{A}(x)=\sigma_{B}(\varphi(x))$ for every $x \in A$ by Proposition 2.1.

Corollary 2.6. If $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$, then $r_{A}(x)=r_{B}(\varphi(x))$ for every $x \in A$.

3. Mapping of Maximal Ideals in C^{*} - Algebras

Let φ be a * - homomorphism between unital commutative C^{*} - algebras A and B and also A^{*} and B^{*} be algebraic duals of A and B, respectively. Surjectivity of $\varphi^{*}: \Delta(B) \rightarrow \Delta(A)$ which is obtained from $\varphi^{*}: B^{*} \rightarrow A^{*}$ means that φ^{*} maps $M(B)$ to $M(A)$. In this section, it will be obtained that under what conditions this property will be satisfied.

Theorem 3.1. Let A and B be unital commutative C^{*} - algebras, $\varphi: A \rightarrow B$ be a * - homomorphism. Then $\varphi^{*} f$ is also a * - homomorphism for every $f \in \Delta(B)$.

Proof. For every $f \in \Delta(B)$ and $x, y \in A$,

$$
\begin{aligned}
\left(\varphi^{*} f\right)(x y) & =f(\varphi(x y)) \\
& =f(\varphi(x)) f(\varphi(y)) \\
& =\left(\varphi^{*} f\right)(x)\left(\varphi^{*} f\right)(y)
\end{aligned}
$$

and hence $\varphi^{*} f \in \Delta(A)$. Also, since

$$
\begin{aligned}
\left(\varphi^{*} f\right)\left(x^{*}\right) & =f\left(\varphi\left(x^{*}\right)\right) \\
& =f\left(\varphi(x)^{*}\right) \\
& =\overline{f(\varphi(x))} \\
& =\overline{\left(\varphi^{*} f\right)(x)}
\end{aligned}
$$

for every $f \in \Delta(B)$ and $x \in A$, it is clear that $\varphi^{*} f$ is a ${ }^{*}$ - homomorphism.

Corollary 3.2. Let A and B be unital commutative C^{*} - algebras, $\varphi: A \rightarrow B$ be a^{*} - homomorphism. Then $\varphi^{*} \Delta(B) \subset \Delta(A)$.

Theorem 3.3. Let A and B be unital commutative C^{*} - algebras, $\varphi: A \rightarrow B$ be a $*$ - homomorphism with $\varphi\left(1_{A}\right)=1_{B}$.

In that case, $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$ if and only if $\varphi^{*} \Delta(B)=\Delta(A)$.

Proof. Let $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$. Then for every $g \in \Delta(A)$, there exists $I \in M(A)$ such that $\operatorname{Kerg}=I$. If we denote by J_{0} the smallest ideal of B containing $\varphi(I)$, then $J_{0}=B$ or $J_{0} \neq B$.
If $J_{0} \neq B$, then there exists $J \in M(B)$ such that $J_{0} \subset J$ and also $f \in \Delta(B)$ such that $\operatorname{Ker} f=J$. Since $I \in M(A)$ and $A / I \cong \mathbb{C}$, there exists $\lambda \in \mathbb{C}$ and $t \in I$ such that $a=\lambda .1+t$ for any $a \in A$. Therefore,

$$
\left(\varphi^{*} f\right)(a)=\left(\varphi^{*} f\right)(\lambda .1+t)=\lambda+f(\varphi(t))
$$

Again for $t \in I, \varphi(t) \in \operatorname{Kerf}$ and hence $\left(\varphi^{*} f\right)(a)=\lambda$. Thus, we can write $a=\left(\varphi^{*} f\right)(a) .1+t$.
Using the fact that $t \in I=\operatorname{Kerg}$, $g(a)=\left(\varphi^{*} f\right)(a)$. Then it is easily seen that $g=\varphi^{*} f \in \varphi^{*} \Delta(B)$ and obtained that $\Delta(A) \subset \varphi^{*} \Delta(B)$.
If J_{0} were all of B, then there would be $b_{1}, b_{2}, \ldots, b_{n} \in B$ and $a_{1}, a_{2}, \ldots, a_{n} \in I$ such that

$$
\sum_{i=1}^{n} b_{i} . \varphi\left(a_{i}\right)=1
$$

Since $b_{i} .\left\|a_{i}\right\| \in B$ and $\frac{a_{i}}{\left\|a_{i}\right\|} \in I$, we can assume that $\left\|a_{i}\right\|=1$ for each $i=1,2, \ldots, n$.
Let

$$
\max _{1 \leq i \leq n}\left\|b_{i}\right\|=M
$$

and a neighbourhood U at $g \in \Delta(A)$ with respect to the Gelfand topology for $0<\varepsilon<1$ be
$\left\{h \in \Delta(A):\left|\hat{a}_{i}(h)-\hat{a}_{i}(g)\right|<\frac{\varepsilon}{M . n}, 1 \leq i \leq n\right\}$.
Then, since $a_{i} \in I=\operatorname{Kerg}$ for each $i=1,2, \ldots, n$,

$$
U=\left\{h \in \Delta(A):\left|\hat{a}_{i}(h)\right|<\frac{\varepsilon}{M \cdot n}, 1 \leq i \leq n\right\}
$$

