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Abstract 

In this paper, the linear matrix differantial equations which is a special case of matrix differantial equations has 

been formulated by the consepts of of the matrix differantial equations and Kronecker products and investigated 

by the Kronecker products. The formulation of the matrix differantial equation obtained by use of the linear 

matrix equations and Kronecker products have been applied to the matrix differantial equations and some 

important results have been found. It is shown that in solutions of the equation and its reduced case have 

emerged the importance of generalized inverse matrix and matrix functions. 

Keywords: Matrix functions, Kronecker products, Matrix differantial equations. 

Matris Diferansiyel Denklemler için Kronecker Çözümler 

Özet 

Bu çalışmada,  matris diferansiyel denklemlerinin özel bir hali olan doğrusal matris diferansiyel denklemleri 

Kronecker çarpım ve matris diferansiyel denklemleri kavramalarıyla formüle edilmiş ve Kronecker çarpımlarla 

incelenmiştir. Kronecker çarpım ve doğrusal matris denklemler kullanılarak elde edilen doğrusal matris 

diferansiyel denklem formulasyonu matris diferansiyel denklemlere uygulanmış ve bazı önemli sonuçlar 

bulunmuştur. Denklemin ve onun indirgenmiş durumu genelleştirilmiş ters matris ve matris fonksiyonunun 

önemini ortay çıkarmıştır. 

Anahtar Kelimeler: Matris Fonksiyonlar, Kronecker Çarpım, Matris Diferensiyel Denklemler. 

1. Introduction 
 

In this paper only algebra was taken into 

consideration. Which have been motivated 

largely by the fact that they enables us to treat 

linear matrix differantial equations and the linear 

matrix differantial equations as if they were 

vector equations of the Kronecker products of 

matrices. 

The use of Kronecker products arises in a 

variety of other mathematical applications as 

well. A review of Kronecker product 

applications in linear system theory has been 

presented in [1,5,6,7].The Kronecker product has 

had a long history. Until 19th century, it has not 

been used sufficiently in any area of applied 

mathematics. 

Statisticians now have at their disposal a 

large body of results concerning the Kronecker 

product and its uses in linear matrix calculus and 

linear matrix differantial calculus [7,9]. 

This paper focuses on a newly proposed 

generalization of Kronecker product [2], and 

outlines its utility with some algebraic properties 

for all solutions of the differantial matrix 

equations and its special cases. This paper 

investigates some algebraic results concerning 

the solutions of the linear matrix differantial 

equation 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑋𝐵 + 𝐶𝑋𝐷,    𝑋(𝑡0) = 𝑋0           (1.1)             

 

Utulizing the spectral decomposotion and 

generalized inverses of a matrix and using the 

Kronecker product. A basic method is to express 

(1.1) in an equivalent vector form as follows 

 
𝑑𝑥

𝑑𝑡
= (𝐵𝑇 ⊗ 𝐴 + 𝐷𝑇 ⊗ 𝐶)𝑥,    𝑥(𝑡0) = 𝑥0     (1.2) 

 

Which is a linear differantial equation with 

singular columns of x,  ⊗ denotes Kronecker 

product and 𝐵𝑇 is thetranspose of B. I shall use 
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algebraic results derived to analyse the solutions 

of (1.1) and (1.2). I shall relationship amongst 

results and I shall argue that only one of them is 

viable. 

 

2. Kronecker Products 
 

Let A=[𝑎𝑖𝑗] be an mxn matrix and B be pxq 

matrix. The mpxnq Kronecker product of A and 

B,  A⊗B is defined as [2,3,4,9] 

 

𝐴 ⊗ 𝐵=[𝑎𝑖𝑗𝐵].                                                           (2.1) 

 

The mnxmn Kronecker sum of A and B, 

A⊕B, is defined as  

 

A⊕B =  𝐴 ⊗ 𝐼𝑛 +  𝐼𝑚 ⊗ B,                               (2.2) 
 

where A and B are mxm and nxn matrices. 

 

Theorem 2.1.  

 

Let f be an analytic function and A be an nxn 

matrix. Then 

 

f(A⊗ 𝐼𝑚) = f(A) ⊗ 𝐼𝑚 ,                                     (2.3) 
 

Theorem 2.2.  

 

Let A be an mxm and B be an nxn matrix. Then 

 

exp(A⊕B) = exp(A) ⊗ exp(B)                      (2.4) 
 

where ⊕ and ⊗ are Kronecker sum and 

Kronevker Product, respectively. 

 

Theorem 2.3. 

 

Let A be an pxq and  B be sxt, and D a qxs  

matrix. Then  

 

𝑣𝑒𝑐(𝐴𝐷𝐵)  =  (𝐵𝑇 ⊗ 𝐴) . 𝑑                          (2.5) 

 

where vec(ADB) is ptx1 vector formed from the 

columns of ABD and d is qsx1 vector formed 

from the columns of  D. 

Now consider the derivative of a matrix 

A=[𝑎𝑟𝑣] with respect to a scaler b to be 

  
𝜕𝐴

𝜕𝐵
= [

𝜕𝑎𝑟𝑣

𝜕𝑏
]                                                      (2.6) 

𝜕𝐴

𝜕𝐵
 is taken to be a partitioned matrix whose ikth 

partitio    

 
𝜕𝐴

𝜕𝐵
= [

𝜕𝐴

𝜕𝑏𝑖𝑘
],                                                     (2.7)  

                                                   

where B=[𝑏𝑖𝑘] is a rectangular matrix. 
 

