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Abstract 

In this study, the support vector machines (SVMs) have been used for the estimation of monthly mean ambient 

temperature in Elazığ (38.41˚ N, 39.14˚ E), Turkey. The model was trained and tested for four years (2002-2005) 

of some monthly mean meteorological values. Inputs of the network were relative humidity, local pressure, 

vapour pressure, and wind velocity monthly values and the output was the monthly mean outdoor temperature. 

The efficiency of the proposed method was demonstrated by using the 4-fold cross validation test. The proposed 

SVM model produced the most accurate results for partition 4 that’s why the minimum root-mean squared 

(RMS), coefficient of variation (COV) and mean error function (MEF) and maximum coefficient of multiple 

determinations (R2) values were obtained for these partitions. It is found that RMS value is 0.7691, the R2 value 

is 0.9980, COV value is 5.5586, and MEF value is 1.6339 for partition 4. These results testify that the SVM can 

be a valuable tool for monthly ambient temperature prediction in particular and other meteorological predictions 

in general. 

Keywords: Ambient temperature, estimation, meteorology, support vector machine, Elazığ  

Aylık Ortalama Dış Hava Sıcaklığının Destek Vektör Makineleri ile 

Tahmini 
 

Özet 

Bu çalışmada, Elazığ ilinin aylık ortalama dış hava sıcaklığının tahmini için destek vektör makineleri (support 

vector machines (SVMs)) yöntemi kullanıldı. Model, dört yıllık (2002-2005) bazı aylık ortalama meteorolojik 

değerler için eğitildi ve test edildi. Modelin giriş değerleri bağıl nem, yerel basınç, buhar basıncı ve rüzgar 

hızlarının aylık değerleri iken çıkış değeri ise aylık ortalama dış hava sıcaklığıdır. Önerilen metodun verimi, 4-

katlı (kısımlı) çapraz geçerlilik testi kullanılarak gösterildi. Bu kısımlar içinde minimum ortalama karekök 

(RMS), değişim katsayısı (COV) ve ortalama hata fonksiyonu (MEF) değerleri ile maksimum çoklu saptama 

katsayısı (R2) değerlerine sahip olan 4. kısım çapraz geçerlilik için en doğru sonuçları veren SVM modeli 

kuruldu. 4. kısım için sırasıyla RMS, R2, COV ve MEF değerleri 0.7691, 0.9980, 5.5586 ve 1.6339 olarak 

bulundu. Bu sonuçlar, destek vektör makinesinin (SVM) kısmi olarak aylık ortalama dış hava sıcaklık tahmini 

için genel olarak da başka meteorolojik tahminler için faydalı bir araç olabileceğini kanıtlamaktadır. 

Anahtar kelimler: Dış hava sıcaklığı, tahmin, meteoroloji, destek vektör makinesi, Elazığ         

 

1. Introduction 

 

Estimation of meteorological data plays a 

very important role in the modern Heating, 

Ventilation and Air Conditioning (HVAC) 

systems for guaranteeing the thermal comfort, 

energy saving and reliability. The knowledge 

relating to the climatic parameters like monthly 

or hourly mean values of relative humidity, 

pressure, rainfall, visibility, ambient temperature 

and wind velocity are valuable in the thermal 

analysis of building, heating and cooling load 

calculations to decide the accurate sizing of an 

air-conditioning system for thermal comfort and 

in the performance assessment and optimum 

design of numerous solar energy systems [1, 2]. 

Dombaycı and Çivril [2] used the artificial 

neural network for the estimation of hourly 

ambient temperature in Denizli, Turkey. The 

training and test results show that there was a 

good correspondence between the predicted and 

measured values. Accurate estimation of 



Estimation of Monthly Mean Ambient Temperatures with Support Vector Machines 

 2 

monthly or hourly air temperatures has a number 

of vital applications in the industry, agriculture 

and the environment [3]. For instance, the 

information of variation in ambient temperature 

has a significant value in predicting the solar 

radiation [4-6], hourly energy consumption and 

cooling load estimation in buildings [7-8] and 

room air temperature prediction [2, 9].  

Superior generalization performance is 

obtained from SVM regression and more 

importantly, the performance does not depend on 

the dimensionality of the input data. The SVM is 

derived from the statistical learning theory [10-

11], and is a two-layer network with the inputs 

transformed by the kernels corresponding to a 

subset of the input data. The output of the SVM 

is a linear function of the weights and the 

kernels. The weights and the structure of the 

SVM are obtained simultaneously by constrained 

minimization for a given precision level of the 

modelling error. In the constrained minimization, 

kernels corresponding to data points that are 

within the error bounds are removed. The 

support vector regression (SVR) is formed by the 

retained kernels [11-13], and the data points 

associated with the retained kernels are referred 

to as the support vectors (SVs). Since the kernels 

of the SVR are similar to the basis functions of 

the radial basis function (RBF) network with 

scatter partitioning [11, 14], it is shown here that 

the SVR can be reformulated as a RBF network 

with basis functions normalized such that they 

form a partition of unity [15, 16]. SVM 

implement classifiers of an adjustable 

complexity, controlling the latter for optimal 

generalization ability i.e. the performance for the 

future unknown samples. Applicational aspects 

of SVMs had been shown in Ref. [17]. 

