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Abstract 

Denoising is the critical step in digital imaging. This paper improved an image removal algorithm based on subpixel 

anisotropic diffusion and GPU accelerate technique. The subpixel difference of an image is explored into the 

diffusion equation (DE). The DE is solved numerically in the subpixel domain and accelerated by using GPU 

processing. A GPU implementation of the algorithm is presented to alleviate the time costs. The noise is removed 

using the diffusion procedure. The experimental results show that the proposed algorithm achieved better 

performance with same denoising results with less time consumptions the GPU acceleration improved the algorithm 

more suitable for real time application.  
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1. Introduction 

Noise occurs frequently in imaging systems 

such as image acquisition and transmission process, 

and it is necessary to remove noise and restore the 

corruption in image [1]. Image denoising is still a 

challenging problem for the dilemma removing 

noise and introducing new artifacts and blurring 

[1].  

Image denosing technique has been applied to 

real-time application like clinical medical imaging 

and robot navigation. To fully benefit from this 

real-time capability, image processing methods 

also need to be implemented in real-time, which is 

also crucial for real-time applications. Many 

methods were proposed to remove the noise in the 

real time. A class of multichannel filters, vector 

rank M-type K-nearest neighbor (VRMKNNF) 

filters were proposed to obtain the balance 

between noise suppression, and edge and fine 

detail preservation [2]. They combined 

RM-estimators with different influence functions. 

An adaptive non parametric approach determined 

the functional form of the density probability of 

noise from data into the sliding filtering window. 

The filters were implemented on the DSP 

demonstrating that their potential ability to a 

real-time solution to quality video transmission. 

The paper [3] analyzed the relationship between 

noise variance and gray scale value in real-time 

X-ray images. Then an adaptive local noise 

reduction filter was proposed to filter the noise in 

image.  

Merging technology of general purpose 

graphics processing unit (GPGPU) application 

brings the possibility of real-time processing 

[5,6,7,10,11,12], such as image denosing. The 

paper [4] presented a modified version of the 

NL-means method for real-time denoising of 

ultrasound images. The NL-means method 

incorporates an ultrasound dedicated noise model, 

and is implemented using a GPU. The paper [5] 

incorporated both temporal information and image 

information into the NLMeans algorithm for 

denoising. The NLMeans algorithm was mapped 

onto parallel computing architectures and 

implemented using the GPU. The denoising filter 

can process video sequences images in real-time 

on a mid-range GPU. The paper [6] performed the 

multidimensional adaptive filtering using GPUs in 

echocardiography images. Filtering was done 

using multiple kernels implemented in OpenCL 
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(open computing language) working on multiple 

subsets of the data. The paper [7,10,12] employed 

particle swarm optimization (PSO) for solving the 

importation band selection problem in 

hyperspectral image processing area. Due to the 

nature of PSO as an evolutionary algorithm, large 

amount of computation is needed to search the 

optimal. A parallel algorithm running on GPU is 

proposed and make the algorithm could return 

real-time results.) 

Modern graphic cards have high computing 

and programming capabilities for a reasonable 

monetary cost. The latest generation of AMD 

graphics card has 2046 Stream Processors that can 

work in parallel with wide band memory. The 

OpenCL framework allows to program graphics 

cards to solve intensive computation problems 

with a high-level language. The affordable GPU 

push scientists to utilize the general purpose 

programming on graphic processor unit for the 

attempt of real-time computation problems.  

A few noise removal algorithms have been 

proposed based on anisotropic diffusion [8]. 

Previously, we extended the traditional anisotropic 

diffusion filtering method by using subpixel 

technique. Because of the high computation 

consumption, it is hard to be employed in the real 

time image noise removal. 

In this paper, we improve the subpixel 

anisotropic diffusion denoising algorithm [9] by 

acceleration using a GPU. The subpixel difference 

is defined in the image and employed to solve the 

diffusion equation for noise removal. The diffusion 

equation is solved numerically using an iterative 

approach. The noise is removed after the diffusion 

procedure is finished. The subpixel anisotropic 

diffusion method is a computational intense 

algorithm. In order to increase the computation 

speed, we employ GPU to accelerate the algorithm, 

because it has good characteristics to be ported on 

GPU: every pixel computation needs a regular 

analysis of same type of zones over the image 

input in each iteration. The proposed method was 

tested on a variety of images, and the experimental 

results show it can improve the computation speed 

and achieve better noise removal performance at 

the same time. 