3. Linear Matrix Equations 
 

The linear matrix equation for the unknown 

matrix X such that  

 

A X B = C,                                                      (3.1)     

 

where A is an mxn, B is a pxq, C is an mxq and 

X is an nxp matrix. We can view this as a linear 

equation in the form 

 

(𝐵𝑇 ⊗ 𝐴) x = C,                                             (3.2) 

                                                          

where        

 
𝑋𝑇 = [𝑋11, 𝑋21, … , 𝑋𝑛1, … , 𝑋1𝑝, 𝑋2𝑝, … , 𝑋𝑛𝑝]       (3.3)   

                           
𝐶𝑇 = [𝐶11, 𝐶21, … , 𝐶𝑚1, … , 𝐶1𝑞 , 𝐶2𝑞 , … , 𝐶𝑚𝑞]       (3.4)  

                            

and     𝐵𝑇   is the transpose of B[8].            
 

Theorem 3.1. 

 

A necessary and sufficient condition for the 

equation AXB = C to have a solution is that 

 

𝐴𝐴+𝐶𝐵+𝐵 = 𝐶                                               (3.5)       
                                                      

In which case the general solution is  

 

𝑋 =  𝐴+𝐶𝐵+ +  𝑌 −  𝐴+𝐴𝑌𝐵𝐵+                   (3.6)    
                                              

where Y is an arbitrary matrix. 

 

4. Matrix Differential Equations 
 

We shall be concerned with systems of first 

order linear differential equations of the form 

 
𝑑𝑥

𝑑𝑡
= A 𝑥 + b ,   ,    𝑥(𝑡0) = 𝑥0                        (4.1)                                                              

 

where A is an nxn constant matrix and  x(t) and 

b(t) are vector valued functions of the real 
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variable t, and b(t) is continious in some interval 

containing 𝑡0 . If b(t) = 0, Equation  (4.1)  

becomes of the form 

 
𝑑𝑥

𝑑𝑡
= A 𝑥 ,    𝑥(𝑡0) = 𝑥0                                 (4.2)   

                                                                

which called as homogeneous initial value 

problem[3,4,5]. 

 

Theorem 4.1. 

 

The solution of (4.2)   is 

 

𝑋 = 𝑒𝐴(𝑡−𝑡0)𝑥0                                               (4.3)    
                                           

Theorem 4.2. 

 

The solution of (4.1)   is 

 

 𝑋 = 𝑒𝐴(𝑡−𝑡0)𝑥0 + ∫ 𝑋 = 𝑒𝐴(𝑡−𝑢)𝑡

𝑡0
b(u)du      (4.4) 

                                              

We now consider the matrix differential equation 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑋𝐵 + 𝐶𝑋𝐷 ,    𝑥(𝑡0) = 𝑥0                    (4.5)  

                                                    

(4.5) can be expressed in usual form of linear 

systems of differential equations as follows 

 
𝑑𝑥

𝑑𝑡
= (𝐵𝑇 ⊗ 𝐴 + 𝐷𝑇 ⊗ 𝐶)𝑥,    𝑥(𝑡0) = 𝑥0           (4.6) 

                                                   

where if  𝑋 = [𝑥𝑖𝑗(𝑡)]  then X is the mnx1 

vector 

 

𝑋𝑇 = [𝑋11, … , 𝑋𝑚1, … , 𝑋1𝑛, … , 𝑋𝑚𝑛]             (4.7)   
                                                

formed from the columns of  X. 

A special case of (4.5), where B and C are 

identity matrices, has been extensively studied in 

literatüre. In this case we obtain the following 

differential equation 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑋 + 𝑋𝐵 ,    𝑥(𝑡0) = 𝑥0                         (4.8) 

                                                      

which can be expressed as  

 
𝑑𝑥

𝑑𝑡
 = (𝐵𝑇 ⊕ 𝐴)X ,    𝑥(𝑡0) = 𝑥0                      (4.9)                                                       

 

(4.6) is a special case of the homogeneous initial 

value problem. The general solution of (4.6) is 

 

𝑋 = exp(𝑀𝑡) . 𝑥0                                          (4.10)    
                                       

where    

 

M = 𝐵𝑇 ⊗ 𝐴 + 𝐷𝑇 ⊗ 𝐶    and  𝑥0 = X(0). 

 

Corollary 4.1. 

 

The linear matrix differential equations  

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑋𝐵 ,    𝑥(𝑡0) = 𝑥0                               (4.11) 

 

is equivalent to  

 
𝑑𝑥

𝑑𝑡
 = (𝐵𝑇 ⊗ 𝐴)X ,    𝑥(𝑡0) = 𝑥0                    (4.12) 

 

The general solutions of (4.11) and (4.12) 

recpectively, are 

 

𝑋 = 𝑒𝐴𝑥0 𝑒𝐵𝑡                                                (4.13)  
                                           

and  

 

𝑋 =  𝑒(𝐵𝑇⊗𝐴)t𝑥0,    𝑋(0) =  𝑥0                     (4.14) 
 

5. Conclusion 
 

Let us note that the some special types of 

linear matrix equations which have important 

linear equations theory and a class of matrix 

differential equations can be investigated by use 

of Kronecker product and Kronecker sum of 

matrices. 

A basic method is to express (1.1) in an 

equivalent vector form (1.2) which is a linear 

differential equation with singular constant 

coefficient and use algebraic results on the 

Krocner products to analyse the solutions of 

(1.1) and (1.2). It is then shown that the solutions 

of (1.1) and (1.2) have common algebraic 

characterizations. 
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