In this study, an SVM model was developed 

in order to use to estimate the monthly ambient 

temperature in Elazığ (38.41˚ N, 39.14˚ E), 

Turkey. The model was trained and tested with 

four years (2002-2005) of monthly mean 

temperature values obtained from Turkish State 

Meteorological Service. The performance of the 

proposed mean temperature prediction 

methodology was evaluated by using several 

statistical validation parameters. Moreover, we 

employed the cross-validation test for measure 

the robustness of the proposed methodology. We 

used four-fold cross validation test and we 

calculate the performance evaluation methods 

for each partition 

 

2. Support Vector Machine (SVM) 

 

Assume a set of training 

data )},(),....,,{( 11  yxyx , where each 

n

i Rx   denotes the input space of the sample 

and has a corresponding target value Ryi   for 

i=1,…, l where l corresponds to the size of the 

training data [10, 18]. The consideration of the 

regression problem is to determine a function 

that can approximate future values accurately. 

The generic SVM estimating function takes the 

form: 
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where
nRw  , Rb  and denotes a non-

linear transformation from 
nR  to high 

dimensional space. The goal is to find the value 

of w  and b  such that values of x  can be 

determined by minimizing the regression risk: 
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where )(  is a cost function,C is a 

regularization constant and vector w  can be 

written in terms of data points as: 
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By substituting Equation (3) into Equation 

(1), the generic Equation can be rewritten as: 
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In Equation (4) the dot-product can be 

replaced with function ),( xxk i , known as the 

kernel function. Kernel functions enable dot 

product to be performed in high-dimensional 

feature space using low dimensional space data 

input without knowing the transformation . All 
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kernel functions must satisfy Mercer’s condition 

that corresponds to the inner product of some 

feature space. The RBF is commonly used as the 

kernel for regression and it is defined by [10, 

18]: 

 

 2
exp),( ii xxxxk   .              (5) 

The -insensitive loss function is the most 

widely used cost function. The function is 

denoted as following: 
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By solving the quadratic optimization 

problem in Equation (7), the regression risk in 

Equation (2) and the -insensitive loss function 

Equation (6) can be minimized: 
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The Lagrange multipliers
i and

*

i , can be 

used to represent solutions to the above quadratic 

problem that act as forces pushing predictions 

towards target value iy . Only the non-zero 

values of the Lagrange multipliers in Equation 

(7) are useful in estimation the regression line 

and are known as support vectors. For all points 

inside the -tube, the Lagrange multipliers equal 

to zero do not contribute to the regression 

function. The constant C introduced in Equation 

(2) determines penalties to estimation errors [10, 

18].  

Now, the value of w  in terms of the 

Lagrange multipliers has to be solved. For the 

variable b , it can be computed by applying 

Karush-Kuhn-Tucker (KKT) conditions which, 

in this case, implies that the product of the 

Lagrange multipliers and constrains has to equal 

zero: 

0)),((

0)),((

**




bxwy

bxwy

iiii

iiii




,                (8) 

 

and 

 

0)(

0)(

**




ii

ii

C

C




 ,                                 (9) 

 

where
i
and *

i
are slack variables used to 

measure errors outside the  -tube. Since 

0,
*
ii   and 0

*
i  for bCi ),,0(

*
 can be 

computed as follows: 
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Putting it all together, we can use SVM and 

SVR without knowing the transformation [12, 

18]. 

 

 

 

3. SVMs for Predicting the Mean 

Temperature  

 

The dataset used in this study was the 

monthly mean temperature values belonging the 

years 2002 through 2005, measured by Turkish 

State Meteorological Service for Elazığ. The 

SVM based automatic mean temperature 

prediction model has 4 inputs and one output. 

(SVM) have been introduced within the context 

of statistical learning theory and structural risk 

minimization so it is accepted to be a powerful 

methodology and it is used in a wide range of 

applications such as classification, regression, 

and estimation which has also led to many other 

recent developments in kernel based learning 

methods in general [19].  

The key to obtaining a highly accurate SVM 

estimation is to choose a proper set of 

regularization parameter C, and kernel 

parameters. For obtaining the optimum SVM 

parameters, such as regularization parameter, 

and optimum kernel function and parameters 

several test have been carried out with different 

kernel functions. The constant ε is used to find 

the target function that not only lies as close as 

possible to the border of the -tube but also is as 

flat as possible. The larger ε is, the flatter the 

function will be, and the fewer support vectors 

will be. On the other hand, however, a larger ε 

leads to larger estimation errors. Therefore, the 

value of ε ought to be determined in a way that it 

is proportional to the input noise level σ. On the 

other hand, a large C assigns higher penalties to 
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errors so that the regression is trained to 

minimize error with lower generalization while a 

small C assigns fewer penalties to errors; this 

allows the minimization of margin with errors, 

thus higher generalization ability. If C goes to 

infinitely large, SVR would not allow the 

occurrence of any error and result in a complex 

model, whereas when C goes to zero, the result 

would tolerate a large amount of errors and the 

model would be less complex.  

