
Turkish Journal of Science & Technology

Volume 10 (2), 23-27, 2015

GPU Accelerated Image Noise Removal Approach Based on Subpixel

Anisotropic Diffusion

Yanhui Guo
1
 and Wei Wei

2

1
 Department of Computer Science, University of Illinois Springfield, Springfield, IL 62703.

2
Samsung Research America, Inc. Mountain View, CA 94043.

(Received: 24.12.2014; Accepted: 10.04.2015)

Abstract

Denoising is the critical step in digital imaging. This paper improved an image removal algorithm based on subpixel

anisotropic diffusion and GPU accelerate technique. The subpixel difference of an image is explored into the

diffusion equation (DE). The DE is solved numerically in the subpixel domain and accelerated by using GPU

processing. A GPU implementation of the algorithm is presented to alleviate the time costs. The noise is removed

using the diffusion procedure. The experimental results show that the proposed algorithm achieved better

performance with same denoising results with less time consumptions the GPU acceleration improved the algorithm

more suitable for real time application.

Keywords: Diffusion equation, subpixel, image noise removal, blocky effect, GPGPU, OpenCL

1. Introduction

Noise occurs frequently in imaging systems

such as image acquisition and transmission process,

and it is necessary to remove noise and restore the

corruption in image [1]. Image denoising is still a

challenging problem for the dilemma removing

noise and introducing new artifacts and blurring

[1].

Image denosing technique has been applied to

real-time application like clinical medical imaging

and robot navigation. To fully benefit from this

real-time capability, image processing methods

also need to be implemented in real-time, which is

also crucial for real-time applications. Many

methods were proposed to remove the noise in the

real time. A class of multichannel filters, vector

rank M-type K-nearest neighbor (VRMKNNF)

filters were proposed to obtain the balance

between noise suppression, and edge and fine

detail preservation [2]. They combined

RM-estimators with different influence functions.

An adaptive non parametric approach determined

the functional form of the density probability of

noise from data into the sliding filtering window.

The filters were implemented on the DSP

demonstrating that their potential ability to a

real-time solution to quality video transmission.

The paper [3] analyzed the relationship between

noise variance and gray scale value in real-time

X-ray images. Then an adaptive local noise

reduction filter was proposed to filter the noise in

image.

Merging technology of general purpose

graphics processing unit (GPGPU) application

brings the possibility of real-time processing

[5,6,7,10,11,12], such as image denosing. The

paper [4] presented a modified version of the

NL-means method for real-time denoising of

ultrasound images. The NL-means method

incorporates an ultrasound dedicated noise model,

and is implemented using a GPU. The paper [5]

incorporated both temporal information and image

information into the NLMeans algorithm for

denoising. The NLMeans algorithm was mapped

onto parallel computing architectures and

implemented using the GPU. The denoising filter

can process video sequences images in real-time

on a mid-range GPU. The paper [6] performed the

multidimensional adaptive filtering using GPUs in

echocardiography images. Filtering was done

using multiple kernels implemented in OpenCL

Yanhui Guo and Wei Wei

24

(open computing language) working on multiple

subsets of the data. The paper [7,10,12] employed

particle swarm optimization (PSO) for solving the

importation band selection problem in

hyperspectral image processing area. Due to the

nature of PSO as an evolutionary algorithm, large

amount of computation is needed to search the

optimal. A parallel algorithm running on GPU is

proposed and make the algorithm could return

real-time results.)

Modern graphic cards have high computing

and programming capabilities for a reasonable

monetary cost. The latest generation of AMD

graphics card has 2046 Stream Processors that can

work in parallel with wide band memory. The

OpenCL framework allows to program graphics

cards to solve intensive computation problems

with a high-level language. The affordable GPU

push scientists to utilize the general purpose

programming on graphic processor unit for the

attempt of real-time computation problems.

A few noise removal algorithms have been

proposed based on anisotropic diffusion [8].

Previously, we extended the traditional anisotropic

diffusion filtering method by using subpixel

technique. Because of the high computation

consumption, it is hard to be employed in the real

time image noise removal.

