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Abstract

In this paper, the linear matrix differantial equations which is a special case of matrix differantial equations has
been formulated by the consepts of of the matrix differantial equations and Kronecker products and investigated
by the Kronecker products. The formulation of the matrix differantial equation obtained by use of the linear
matrix equations and Kronecker products have been applied to the matrix differantial equations and some
important results have been found. It is shown that in solutions of the equation and its reduced case have
emerged the importance of generalized inverse matrix and matrix functions.
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Matris Diferansiyel Denklemler i¢cin Kronecker Céziimler

Ozet

Bu c¢alismada, matris diferansiyel denklemlerinin 6zel bir hali olan dogrusal matris diferansiyel denklemleri
Kronecker ¢arpim ve matris diferansiyel denklemleri kavramalariyla formiile edilmis ve Kronecker ¢arpimlarla
incelenmistir. Kronecker ¢arpim ve dogrusal matris denklemler kullanilarak elde edilen dogrusal matris
diferansiyel denklem formulasyonu matris diferansiyel denklemlere uygulanmig ve bazi Onemli sonuglar
bulunmustur. Denklemin ve onun indirgenmis durumu genellestirilmis ters matris ve matris fonksiyonunun
Onemini ortay ¢ikarmustir.

Anahtar Kelimeler: Matris Fonksiyonlar, Kronecker Carpim, Matris Diferensiyel Denklemler.

1. Introduction

In this paper only algebra was taken into
consideration. Which have been motivated
largely by the fact that they enables us to treat
linear matrix differantial equations and the linear
matrix differantial equations as if they were
vector equations of the Kronecker products of
matrices.

The use of Kronecker products arises in a
variety of other mathematical applications as
well. A review of Kronecker product
applications in linear system theory has been
presented in [1,5,6,7].The Kronecker product has
had a long history. Until 19th century, it has not
been used sufficiently in any area of applied
mathematics.

Statisticians now have at their disposal a
large body of results concerning the Kronecker
product and its uses in linear matrix calculus and
linear matrix differantial calculus [7,9].

This paper focuses on a newly proposed
generalization of Kronecker product [2], and
outlines its utility with some algebraic properties
for all solutions of the differantial matrix
equations and its special cases. This paper
investigates some algebraic results concerning
the solutions of the linear matrix differantial
equation

% = AXB + CXD, X(to) =X, (1.1)
Utulizing the spectral decomposotion and
generalized inverses of a matrix and using the
Kronecker product. A basic method is to express
(1.1) in an equivalent vector form as follows

%: (BT®A+DT®C)X, x(to) =x9 (12
Which is a linear differantial equation with

singular columns of X, & denotes Kronecker
product and BT is thetranspose of B. | shall use
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algebraic results derived to analyse the solutions
of (1.1) and (1.2). I shall relationship amongst
results and | shall argue that only one of them is
viable.

2. Kronecker Products

Let A=[a;;] be an mxn matrix and B be pxq
matrix. The mpxng Kronecker product of A and
B, A®B is defined as [2,3,4,9]
A ® B=[a;;B]. 2.1)

The mnxmn Kronecker sum of A and B,
A®B, is defined as

APB=AQRI,+ I, ®B, (2.2)
where A and B are mxm and nxn matrices.

Theorem 2.1.

Let f be an analytic function and A be an nxn
matrix. Then

fAQ In) = f(A) @ I (23)

Theorem 2.2.

Let A be an mxm and B be an nxn matrix. Then

exp(ADB) = exp(A) ® exp(B) (2.4)
where @ and @ are Kronecker sum and
Kronevker Product, respectively.

Theorem 2.3.

Let A be an pxg and B be sxt, and D a gxs
matrix. Then

vec(ADB) = (BT ® A) .d (2.5)
where vec(ADB) is ptx1 vector formed from the
columns of ABD and d is gsx1 vector formed
from the columns of D.

Now consider the derivative of a matrix
A=[a,,] with respect to a scaler b to be

= =% (2.6)

oB L ab

60

Z—‘; is taken to be a partitioned matrix whose ikth
partitio

0A ]
b’

94 _ [ @7

- =
where B=[b;,] is a rectangular matrix.
3. Linear Matrix Equations

The linear matrix equation for the unknown
matrix X such that
AXB=C, (3.2)
where A is an mxn, B is a pxq, C is an mxq and

X is an nxp matrix. We can view this as a linear
equation in the form

(BT ® A) x=C, (3.2)
where

X" = [X11, X010 ooor Xngs s X1pp Xopy s Xnpl - (33)
CT =[C11,Ca1, e, Cim1y s C1gy Cogr ey Cig ] (3.4)
and BT isthe transpose of B[8].

Theorem 3.1.

A necessary and sufficient condition for the
equation AXB = C to have a solution is that

AAYCBYB =C (3.5)
In which case the general solution is
X = A'CB* + Y — ATAYBB* (3.6)

where Y is an arbitrary matrix.
4. Matrix Differential Equations

We shall be concerned with systems of first
order linear differential equations of the form

dx

dt—Ax+b, , x(ty) = xp

(4.1

where A is an nxn constant matrix and x(t) and
b(t) are vector valued functions of the real
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variable t, and b(t) is continious in some interval

containing t, . If b(t) = 0, Equation (4.1)
becomes of the form
dx =A _
— =Ax, x(ty) = X (4.2)

which called as homogeneous initial value
problem[3,4,5].

Theorem 4.1.
The solution of (4.2) is

X = eAlt-toy, (4.3)

Theorem 4.2.

The solution of (4.1) is
X = eAlt=to)x, + ffox = eA-Wh)du  (4.4)

We now consider the matrix differential equation

dx

o~ AXB +CXD, x(ty) = xo

(4.5)
(4.5) can be expressed in usual form of linear
systems of differential equations as follows

Z=(B"QA+DT®C)x, x(ty) =% (4.6)

where if X = [x;;(t)] then X is the mnxl

vector
XT = [Xlll ---val' ---:Xln' ...,an]
formed from the columns of X.

A special case of (4.5), where B and C are
identity matrices, has been extensively studied in
literatlire. In this case we obtain the following
differential equation

4.7)

dx

- —AX +XB, x(ty) = x (4.8)
which can be expressed as
dx _ T
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(4.6) is a special case of the homogeneous initial
value problem. The general solution of (4.6) is

X = exp(Mt).x, (4.10)
where

M=BT®A+DT®C and x,=X(0).
Corollary 4.1.

The linear matrix differential equations

% = AXB, x(ty) = x, (4.12)
is equivalent to

L= (BT AX, x(to) =% (412)

The general solutions of (4.11) and (4.12)
recpectively, are

X = efx, eBt (4.13)
and
X = eB"®ty - x(0) = x, (4.14)

5. Conclusion

Let us note that the some special types of
linear matrix equations which have important
linear equations theory and a class of matrix
differential equations can be investigated by use
of Kronecker product and Kronecker sum of
matrices.

A basic method is to express (1.1) in an
equivalent vector form (1.2) which is a linear
differential equation with singular constant
coefficient and use algebraic results on the
Krocner products to analyse the solutions of
(1.1) and (1.2). It is then shown that the solutions
of (1.1) and (1.2) have common algebraic
characterizations.
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