This paper is organized as follows. In Section 

2, the subpixel anisotropic diffusion (SAD) is 

introduced and GPGPU implementation of the 

SAD method is given. The experimental results are 

provided and discussed in Section 3. Finally, the 

paper is concluded in Section 4. 

 

2. Proposed method 

 

Subpixel anisotropic diffusion: The subpixel 

algorithm considers the pixels between the integer 

grids. The subpixel intensity values ,Si h jI  , ,Si h jI  , 

, Si j hI   and , Si j hI   are computed using a linear 

interpolation based on the intensity of  pixels 

,i jP  at the coordinates ( , )i j  and its neighbors. 

The diffusion equation is rewritten using the 

subpixel difference 
S I as [9]: 
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where ( )S   is the subpixl difference function, 

( )Sx   and ( )Sy   are the partial differences 

along x and y directions. 
sh  is the step size, 

which can be a fractional or integer number. ( )c   

is a coefficient function. 

2.2 GPU implementation 

The GPU based computation is an emerging 
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technology for these years. Due to the high 

complexity of the SAD algorithm and the recent 

use of GPUs for massively parallel computation, 

we decided to use the AMD HD 6850, OpenCL 

version 1.2 to run our GPU based algorithm. The 

large computational burden is mainly due to the 

computation of convolution for each pixel which is 

used to calculate the subpixel step.  

Through OpenCL, we can define functions, 

called kernels that are executed in parallel by N 

different OpenCL threads. These threads can be 

grouped into blocks. The blocks can be categorized 

into 1D, 2D or 3D abstract shape. As the filtered 

images are 2D images, we chose 2D blocks for our 

implementation. The size of the blocks is an 

important parameter to computational time. 

Empirically, the fastest results were achieved 

partitioning each block into a 16x16 set of threads. 

OpenCL architecture has fast local memory called 

local memory. The access to the local memory is 

faster than the GPU global memory. For the HD 

6850 there are 16,384 bytes/block which are 

simultaneously used by shared memory and 

registers. Because of this limitation, we should 

select the most important data to copy into shared 

memory. 

To implement the GPU-based implementation, 

the first thing to be considered is memory transfer. 

As memory transfer from host to device is 

expensive, the best implementation is transferring 

the whole data to GPU before start of computation 

and transferring back after filtering to save 

memory cycles. In the filtering stage, different 

pixels can be simultaneously filtered as there is no 

dependency between any two pixels. In our 

implementation, we have divided the processing 

into three parts according the algorithm steps in 

above section. Figure 1 is a flowchart for the 

proposed method, and it shows the processing on 

the GPU including data transfer. 

After moving all the projection data to GPU 

memory, separate kernel calls are launched to 

execute these three steps. The kernel calls are 

issued in a non-blocking manner but they are 

dependent on finishing of the previous kernel. The 

whole algorithm can be summarized as follows: 

Step 1: Load the input image into the host 

memory and transfer the data to the device side 

Step 2: Calculate subpixel difference of t

S I  

at time step t 

This kernel is the implementation of the step 1. 

As there are 8 different masks for convolution 

representing 8 different derivative directions. In 

this way, we have to implement the kernel 8 times 

with 8 different input masks. The mask size is of 

3x3. The approach to implement convolution in 

parallel is to load a block of the image into a 

shared memory array, do a point-wise 

multiplication of a filter-size portion of the block, 

and then write this sum into the output image in 

device memory. Each thread block processes one 

block in the image. Each thread generates a single 

output pixel.  

For any reasonable filter kernel size, the pixels 

at the edge of the shared memory array will 

depend on pixels not in shared memory. Around 

the image block within a thread block, there is an 

apron of pixels of the width of the kernel radius 

that is required in order to filter the image block. 

Thus, each thread block must load the pixels to be 

filtered and the apron pixels into shared memory. 