In this paper, we improve the subpixel

anisotropic diffusion denoising algorithm [9] by

acceleration using a GPU. The subpixel difference

is defined in the image and employed to solve the

diffusion equation for noise removal. The diffusion

equation is solved numerically using an iterative

approach. The noise is removed after the diffusion

procedure is finished. The subpixel anisotropic

diffusion method is a computational intense

algorithm. In order to increase the computation

speed, we employ GPU to accelerate the algorithm,

because it has good characteristics to be ported on

GPU: every pixel computation needs a regular

analysis of same type of zones over the image

input in each iteration. The proposed method was

tested on a variety of images, and the experimental

results show it can improve the computation speed

and achieve better noise removal performance at

the same time.

This paper is organized as follows. In Section

2, the subpixel anisotropic diffusion (SAD) is

introduced and GPGPU implementation of the

SAD method is given. The experimental results are

provided and discussed in Section 3. Finally, the

paper is concluded in Section 4.

2. Proposed method

Subpixel anisotropic diffusion: The subpixel

algorithm considers the pixels between the integer

grids. The subpixel intensity values ,Si h jI  , ,Si h jI  ,

, Si j hI  and , Si j hI  are computed using a linear

interpolation based on the intensity of pixels

,i jP at the coordinates (,)i j and its neighbors.

The diffusion equation is rewritten using the

subpixel difference
S I as [9]:

1

, , , ,

t t t t

i j i j S Sx Sx i j S Sy Sy i jI I g g       (1)

, , ,

, 2

2
S S

t t t

Sx i h j Sx i h j Sx i jt

Sx Sx i j

S

g g g
g

h

  
  (2)

, , ,

, 2

2
S S

t t t

Sy i j h Sy i j h Sy i jt

Sy Sy i j

S

g g g
g

h

  
  (3)

2(| |)Sx S Sxg c I I   (4)
2(| |)Sy S Syg c I I   (5)

2

, , ,(| |)t t t

Sx i j S i j Sx i jg c I I   (6)

2

, , ,(| |)t t t

Sy i j S i j Sy i jg c I I   (7)

, , , , ,

, , , 2

4
s s s s

t t t t t

i h j i h j i j h i j h i jt t t

S i j Sx i j Sy i j

s

I I I I I
I I I

h

      
    (8)

, , ,

, 2

2
s s

t t t

i h j i h j i jt

Sx i j

s

I I I
I

h

  
  (9)

, , ,

, 2

2
s s

t t t

i j h i j h i jt

Sy i j

s

I I I
I

h

  
  (10)

where ()S  is the subpixl difference function,

()Sx  and ()Sy  are the partial differences

along x and y directions.
sh is the step size,

which can be a fractional or integer number. ()c 

is a coefficient function.

2.2 GPU implementation

The GPU based computation is an emerging

GPU Accelerated Image Noise Removal Approach Based on Subpixel Anisotropic Diffusion

25

technology for these years. Due to the high

complexity of the SAD algorithm and the recent

use of GPUs for massively parallel computation,

we decided to use the AMD HD 6850, OpenCL

version 1.2 to run our GPU based algorithm. The

large computational burden is mainly due to the

computation of convolution for each pixel which is

used to calculate the subpixel step.

Through OpenCL, we can define functions,

called kernels that are executed in parallel by N

different OpenCL threads. These threads can be

grouped into blocks. The blocks can be categorized

into 1D, 2D or 3D abstract shape. As the filtered

images are 2D images, we chose 2D blocks for our

implementation. The size of the blocks is an

important parameter to computational time.

Empirically, the fastest results were achieved

partitioning each block into a 16x16 set of threads.

OpenCL architecture has fast local memory called

local memory. The access to the local memory is

faster than the GPU global memory. For the HD

6850 there are 16,384 bytes/block which are

simultaneously used by shared memory and

registers. Because of this limitation, we should

select the most important data to copy into shared

memory.

To implement the GPU-based implementation,

the first thing to be considered is memory transfer.

As memory transfer from host to device is

expensive, the best implementation is transferring

the whole data to GPU before start of computation

and transferring back after filtering to save

memory cycles. In the filtering stage, different

pixels can be simultaneously filtered as there is no

dependency between any two pixels. In our

implementation, we have divided the processing

into three parts according the algorithm steps in

above section. Figure 1 is a flowchart for the

proposed method, and it shows the processing on

the GPU including data transfer.

