Turkish Journal of Science & Technology Volume 11 (2), 35-38, 2016

Modules That Have a δ -Supplement in Every Torsion Extension

Figen Eryılmaz

Ondokuz Mayıs University, Faculty of Education, Department of Mathematics Education, 55200 Atakum, Samsun-Turkey *figenyuzbasi@gmail.com

(Received: 15.03.2016; Accepted: 06.06.2016)

Abstract

In this paper, we call a module $M \ \delta$ - *TE-module* if M has a δ - supplement in every torsion extension. We obtain various properties of these modules. We show that every direct summand of a δ - TE-module is a δ - TE-module. We prove that the class of δ - TE-modules is closed under extension under a special condition.

Keywords δ – Supplement, Torsion Extension, δ – Small

Her Torsiyon Genişlemesinde Tümleyene Sahip Modüller

Özet

Bu makalede her torsiyon genişlemesinde bir δ -tümleyene sahip M modülüne δ -*TE-modül* diye isimlendirildi. Bu modüllerin birçok özellikleri elde edildi. δ -TE-modüllerin direk toplamlarının da bir δ -TE-modül olduğu gösterildi. δ -TE-modül sınıfının özel bir koşulla genişlemeler altında kapalı olduğu ispatlandı.

Anahtar Kelimeler δ – tümleyen, Torsiyon Genişlemesi, δ – Küçük

1. Introduction

Throughout this paper, R will be a commutative domain and all modules will be unital left R-modules, unless otherwise specified. Let M be an R-module. By $N \leq M$ we mean that N is a submodule of M. Recall that a submodule N of M is called *small*, denoted by $N \square M$, if $N + L \neq M$ for all proper submodules L of M. By Rad(M), we denote the sum of all small submodule of M. Nevertheless a submodule L of M is said to be *essential* in M, denoted by $L \triangleleft M$, if $L \cap K \neq 0$ for each nonzero submodule K of M. A module M is said to be *singular* if $M \cong \frac{N}{L}$ for some module N and a submodule L of N with $L \triangleleft N$.

Let M and N be R-modules. N is called an *extension* of M in case $M \subseteq N$. A module M is said to be *injective* if it is a direct summand of every extension of itself [5].

As a proper generalization of direct summands of a module, one can define supplement submodules. The module M is called *supplemented*, if every submodule N of M has a *supplement* in M, i.e. a submodule K of M minimal with respect to M = N + K. K is a supplement of N in M if and only if M = N + K and $N \cap K \square K$ [10].

As a generalization of small submodules, in [11] δ -small submodules were introduced by Zhou. According to [11], a submodule L of Mis called δ -small in M, denoted by $L\square_{\delta} M$, if for any submodule N of M with $\frac{M}{N}$ singular, M = N + L implies that M = N. The sum of all δ -small submodules of a module M is denoted by $\delta(M)$. It is easy to see that every small submodule of a module M is δ small in M, so $Rad(M) \subseteq \delta(M)$ and $Rad(M) = \delta(M)$ if M is singular. Also any non-singular semisimple submodule of M is δ -small in M and δ -small submodules of a singular module are small submodules. For more detailed discussion on δ -small submodules we refer to [11].

Let K, N be submodules of module M. Nis called a δ -supplement of K in M, if M = N + K and $N \cap K \square_{\delta} N$. A module Mis called δ -supplemented if every submodule of M has a δ -supplement in M [3,9]. On the other hand, a submodule N of M is said to have ample δ -supplements in M if every submodule L of M with M = N + L contains a δ -supplement of N in M. The module Mis called amply δ -supplemented if every submodule of M has ample δ -supplements in M [7].

Let M be a module and N, K be any submodules of M with M = N + K. If $N \cap K \le \delta(N)$ then N is called a *generalized* δ -supplement of K in M. Following [6], Mis called a *generalized* δ -supplemented module (or briefly δ -GS module) if every submodule N of M has a generalized δ -supplement in M.

