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Abstract 

In this paper, we call a module M - TE-module if M has a - supplement in every torsion extension. We 

obtain various properties of these modules. We show that every direct summand of a - TE-module is a -
TE-module. We prove that the class of - TE-modules is closed under extension under a special condition. 

Keywords   Supplement, Torsion Extension,   Small 

Her Torsiyon Genişlemesinde Tümleyene Sahip Modüller 

Özet 

Bu makalede her torsiyon genişlemesinde bir - tümleyene sahip M modülüne - TE-modül diye 

isimlendirildi. Bu modüllerin birçok özellikleri elde edildi. - TE-modüllerin direk toplamlarının da bir -
TE-modül olduğu gösterildi. - TE-modül sınıfının özel bir koşulla genişlemeler altında kapalı olduğu 

ispatlandı.  

Anahtar Kelimeler   tümleyen, Torsiyon Genişlemesi,  Küçük 

1. Introduction 

Throughout this paper, R  will be a 

commutative domain and all modules will be 

unital left R modules, unless otherwise 

specified. Let M  be an R module. By 

N M we mean that N is a submodule of M . 

Recall that a submodule N of M is called small, 

denoted by N M , if N L M  for all 

proper submodules L  of M . By  Rad M , we 

denote the sum of all small submodule of M . 

Nevertheless a submodule L of M is said to be 

essential in M , denoted by L M , if 

0L K   for each nonzero submodule K of 

.M  A module M is said to be singular if 

N
M

L
  for some module N  and a submodule 

L of N with L N . 

Let M and N  be R modules. N is called 

an extension of M  in case M N . A module 

M is said to be injective if it is a direct 

summand of every extension of itself [5]. 

As a proper generalization of direct 

summands of a module, one can define 

supplement submodules. The module M is 

called supplemented, if every submodule N  of 

M  has a supplement in M , i.e. a submodule 

K  of M minimal with respect to M N K  . 

K  is a supplement of N  in M if and only if 

M N K   and N K K  [10]. 

As a generalization of small submodules, in 

[11]   small submodules were introduced by 

Zhou. According to [11], a submodule L  of M

is called   small in M , denoted by L M

, if for any submodule N  of M  with 
M

N
 

singular, M N L   implies that M N . The 

sum of all   small submodules of a module 

M is denoted by  M . It is easy to see that 

every small submodule of a module M  is  

small in M , so    Rad M M and
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   Rad M M  if M is singular. Also any 

non-singular semisimple submodule of M  is 

  small in M  and   small submodules of a 

singular module are small submodules. For more 

detailed discussion on   small submodules we 

refer to [11]. 

Let ,K N  be submodules of module .M N

is called a   supplement of K in ,M  if 

M N K   and N K N . A module M  

is called   supplemented if every submodule 

of M has a   supplement in M [3,9]. On the 

other hand, a submodule N  of M is said to 

have ample   supplements in M  if every 

submodule L  of M with M N L   contains 

a   supplement of N  in M . The module M
is called amply   supplemented if every 

submodule of M has ample   supplements in 

M [7]. 

Let M be a module and ,N K be any 

submodules of M with M N K  . If  

 N K N   then N is called a generalized 

  supplement of K in .M  Following [6], M
is called a generalized   supplemented module 

(or briefly  GS module) if every submodule 

N of M has a generalized   supplement in 

M . 

Modules that have supplements [ample 

supplements] in every module in which it is 

contained as a submodule have been studied in 

[12]. The structure of these modules have been 

determined over Dedekind domains. These 

modules are called modules with the property 

(E)[(EE)] in [12]. Such modules are also called 

supplementing modules in [1, p.255]. 

Let R  be a commutative domain and M be 

an R module. We denote by  T M , the set of 

all elements m of M for which there exists a 

non-zero element r of R  such that 0,rm   i.e.

  0.Ann m 
 

Then  ,T M
 

which is a 

submodule of ,M called the torsion submodule 

of .M  If  ,M T M
 
then M is said to be a 

torsion module and M is torsion-free precisely 

when   0T M  [5]. 

For modules M N over a commutative 

domain, we say that N  is a torsion extension of 

M if the factor module 
N

M
 is torsion. In a 

recent paper [2], modules that have a supplement 

in every torsion extension have been studied and 

these modules are called TE-modules. We call a 

module M  TE-module if M has a  
supplement in every torsion extension. In this 

paper, we study some basic properties of these 

modules. We 36how the class of  TE-

modules is closed under direct summands, 

extensions and finite direct sums.We also prove 

that every submodule of a module is a  TE-

module if and only if it has ample  
supplements in every torsion extension. 

 

2. Main Results 

 

Proposition 2.1. Every direct summand of a 

 TE-module is a  TE-module. 