After moving all the projection data to GPU

memory, separate kernel calls are launched to

execute these three steps. The kernel calls are

issued in a non-blocking manner but they are

dependent on finishing of the previous kernel. The

whole algorithm can be summarized as follows:

Step 1: Load the input image into the host

memory and transfer the data to the device side

Step 2: Calculate subpixel difference of t

S I

at time step t

This kernel is the implementation of the step 1.

As there are 8 different masks for convolution

representing 8 different derivative directions. In

this way, we have to implement the kernel 8 times

with 8 different input masks. The mask size is of

3x3. The approach to implement convolution in

parallel is to load a block of the image into a

shared memory array, do a point-wise

multiplication of a filter-size portion of the block,

and then write this sum into the output image in

device memory. Each thread block processes one

block in the image. Each thread generates a single

output pixel.

For any reasonable filter kernel size, the pixels

at the edge of the shared memory array will

depend on pixels not in shared memory. Around

the image block within a thread block, there is an

apron of pixels of the width of the kernel radius

that is required in order to filter the image block.

Thus, each thread block must load the pixels to be

filtered and the apron pixels into shared memory.

Note: The apron of one block overlaps with

adjacent blocks. The aprons of the blocks on the

edges of the image extend outside the image –

these pixels can either be clamped to the intensity

of pixels at the image edge, or they can be set to

zero.

a. Set the block size equals to best suggested

number of 16x16 and global size with the

number of threads equal to the number of

pixels of input image.

b. Load the pixel value of each pixel from

global memory to local memory of each

thread.

c. Add apron pixels to four sides of each block.

d. Calculate the point-wise multiplication and

store the sum into the global memory.

Step 3: Compute
t

Sxg and t

Syg

 This step is calculating the equation (4) and

(5). The nature of the computation is suitable for

spread the work of each pixel to each thread

a. Set the global size with the number of

threads equal to the number of pixels of

input image.

b. Calculate the diffusion coefficient by

Yanhui Guo and Wei Wei

26

computation the transfer function,

multiplication with rate parameter and

subpixel matrix.

Step 4: Calculate subpixel differences t

Sx Sxg and
t

Sy Syg .

This step is calculating the subpixel of
Sxg

and Syg . It also uses the parallel implementation

of convolution. The detailed steps are the same

with Step (2).

Step 5: Update the image according to the Eq. (1)

This step is spread the update calculation of

each pixel to each thread.

Fig. 1 Flow chart of the GPU implementation

3. Experimental Results

In this section, we present the results obtained

by applying our proposed novel subpixel

difference model for image denoising. We test the

proposed method on same images in [8] having

Gaussian noise with different standard deviations.

The denoising performance is evaluated

quantitatively using signal-to-noise ratio (SNR).

The parameters are taken as the same parameters

in [8].

We start with a serial CPU implementation.

Then we parallelize the implementation by using

OpenCL GPU. The CPU machine used in the

experiments is an Intel i7-3820 3.60 GHz with

Hyper thread and 16 GB of memory. The GPU is

AMD HD 6850 that has 960 stream processors

with 1 GB memory. The core clock is 775 MHz.

The “Lena” image is used to demonstrate the

performance in this experiment. We scale it to

different size to explore the computation different

between CPU and GPU parallel implementation.

The iteration number of our proposed method for

this test is 100. 5 repeated runs are made to obtain

the average running time for each test. In Table 1,

different image size are tested to get the

corresponding CPU and GPU running time.

Analysis about the relationship between running

time (as well as speedup) and the size of the image

was conducted. As seen from Figure 2, the speedup

of the GPU implementation has been affected a lot

by the size of the images. Figure 2 shows the

speedup of GPU, and the accelerations were

increased as the size of the image increased. This

is because when the size of the image is increased,

it directly leads to the increase of utilization of

GPU cores, which greatly enhance the speedup

performance of GPU.