Note: The apron of one block overlaps with 

adjacent blocks. The aprons of the blocks on the 

edges of the image extend outside the image – 

these pixels can either be clamped to the intensity 

of pixels at the image edge, or they can be set to 

zero.  

a. Set the block size equals to best suggested 

number of 16x16 and global size with the 

number of threads equal to the number of 

pixels of input image. 

b. Load the pixel value of each pixel from 

global memory to local memory of each 

thread. 

c. Add apron pixels to four sides of each block. 

d. Calculate the point-wise multiplication and 

store the sum into the global memory. 

Step 3: Compute 
t

Sxg  and t

Syg   

    This step is calculating the equation (4) and 

(5). The nature of the computation is suitable for 

spread the work of each pixel to each thread 

a. Set the global size with the number of 

threads equal to the number of pixels of 

input image. 

b. Calculate the diffusion coefficient by 
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computation the transfer function, 

multiplication with rate parameter and 

subpixel matrix. 

Step 4: Calculate subpixel differences t

Sx Sxg and 
t

Sy Syg . 

This step is calculating the subpixel of 
Sxg  

and Syg . It also uses the parallel implementation 

of convolution. The detailed steps are the same 

with Step (2).  

Step 5: Update the image according to the Eq. (1)  

This step is spread the update calculation of 

each pixel to each thread. 

 

 
 

Fig. 1 Flow chart of the GPU implementation 

3. Experimental Results 
 

In this section, we present the results obtained 

by applying our proposed novel subpixel 

difference model for image denoising. We test the 

proposed method on same images in [8] having 

Gaussian noise with different standard deviations. 

The denoising performance is evaluated 

quantitatively using signal-to-noise ratio (SNR). 

The parameters are taken as the same parameters 

in [8]. 

We start with a serial CPU implementation. 

Then we parallelize the implementation by using 

OpenCL GPU. The CPU machine used in the 

experiments is an Intel i7-3820 3.60 GHz with 

Hyper thread and 16 GB of memory. The GPU is 

AMD HD 6850 that has 960 stream processors 

with 1 GB memory. The core clock is 775 MHz.  

The “Lena” image is used to demonstrate the 

performance in this experiment. We scale it to 

different size to explore the computation different 

between CPU and GPU parallel implementation. 

The iteration number of our proposed method for 

this test is 100. 5 repeated runs are made to obtain 

the average running time for each test. In Table 1, 

different image size are tested to get the 

corresponding CPU and GPU running time. 

Analysis about the relationship between running 

time (as well as speedup) and the size of the image 

was conducted. As seen from Figure 2, the speedup 

of the GPU implementation has been affected a lot 

by the size of the images. Figure 2 shows the 

speedup of GPU, and the accelerations were 

increased as the size of the image increased. This 

is because when the size of the image is increased, 

it directly leads to the increase of utilization of 

GPU cores, which greatly enhance the speedup 

performance of GPU. 
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Fig. 2 Speedup of the GPU parallel implementation 

 

The experimental results show that the 

proposed algorithm achieved better performance 

with same denoising results and less time costs. 

For the images with large size, our proposed 

method demonstrates the superiority to the old 

method without GPU algorithm. The GPU 

acceleration improved the algorithm more suitable 
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for real time application.  

 
Tab. 1 Average running time of GPU parallel 

implementation 
Image 
size 

256x256 512x512 1024x1024 2048x2048 

CPU 

time (s) 
85.442 181.512 375.162 780.438 

GPU 
time (s) 

3.279 6.337 11.551 19.02 

 

4. Conclusions 

 

A denoising technique is improved using the 

subpixel anisotropic diffusion and GPU technology. 

The subpixel difference is defined, and the 

diffusion equation is defined using the subpixel 

difference. The noise is removed using diffusion 

procedure which is accelerated using GPU. A 

variety of images having noise with different levels 

are employed to test the performance of the 

proposed method. The experimental results show 

that the proposed algorithm yields same 

performance with the previous subpixel method 

with less computing time. The GPU acceleration 

improved the proposed algorithm more suitable for 

real time application in image processing 
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