Proof. Let M be a  TE-module and N be a 

direct summand of M . Then we  can write 

M N K  for some submodule K of M . For 

a torsion extension L  of N ,  we denote by T  

the external direct sum L K . Consider the 

canonical embedding : M T  . Then 

 M M is a  TE-module and we have 

   
T L K L

M M N 


   

is torsion. Since  M  is  TE-module, 

 M has a   supplement U in ,T  that is, 

 T M U 
 

and   .M U U 
 

For 

the projection :T L  , we have that 

 L U N  . Also since  er( ) ,K M 

we get 

     

   

( ) ( )M U M U

N U U

    

 

  

 
 

 
by [9, Lemma 1.3.(2)]. Hence,  U is a  

supplement of N in L .
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Proposition 2.2. Let M be a module. Then the 

following statements are equivalent: 

 (1) Every submodule of M is a  TE-

module. 

 (2) M has ample   supplements in every 

torsion extension. 

Proof.(1)⇒(2) Suppose that every submodule of 

M is a  TE-module. For a torsion extension 

N of M , let N M K   for some submodule 

K  of .N  Note that 
N K

M M K



 is torsion. 

Since M K  is a  TE-module, there exists 

a submodule L  of K  such that 

( )K M K L    and

( )M K L M L L    . Then we have

N M L  . Hence, L  is a   supplement of 

M  in N . 

(2)⇒(1) Let T  be any submodule of M . For a 

torsion extension N of T , let ,
M N

F
H




where the submodule H is the set of all elements 

 ,a a  of F with a T and let : M F 

via    ,0m m H   ,  : N F  via 

   0,n n H   for all ,  m M n N  . It is 

clear that   and   are monomorphisms. Thus 

we have the following pushout: 
1

2

i

i

T N

M F







 



 

where 1i  and 2i  are inclusion mappings. It is 

easy to prove that    Im Im .F   

Consider the epimorphism :
N

F
T

   defined 

by   ,m n H n T    for all

 ,m n H F  . Since 

   er ImK    

we have 

Im( )

N F

T 
  

is torsion. By the hypothesis,  Im  has ample 

  supplements in every torsion extension 

because  Im  is a monomorphism. Then, we 

can write 

   Im  and ImF V V V     

with  Im .V   Hence we obtain that 

      1 1 1Im .N V T V          

Suppose that    VXVT 11     for some 

submodule X  of  V1  with 
 

X

V1
 singular. 

Then we have 

       
    

   .Im

Im

1

11

XV

XVT

XVTVVV

















 

Now we define 
 

 X

V

X

V




 

1

:  by 

     XaXa    for all 

 1 V
a X

X

 

  . Note that   is an 

isomorphism. Hence 

 
 X

V

X

V






1

 

is singular. Since   ,Im VV   it follows 

that   VX  and so that  VX 1  . Thus 

   VVT 11     , that is,  V1  is a 

  supplement of T in .N  

Theorem 2.1. Let 0 0K M L     be a 

short exact sequence. If K and L  are  TE 

modules with L  torsion, so does .M  

Proof. Without loss of generality, we can 

assume that K M and N  be a torsion 

extension of M . For K M N  , we have  

N
N K

MM

K



 

is torsion and so 
N

K
 is a torsion extension of 

M

K
. Since 

M
L

K
  is a  TE-module, there 
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exists a submodule 
V

K
 of 

N

K
  such that 

N M V

K K K
   and 

M V V

K K



 and  so 

.N M V   Since 

,

V
V M V NK

M V M V M M

K


  

 
 

L  is torsion, we obtain that 
V

K
 is torsion. Then 

K  has a   supplement 1K  in V , i.e. 

1V K K   and 1K K K ₁  because K  is 

a  TE-module. Therefore 

1N M V M K    . Assume that 

XMN  for some submodule X of 1K . 

Then 
K

N

K

KX

K

M



 . Note that  

1 1

V
K K K V K

X KX X K X K

K


  

 

 
is singular. It follows from [4, Lemma 2.1], 

K

KX

K

V 
  and so KXV  . Since 1K  is 

 supplement  of K  in ,V by  [4, Lemma 2.1], 

by we have that .1KX  Thus 1K  is a  

supplement of M in .N Thus 1K  is a  

supplement of M in .N  

Corollary 2.1. Let 1M  and 2M be  TE-

modules with 2M  torsion and 1 2M M M  . 

Then M is a  TE-module. 

Proof. Let 1 2M M M  . By using the 

following short exact sequence 

1 20 0M M M     

we obtain that M is a  TE-module by 

Theorem 2.1. 

Lemma 2.1. Let M  be a  TE-module and 

N  be a torsion extension of M such that 

  0N  . Then M is a direct summand of N . 

Proof. By assumption, M has a   supplement 

in ,N  say K . Since M K K , it follows 

that   0M K K   . Hence N M K  . 

In [8], a ring R  is called a left V  

ring, if for any left R module M ,   0M  .  

Corollary 2.2. Let M be a  TE-module over 

a V   ring. Then M is a direct summand of 

any module N with 
N

M
 torsion. 
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