0 500 1000 1500 2000

25

30

35

40

45

Image size

S
p
e
e
d
u
p

Fig. 2 Speedup of the GPU parallel implementation

The experimental results show that the

proposed algorithm achieved better performance

with same denoising results and less time costs.

For the images with large size, our proposed

method demonstrates the superiority to the old

method without GPU algorithm. The GPU

acceleration improved the algorithm more suitable

GPU Accelerated Image Noise Removal Approach Based on Subpixel Anisotropic Diffusion

27

for real time application.

Tab. 1 Average running time of GPU parallel

implementation
Image
size

256x256 512x512 1024x1024 2048x2048

CPU

time (s)
85.442 181.512 375.162 780.438

GPU
time (s)

3.279 6.337 11.551 19.02

4. Conclusions

A denoising technique is improved using the

subpixel anisotropic diffusion and GPU technology.

The subpixel difference is defined, and the

diffusion equation is defined using the subpixel

difference. The noise is removed using diffusion

procedure which is accelerated using GPU. A

variety of images having noise with different levels

are employed to test the performance of the

proposed method. The experimental results show

that the proposed algorithm yields same

performance with the previous subpixel method

with less computing time. The GPU acceleration

improved the proposed algorithm more suitable for

real time application in image processing

5. References

1. A. Buades, B. Coll and J. M. Morel (2005). A

review of image denoising algorithms, with a new

one, Multiscale Modeling & Simulation, vol.4, pp.

490-530.

2. Ponomaryov, Volodymyr I.; Gallegos-Funes,

Francisco J.; Rosales-Silva, Alberto. (2005)

Real-Time Color Imaging Based on RM-Filters for

Impulsive Noise Reduction, Journal of Imaging

Science and Technology, Volume 49, Number 3, pp.

205-219

3. Han Shi, Jiaxin Shao, Dong Du, Baohua Chang,

and Huayong Cao. (2011) “Noise reduction of the

real-time X-ray image based on modified adaptive

local noise reduction filter”, the 4th International

Congress on Image and Signal Processing, Vol. 4,

pp. 1945–1949.

4. Fernanda Palhano Xavier de Fontes, Guillermo

Andrade Barroso, Pierrick Coupe, and Pierre

Hellier. (2011) Real time ultrasound image

denoising. Journal of Real-Time Image Processing,

Vol. 6, No. 1, pp. 15-22.

5. Bart Goossens, Hiêp Luong, Jan Aelterman,

Aleksandra Pižurica, and Wilfried Philips. (2010) A

GPU-Accelerated Real-Time NLMeans Algorithm

for Denoising Color Video Sequences”, Advanced

Concepts for Intelligent Vision Systems, Lecture

Notes in Computer Science, Vol. 6475, pp 46-57.

6. M. Broxvall, K. Emilsson, and P. Thunberg. (2012)

Fast GPU Based Adaptive Filtering of 4D

Echocardiography. IEEE Transactions on Medical

Imaging, Vol. 31 , No. 6, pp. 1165 – 1172.

7. Wei Wei, Qian Du, and Nicolas H. Younan. (2012)

Fast supervised hyperspectral band selection using

graphics processing units. Journal of Applied

Remote Sensing, vol. 6.

8. P. Perona and J. Malik. (1990) Scale-space and

edge detection using anisotropic diffusion. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol.12, pp. 629-639.

9. Yanhui Guo and Heng-Da Cheng. (2012) Image

noise removal approach based on subpixel

anisotropic diffusion. J. Electron. Imaging. Vol.

21, No. 3.

10. W. Wei, Q. Du, and N. H. Younan. (2012)

Optimized spectral transformation for detection and

classification of buried radioactive materials. IEEE

Transactions on Nuclear Science, vol. 59.

11. Q. Du, W. Wei, D. May, and N. H. Younan. (2010)

Noise-adjusted principal component analysis for

buried radioactive target detection and

classification. IEEE Transactions on Nuclear

Science, vol. 57.

12. W. Wei, Q. Du, and N. H. Younan. (2010) Particle

swarm optimization based spectral transformation

for radioactive material detection and classification.

Proceedings of IEEE Conference on Computational

Intelligence for Measurement Systems and

Applications, Taranto, Italy.

