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Some Attributes of the Matrix Operators about the Weighted
Generalized Difference Sequence Space
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Abstract. We can describe the norm for an operator given as T : X → Y as follows: It is the most
appropriate value of U that satisfies the following inequality

∥Tx∥Y ≤ U∥x∥X

and also for the lower bound of T we can say that the value of L agrees with the following inequality

∥Tx∥Y ≥ L∥x∥X,

where ∥.∥X and ∥.∥Y stand for the norms corresponding to the spaces X and Y. The main feature of this
article is that it converts the norms and lower bounds of those matrix operators used as weighted sequence
space ℓp(w) into a new space. This new sequence space is the generalized weighted sequence space. For
this purpose, the double sequential band matrix B̃(r̃, s̃) and also the space consisting of those sequences
whose B̃(r̃, s̃) transforms lie inside ℓp(w̃), where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real
numbers. When comparing with the corresponding results in the literature, it can be seen that the results
of the present study are more general and comprehensive.

1. Introduction

Let us outline some fundamental definitions and results, which we will largely be used in the following
sections. Primarily, we will offer the concept of the sequence, the details of which are well known in
elementary analysis. Although there are many different ways to describe the sequence, all of which mean
the same thing, we have chosen to give the following definition here. The sentence ”x is a sequence”
means x := {xn} := {x0, x1, . . . , xn, . . .}, where each xn is a complex number. In other words, a sequence is
easily introduced as an ordered list of complex numbers. Thus if x is a sequence, then it can be viewed
as a mapping of x : N := {1, 2, . . .} → C. More generally terms, every sequence x in X is a transformation
x : N → X, where X is a non-empty set. The collection of all real or complex number sequences forms
a vector space which we denote by w, under the operations of coordinate-wise addition and the familiar
scalar multiplication. The subspaces of ω are significant in such applications because each of them is called
a sequence space.
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Given an infinite matrix A = (ank) having complex numbers ank as entries in which n, k ∈ N, it can be
written for a sequence x, as follows

(Ax)n :=
∑

ankxk; (n ∈N, x ∈ D00(A)),

in which D00(A) describes the defined subspace of ω consisting of x ∈ ω for which the summation exists as
a finite sum. For a simple notation, the summation ranges without limits from 0 to∞.

The XA is known to be the matrix domain of an infinite matrix A for any subspace X of the all real-valued
sequence space w is described as

XA := {x = (xk) ∈ ω : Ax ∈ X}

which is a sequence space. There are several techniques to create new sequence spaces from old ones like
X. One of them is to use an arbitrary matrix domain generated by an infinite matrix A such as XA. To briefly
explain the topic, these sequence spaces, namely X and XA, may overlap but in any case either of them may
contain the other one. The reader can find detailed information in the book ”Summability Theory and Its
Applications” by Başar [1] and therein.

Recently, we have seen a significant increase in the construction of new sequence spaces using matrix
domain in summability areas such as sequence spaces.

Many of the works [2–12] we have studied so far have something in common, they use the matrix
domain.

Attempts have been made to find the best upper bound for some well-known matrix operators denoted
by T from ℓp(w) to Fw,p. In the context of this statement, note that an upper bound for a matrix operator
denoted by T defined from one sequence space X into another denoted by Y can be given by the following
value of U

∥Tx∥Y ≤ U∥x∥X,

in which ∥.∥X and ∥.∥Y denote the commonly known norms prescribed for spaces X and Y, respectively.
Here, U does not dependent on x. Among them, the best value of U can be called the operator norm for T.

In addition, several researchers have tried to figure out the lower bounds for these matrix operators.
This concept was first discussed in Ref [13] on the Cesàro matrix. But after that, others such as in Refs
[14, 15] and [16, 17] have studied the lower bounds for some matrix operators defined on the sequence
space denoted by ℓp and simultaneously on the weighted sequence space denoted by ℓp(w) with the Lorentz
sequence space. Similarly, a lower bound of a matrix operator defined as T : X→ Y is defined as the value
of L satisfying the following inequality

∥Tx∥Y ≥ L∥x∥X.

This inequality can also be used for some applications of functional analysis. For example, for finding the
necessary and sufficient conditions under which an operator has its inverse, and for simultaneously finding
the operator kernel containing only the zero vector for this case. For these reasons, knowing the lower
bound for an operator is significant. In recent years, Dehghan and Talebi [18] have worked on the largest
possible lower bound for some matrices on the Fibonacci sequence spaces. Furthermore, Foroutannia and
Roopaei [19] have considered the problem of computing both the norm and lower and upper bounds for
some operators defined on weighted difference sequence spaces. One can refer to these works [20–26] and
those contained therein for related problems over some classical sequence spaces.