Modules that have supplements [ample supplements] in every module in which it is contained as a submodule have been studied in [12]. The structure of these modules have been determined over Dedekind domains. These modules are called modules with *the property* (E)[(EE)] in [12]. Such modules are also called *supplementing* modules in [1, p.255].

Let *R* be a commutative domain and *M* be an *R*-module. We denote by T(M), the set of all elements *m* of *M* for which there exists a non-zero element *r* of *R* such that rm = 0, i.e. $Ann(m) \neq 0$. Then T(M), which is a submodule of *M*, called the torsion submodule of *M*. If M = T(M), then *M* is said to be a torsion module and M is torsion-free precisely when T(M) = 0 [5].

For modules $M \subseteq N$ over a commutative domain, we say that N is a *torsion extension* of M if the factor module $\frac{N}{M}$ is torsion. In a recent paper [2], modules that have a supplement in every torsion extension have been studied and these modules are called TE-modules. We call a module $M \ \delta - TE$ -module if M has a δ supplement in every torsion extension. In this paper, we study some basic properties of these modules. We 36how the class of δ -TEmodules is closed under direct summands, extensions and finite direct sums.We also prove that every submodule of a module is a δ -TEmodule if and only if it has ample δ supplements in every torsion extension.

2. Main Results

Proposition 2.1. Every direct summand of a δ – TE-module is a δ – TE-module.

Proof. Let M be a δ -TE-module and N be a direct summand of M. Then we can write $M = N \oplus K$ for some submodule K of M. For a torsion extension L of N, we denote by T the external direct sum $L \oplus K$. Consider the canonical embedding $\varphi: M \to T$. Then $M \cong \varphi(M)$ is a δ -TE-module and we have

$$\frac{T}{\varphi(M)} = \frac{L \oplus K}{\varphi(M)} \cong \frac{L}{N}$$

is torsion. Since $\varphi(M)$ is δ -TE-module, $\varphi(M)$ has a δ -supplement U in T, that is, $T = \varphi(M) + U$ and $\varphi(M) \cap U \square_{\delta} U$. For the projection $\pi: T \to L$, we have that $L = \pi(U) + N$. Also since $K \operatorname{er}(\pi) \subseteq \varphi(M)$, we get

$$\pi(\varphi(M) \cap U) \subseteq \pi(\varphi(M)) \cap \pi(U)$$
$$= N \cap \pi(U) \square_{\delta} \pi(U)$$

by [9, Lemma 1.3.(2)]. Hence, $\pi(U)$ is a δ -supplement of N in L.

Proposition 2.2. Let M be a module. Then the following statements are equivalent:

(1) Every submodule of M is a δ -TE-module.

(2) M has ample δ -supplements in every torsion extension.

Proof.(1) \Rightarrow (2) Suppose that every submodule of M is a δ -TE-module. For a torsion extension N of M, let N = M + K for some submodule K of N. Note that $\frac{N}{M} \cong \frac{K}{M \cap K}$ is torsion. Since $M \cap K$ is a δ -TE-module, there exists a submodule L of K such that $K = (M \cap K) + L$ and $(M \cap K) \cap L = M \cap L \square_{\delta} L$. Then we have N = M + L. Hence, L is a δ -supplement of M in N. (2) \Rightarrow (1) Let T be any submodule of M. For a torsion extension N of T, let $F = \frac{M \oplus N}{H}$, where the submodule H is the set of all elements (a,-a) of F with $a \in T$ and let $\alpha: M \to F$ $\beta: N \to F$ via via $\alpha(m) = (m, 0) + H$, $\beta(n) = (0, n) + H$ for all $m \in M$, $n \in N$. It is clear that α and β are monomorphisms. Thus we have the following pushout:

$$\begin{array}{cccc} T & \stackrel{i_1}{\longrightarrow} & N \\ \downarrow^{i_2} & & \downarrow^{\beta} \\ M & \stackrel{\alpha}{\longrightarrow} & F \end{array}$$

where i_1 and i_2 are inclusion mappings. It is easy to prove that $F = \text{Im}(\alpha) + \text{Im}(\beta)$. Consider the epimorphism $\gamma: F \to \frac{N}{T}$ defined by $\gamma((m,n)+H) = n+T$ for all $(m,n)+H \in F$. Since

$$K \operatorname{er}(\gamma) = \operatorname{Im}(\alpha)$$

we have

$$\frac{N}{T} \cong \frac{F}{\operatorname{Im}(\alpha)}$$

is torsion. By the hypothesis, $\operatorname{Im}(\alpha)$ has ample δ -supplements in every torsion extension because $\operatorname{Im}(\alpha)$ is a monomorphism. Then, we can write

$$F = \operatorname{Im}(\alpha) + V \text{ and } \operatorname{Im}(\alpha) \cap V \sqcup_{\delta} V$$

with $V \leq \operatorname{Im}(\beta)$. Hence we obtain that
 $N = \beta^{-1}(\operatorname{Im}(\alpha)) + \beta^{-1}(V) = T + \beta^{-1}(V)$.
Suppose that $T \cap \beta^{-1}(V) + X = \beta^{-1}(V)$ for some
submodule X of $\beta^{-1}(V)$ with $\frac{\beta^{-1}(V)}{X}$ singular.
Then we have
 $V = V \cap \operatorname{Im}(\beta) = \beta(\beta^{-1}(V)) = \beta(T \cap \beta^{-1}(V) + X)$
 $= \beta(T \cap \beta^{-1}(V)) + \beta(X)$
 $= \operatorname{Im}(\alpha) \cap V + \beta(X)$.

Now we define $\theta: \frac{\beta^{-1}(V)}{X} \to \frac{V}{\beta(X)}$ by

$$\theta(a+X) = \beta(a) + \beta(X)$$
 for all $\theta^{-1}(V)$

 $a + X \in \frac{p(v)}{X}$. Note that θ is an

isomorphism. Hence

$$\frac{\beta^{-1}(V)}{X} \cong \frac{V}{\beta(X)}$$

is singular. Since $\operatorname{Im}(\alpha) \cap V \ll_{\delta} V$, it follows that $\beta(X) = V$ and so that $X = \beta^{-1}(V)$. Thus $T \cap \beta^{-1}(V) \ll_{\delta} \beta^{-1}(V)$, that is, $\beta^{-1}(V)$ is a δ -supplement of *T* in *N*.

Theorem 2.1. Let $0 \rightarrow K \rightarrow M \rightarrow L \rightarrow 0$ be a short exact sequence. If *K* and *L* are δ -TE modules with *L* torsion, so does *M*.

Proof. Without loss of generality, we can assume that $K \le M$ and N be a torsion extension of M. For $K \le M \le N$, we have

$$\frac{N}{M} \cong \frac{\frac{N}{K}}{\frac{M}{K}}$$

is torsion and so $\frac{N}{K}$ is a torsion extension of $\frac{M}{K}$. Since $L \cong \frac{M}{K}$ is a δ -TE-module, there

exists a submodule $\frac{V}{K}$ of $\frac{N}{K}$ such that $\frac{N}{K} = \frac{M}{K} + \frac{V}{K}$ and $\frac{M \cap V}{K} \square_{\delta} \frac{V}{K}$ and so N = M + V. Since $\frac{\frac{V}{K}}{\frac{M \cap V}{K}} \cong \frac{V}{M \cap V} \cong \frac{M + V}{M} = \frac{N}{M}$,