As A is regular, there is a $m \in A$ such that

$$
\widehat{m}(h)=\left\{\begin{aligned}
1 & , h=g \\
0 & , h \in \Delta(A)-U \\
\leq 1 & , \text { otherwise }
\end{aligned}\right.
$$

Thus for any $k \in \Delta(A)$,

$$
\begin{aligned}
\left|\left(a_{i} \cdot m\right)^{\wedge}(k)\right| & =\left|\hat{a}_{i}(k) \cdot \widehat{m}(k)\right| \\
& =\left|\widehat{a}_{i}(k)\right| \cdot|\widehat{m}(k)|
\end{aligned}
$$

$$
<\frac{\varepsilon}{M \cdot n}
$$

and hence

$$
\sup \left\{\left|\left(a_{i} \cdot m\right)^{\wedge}(k)\right|: k \in \Delta(A)\right\}<\frac{\varepsilon}{M \cdot n}
$$

Also

$$
\begin{aligned}
r\left(a_{i} m\right) & =\sup \left\{\left|k\left(a_{i} . m\right)\right|: k \in \Delta(A)\right\} \\
& =\sup \left\{\left|\left(a_{i} \cdot m\right)^{\wedge}(k)\right|: k \in \Delta(A)\right\}
\end{aligned}
$$

implies

$$
r\left(a_{i} m\right)<\frac{\varepsilon}{M \cdot n}
$$

On the other hand, if we remember

$$
\sum_{i=1}^{n} b_{i} . \varphi\left(a_{i}\right)=1
$$

then it is clear that

$$
\begin{aligned}
\varphi(m) & =\varphi(m) \cdot \sum_{i=1}^{n} b_{i} \cdot \varphi\left(a_{i}\right) \\
& =\sum_{i=1}^{n} b_{i} \cdot \varphi\left(a_{i}\right) \cdot \varphi(m) \\
& =\sum_{i=1}^{n} b_{i} \cdot \varphi\left(a_{i} m\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
r(\varphi(m)) & =r\left(\sum_{i=1}^{n} b_{i} \cdot \varphi\left(a_{i} m\right)\right) \\
& \leq \sum_{i=1}^{n} r\left(b_{i}\right) r\left(\varphi\left(a_{i} m\right)\right) \\
& \leq \sum_{i=1}^{n}\left\|b_{i}\right\| \cdot r\left(\varphi\left(a_{i} m\right)\right) \\
& \leq M \cdot \sum_{i=1}^{n} \frac{\varepsilon}{M \cdot n} \\
& =\varepsilon
\end{aligned}
$$

and hence $r(\varphi(m))<\varepsilon<1$. Moreover, since

$$
\begin{aligned}
r(m) & =\sup \{|k(m)|: k \in \Delta(A)\} \\
& =\sup \{|\widehat{m}(k)|: k \in \Delta(A)\} \\
& =1
\end{aligned}
$$

$r(\varphi(m))=1$ by hypothesis, which is a contradiction. This contradiction shows that $J_{0} \neq B$. Consequently, $\varphi^{*} \Delta(B)=\Delta(A) \quad$ by Corollary 3.2.
Conversely, let $\varphi^{*} \Delta(B)=\Delta(A)$. For any point $x \in \varphi^{-1}\left(B^{-1}\right)$ and $h \in \Delta(A), \varphi(x) \in B^{-1}$ and there exists $u \in \Delta(B)$ such that $\varphi^{*} u=h$. Thus $u(\varphi(x)) \neq 0$, so that $\varphi^{*} u(x)=h(x) \neq 0$ and hence $x \in A^{-1}$. Thus it is obtained that $\varphi^{-1}\left(B^{-1}\right) \subset A^{-1} \quad$ and $\quad \varphi^{-1}\left(B^{-1}\right)=A^{-1} \quad$ by Corollary 2.3.

Corollary 3.4. $A^{-1}=\varphi^{-1}\left(B^{-1}\right)$ if and only if $\varphi^{*} M(B)=M(A)$.

4. References

1. Russo, B. (1966). Linear mappings of operator algebras. Proceedings of the American Mathematical Society, 17, 1019-1022.
2. Bresar, M. and Spenko, S. (2012). Determining elements in Banach algebras through spectral properties. Journal of Mathematical Analysis and Applications, 393(1), 144-150.
3. Kovacz, I. (2005). Invertibility - preserving maps of C^{*} - algebras with real rank zero. Abstract and Applied Analysis, 2005(6), 685-689.
4. Kaniuth, E. (2009). A Course in Commutative Banach Algebras. Springer - Verlag, New York, 353s.
5. Dixmier, J. (1977). C* - Algebras. Elsevier North - Holland Publishing Company, New York, 492s.
6. Rudin, W. (1991). Functional Analysis, Second Edition. McGraw - Hill, New York, 424s.
7. Larsen, R. (1973). Banach Algebras: An Introduction. Marcel Dekker, New York, 345s.