In this article, it is assumed that w = (wn) and also w̃ = (w̃n) are sequences consisting of positive real
terms. In this paper, a new space the generalized weighted difference sequence space, is introduced via
the generalized difference matrix. Moreover, some properties of this sequence space are investigated.
Among other things, it was found that although this space is semi-normed, it is not necessarily a normed
space. Recall that a semi-normed satisfies every axiom of a norm, but the semi-norm of a vector must be
zero without including the zero vector. Again, this is a semi-inner product space for the value of p = 2.
Moreover, one obtains an isomorphism when using this space. Next, the norm for some matrix operators
on the generalized weighted difference sequence space is defined. In the next step, we address the lower
bound problem for the described operators of ℓp(w) in the generalized weighted difference sequence space.
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2. The Sequence Space ℓp(w̃, B̃(r̃, s̃))

We examined in the former chapter that many topic lead to building new sequence spaces. Moreover,
the concepts we offered were inherently large. Let us start by presenting the following matrix B̃ = (b̃nk(r̃, s̃));

b̃nk(r̃, s̃) =


sn, k = n + 1
rn, k = n
0, 0 ≤ k < n or k > n + 1

where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real numbers. It should be noted at this point
that many authors have described various sequence spaces and studied many different aspects of these
spaces, using a different matrix similar to this matrix but actually different. Some of them are available in
references [2–5].

We will see later that this matrix allows us to construct an efficient structure for solving algebraic and
topological properties. Applying the definition of matrix domain to this matrix, we define the new sequence
space whose result lies in the ℓp(w̃) space, as follows:

ℓp(w̃, B̃(r̃, s̃)) =

x = (xn) ∈ ω :
∞∑

n=1

w̃n |rnxn + snxn+1|
p < ∞

 ,
in which 1 ≤ p < ∞. For detailed information, the reader is advised to look at the references and therein
[27, 28]. We note here that, the space is a semi-normed space with the semi-norm defined by

∥x∥p,w̃,B̃ =

 ∞∑
n=1

w̃n |rnxn + snxn+1|
p


1/p

.

To calculate the truth of this assertion, we now give an example. If we consider the sequence xn =
1
rn

∏n−1
i=1

(
−ri+1

si

)
, so due to rnxn + snxn+1 = 0 we obtain ∥x∥p,w̃,B̃ = 0, then it follows, from the definition of the

norm, that ∥.∥p,w̃,B̃ defined on ℓp(w̃, B̃(r̃, s̃)) is not a norm.
Before we begin with the general theory, we will first state the following basic theorem, which indicate

that the set just described plays a significant role in its algebraic structure.

Theorem 2.1. The set ℓp(w̃, B̃(r̃, s̃)) is linear space, that is, sequence space.

Proof. We omit the proof which can be found in standard procedure.

Let us proceed with the following theorem about an algebraic property of this newly defined sequence
space.

Theorem 2.2. It is true that the inclusion relation ℓp(w̃) ⊂ ℓp(w̃, B̃(r̃, s̃)) is strictly valid.

Proof. If we take any x ∈ ℓp(w̃), then the following calculation shows that the inclusion is valid

w̃n |rnxn + snxn+1|
p
≤ w̃n2p−1 (|rnxn|

p + |snxn+1|
p)

≤ 2p−1max
[
|supn∈Nrn|

p, |supn∈Nsn|
p] w̃n (|xn|

p + |xn+1|
p)

by summing of n from 1 to∞, in which 1 ≤ p < ∞.
To show that the inclusion relation is strictly valid. If the sequence w̃ with (1, 1, 1, ...), we consider again

the sequence (xn) =
(

1
rn

∏n−1
i=1

(
−ri+1

si

))
∈ ℓp(w̃, B̃(r̃, s̃)). From this it is easy to deduce that (xn) < ℓp(w̃).

Theorem 2.3. If H =
{
x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)) : rnxn + snxn+1 = 0 for all n ∈N

}
, the quotient space ℓp(w̃, B̃(r̃, s̃))/H

is linearly isomorphic to the space ℓp(w̃).
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Proof. The basic approach to proving this theorem is to define a new T transformation from the space
ℓp(w̃, B̃(r̃, s̃)) to ℓp(w̃) that exploits the definition of the fundamental matrix transformation, for all x ∈
ℓp(w̃, B̃(r̃, s̃)) uniquely Tx = ((Tx)n) = (rnxn + snxn+1). Since it is fairly obvious that T is linear, the first issue
here is to show that T is surjective. One of the ways to accomplish this for any y = (yk) ∈ ℓp(w̃) is to say
xn =