L is torsion, we obtain that $\frac{V}{K}$ is torsion. Then *K* has a δ -supplement K_1 in *V*, i.e. $V = K + K_1$ and $K \cap K_1 \square_{\delta} K_1$ because *K* is a δ -TE-module. Therefore $N = M + V = M + K_1$. Assume that N = M + X for some submodule *X* of K_1 . Then $\frac{M}{K} + \frac{X + K}{K} = \frac{N}{K}$. Note that

$$\frac{K_1}{X} \cong \frac{K_1 + K}{X + K} = \frac{V}{X + K} = \frac{\frac{V}{K}}{\frac{X + K}{K}}$$

is singular. It follows from [4, Lemma 2.1], $\frac{V}{K} = \frac{X+K}{K}$ and so V = X + K. Since K_1 is δ -supplement of K in V, by [4, Lemma 2.1], by we have that $X = K_1$. Thus K_1 is a δ supplement of M in N. Thus K_1 is a δ supplement of M in N.

Corollary 2.1. Let M_1 and M_2 be δ -TEmodules with M_2 torsion and $M = M_1 \oplus M_2$. Then M is a δ -TE-module.

Proof. Let $M = M_1 \oplus M_2$. By using the following short exact sequence

 $0 \rightarrow M_1 \rightarrow M \rightarrow M_2 \rightarrow 0$

we obtain that M is a δ -TE-module by Theorem 2.1.

Lemma 2.1. Let M be a δ -TE-module and N be a torsion extension of M such that

 $\delta(N) = 0$. Then M is a direct summand of N.

Proof. By assumption, M has a δ -supplement in N, say K. Since $M \cap K \square_{\delta} K$, it follows that $M \cap K \subseteq \delta(K) = 0$. Hence $N = M \oplus K$.

In [8], a ring R is called a *left* $\delta - V - ring$, if for any left R-module M, $\delta(M) = 0$. **Corollary 2.2.** Let M be a δ -TE-module over a $\delta - V$ -ring. Then M is a direct summand of any module N with $\frac{N}{M}$ torsion.

3. References

1. Clark, J., Lomp, C., Vanaja N. and Wisbauer, R. (2006), *Lifting Modules*, Frontiers in Mathematics, Basel: Birkhauser Verlag, Supplement and projectivity in module theory.

2. Göçer, F. and Türkmen, E., (2015), Modules that have a supplement in every torsion extension, *Palest. J. Math.*, **4**(1), 515-518.

3. Koşan, M.T., (2007), δ -lifting and δ -supplemented modules, *Algebra Colloq.*, **14**(1), 53-60.

4. Nematollahi, M. J., (2009), On δ – supplemented modules, Tarbiat Moallem University, 20th seminar on Algebra (Apr, 22-23) 155-158.

5. Sharpe, D.W. and Vamos, P., (1972), *Injective Modules*, Cambridge Tracts in Mathematics and Mathematicial Physics, Cambridge at the Universitt Press, vol. 62.

6. Talebi, Y. and Talaee, B., (2009), On generalized δ – supplemented modules, *Vietnam J. Math.*, **37**(4), 515-525.

7. Tribak, R., (2012), Finitely generated δ – supplemented modules are amply δ – supplemented, *Bull. Aust. Math. Soc.*, 86, 430-439, doi:10.1017/S0004972711003406.

8. Ungor, B., Halicioğlu, S. and Harmanci, A., (2014), On a class of δ -supplemented modules, *Bull. Malays. Math. Sci. Soc.*,(2), 37(3), 703-717.

9. Wang, Y., (2007), δ -small submodules and δ -supplemented modules, *Int. J. Math. Math. Sci.*, Article ID 58132, 8 pp.

10. Wisbauer, R., (1991), *Foundations of Modules and Rings*, Gordon and Breach.

11. Zhou, Y., (2000), Generalizations of perfect, semiperfect, and semiregular rings, *Algebra Colloq.*, **7**(3), 305-318.

12. Zöschinger, H., (1974), Moduln die in jeder Erweiterung ein Komplement haben, *Math. Scand.* 35, 267-287.