 For obtaining the optimum parameters a 

grid search algorithm was employed in the 

parameter plane for RBF kernel function where 

minimum RMS value is determined. The RMS 

parameter is defined as following; 

n

ty
RMS

n

m
mmeampre 


 1

2
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        (11) 

Moreover, several statistical methods, the 

coefficient of multiple determinations (R2) and 

the coefficient of variation (cov) were used to 

compare predicted and actual values for 

computing the model validation. The R2, cov and 

mean error function (MEF) parameters are 

denoted at Eq. (12 ), Eq. (13) and Eq. (14) 

respectively; 
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where n is the number of data patterns in the 

independent data set, m,prey  indicates the 

predicted, m,meat is the measured value of one 

data point m, and m,meat is the mean value of all 

measured data points. 

The efficiency of the proposed method was 

demonstrated by using the 4-fold cross validation 

test. In 4-fold cross validation, the dataset is 

randomly split into four exclusive subsets 

(X1...X4) of equal size and the holdout method is 

repeated 4 times. These subsets contain 30, 30, 

30 and 30 samples (30+30+30+30=120) 

respectively. At each time, one of the four 

subsets is used as the test set and the other three 

subsets are put together to form a training set. 

The advantage of this method is that it is not 

important how the data is divided. Every data 

point appears in a test set only once, and appears 

in a training set 3 times. Therefore, the 

verification of the efficiency of the proposed 

method against to the over-learning problem 

should be demonstrated.  

 

4. Results and Discussions   

 

In order to obtain the optimal model 

parameters of the SVM, as we mentioned earlier, 

a grid search algorithm was employed in the 

parameter space. By using the RBF-kernel, after 

applying the grid search algorithm, the obtained 

optimum C and sigma value was 155 and 20 

respectively. The corresponding RMS, COV, R2 

and MEF values for these parameters are given 

in Table 1.  

 

Table 1. The statistical model validation results of 4-fold cross-validation 

 

Partition 

Statistical model validation parameters 

RMS R2 COV MEF 

1 1.1955 0.9935 10.0160 3.2129 

2 0.8076 0.9977 5.8623 1.8049 

3 0.7214 0.9979 5.7055 1.5263 

4 0.7691 0.9980 5.5586 1.6339 

Mean  0.8734 0.9968 6.7856 2.0445 

Std. Dev. 0.2176 0.0022 2.1572 0.7873 

 
One can observe several conclusions from 

Table 1. For example, the proposed SVM model 

produced the most accurate results for partition 4 

that’s why the minimum RMS, COV and MEF 
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and maximum R2 values were obtained for this 

partition. On the other hand, the worse results 

were obtained for partition 1. The COV value, 

which was 10.016, is the highest value in all 

COV values.  Furthermore, the COV, RMS and 

MEF values for partition 1 is bigger than the 

mean COV, RMS and MEF values. The related 

other actual and predicted temperature values 

were given in Fig.1 to Fig.6 respectively for each 

partition. 
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Fig. 1. The performance of the SVM on the partition 

1 
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Fig. 2. Actual vs predicted for SVM model at 

partition 1 
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Fig. 3. The performance of the SVM on the partition 

2 
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Fig. 4. Actual vs predicted for SVM model at 

partition 2 
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Fig. 5. The performance of the SVM on the partition 

3 
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Fig. 6. Actual vs predicted for SVM model at 

partition 3 

 

 

The actual and the predicted temperature 

values were given in Fig. 7 and Fig. 8, 

respectively for partition 4. 
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Fig. 7. The performance of the SVM on the partition 

4 

 

 

-5 0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30

Actual

P
re

d
ic

te
d

 
 Fig. 8. Actual vs predicted for SVM model at 

partition 4 

 

 
5. Conclusions  

 

In this study, a SVM based methodology 

was intended to adopt the prediction of monthly 

mean temperature values belonging the years 

2002 through 2005, measured by Turkish State 

Meteorological Service for Elazığ. The 

performance of the proposed mean temperature 

prediction methodology was evaluated by using 

several statistical validation parameters. 

Moreover, we employed the cross-validation test 

for measure the robustness of the proposed 

methodology. We used four-fold cross validation 

test and we calculate the performance evaluation 

methods for each partition and obtained the 
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mean 0.8734, 0.9968, 6.7856 and 2.0445 RMS, 

R2, COV and MEF values respectively. Future 

work will attempt to further improve the 

estimation accuracy by using dedicated seasonal 

models and including temperature data on a 

larger number of previous days. 

For obtaining the optimum SVM parameters 

a grid search algorithm was employed on 

parameter plane with RBF kernel function. We 

also used linear-kernel function but no 

performance improvement was obtained so we 

did not give the results here. From the above 

results, it can be concluded that SVM is a 

feasible method for prediction of the temperature 

values. The computation of SVM model is faster 

compared with other machine learning 

techniques, because there are fewer free 

parameters and only support vectors are used in 

the generalization process.  
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