1
rn

∑
∞

k=n
∏k−1

i=n

(
−si
ri+1

)
yk for all n ∈ N in the norm of ℓp(w̃, B̃(r̃, s̃)). In this case, by simple calculations, we

obtain the following equations

∥x∥p
p,w̃,B̃
=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣ rn

rn

∞∑
k=n

k−1∏
i=n

(
−si

ri+1

)
yk +

sn

rn+1

∞∑
k=n+1

k−1∏
i=n+1

(
−si

ri+1

)
yk

∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣yn +

 ∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk −

∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk


∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣yn

∣∣∣p
= ∥y∥pp,w̃
< ∞

which implies that x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)). Returning back to the T transformation described above, it is very
simple to say that Tx = y. Due to the fact that the image of the space ℓp(w̃, B̃(r̃, s̃)) under the transformation
T is ℓp(w̃) and also ker T = H, we have that ℓp(w̃, B̃(r̃, s̃))/H is linearly isomorphic to the space ℓp(w̃) under
the first isomorphism theorem.

We will use an example to show that the transformation T defined above is not injective. Namely, for
x = (xn) =

(
1
rn

∏n−1
i=1

(
−ri+1

si

))
we get Tx = 0; in other words, ker T , {0}.

Theorem 2.4. If p is not equal to 2 and at the same time the space ℓp(w̃, B̃(r̃, s̃)) is not given as a semi-inner product
space, then it is concluded that the space ℓ2(w̃, B̃(r̃, s̃)) is defined as a semi-inner product space.

Proof. First, we will answer the question whether the semi-norm ∥.∥2,w̃,B̃ can be induced with a semi-
inner product. It is convenient at this point to use the notation zk = w̃1/2

k (rkxk + skxk+1) for all k ∈ N and
⟨z, z⟩2 =

∑
∞

k=1 |zk|
2. Indeed taken arbitrary, x ∈ ℓ2(w̃, B̃(r̃, s̃)), we get

∥x∥2,w̃,B̃ =
√
⟨z, z⟩2.

Moreover, it is easy to verify from the following equations that the semi-norm ∥.∥p,w̃,B̃ cannot be obtained
when considering a semi-inner product just defined as

∥x + y∥2p,w̃,B̃ + ∥x − y∥2p,w̃,B̃ = 4w̃2/p
1 + w̃2/p

2

( r2

r1

)2

, 4
(
w̃1 +

w̃2

2p

∣∣∣∣∣ r2

r1

∣∣∣∣∣p)2/p

= 2(∥x∥2p,w̃,B̃ + ∥y∥
2
p,w̃,B̃),

in which x =
(

2r1+s1

2r2
1
,− 1

2r1
, 0, 0, ...

)
, y =

(
2r1−s1

2r2
1
, 1

2r1
, 0, 0, ...

)
and p , 2.

We examined in the former chapter that many topic lead to building new sequence spaces. Moreover, the
concepts we offered were inherently large. Let us start by presenting the following matrix B̃ = (b̃nk(r̃, s̃));

b̃nk(r̃, s̃) =


sn, k = n + 1
rn, k = n
0, 0 ≤ k < n or k > n + 1
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where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real numbers. It should be noted at this point
that many authors have described various sequence spaces and studied many different aspects of these
spaces, using a different matrix similar to this matrix but actually different. Some of them are available in
references [2–5].

We will see later that this matrix allows us to construct an efficient structure for solving algebraic and
topological properties. Applying the definition of matrix domain to this matrix, we define the new sequence
space whose result lies in the ℓp(w̃) space, as follows:

ℓp(w̃, B̃(r̃, s̃)) =

x = (xn) ∈ ω :
∞∑

n=1

w̃n |rnxn + snxn+1|
p < ∞

 ,
in which 1 ≤ p < ∞. For detailed information, the reader is advised to look at the references and therein
[27, 28]. We note here that, the space is a semi-normed space with the semi-norm defined by

∥x∥p,w̃,B̃ =

 ∞∑
n=1

w̃n |rnxn + snxn+1|
p


1/p

.

To calculate the truth of this assertion, we now give an example. If we consider the sequence xn =
1
rn

∏n−1
i=1

(
−ri+1

si

)
, so due to rnxn + snxn+1 = 0 we obtain ∥x∥p,w̃,B̃ = 0, then it follows, from the definition of the

norm, that ∥.∥p,w̃,B̃ defined on ℓp(w̃, B̃(r̃, s̃)) is not a norm.
Before we begin with the general theory, we will first state the following basic theorem, which indicate

that the set just described plays a significant role in its algebraic structure.

Theorem 2.5. The set ℓp(w̃, B̃(r̃, s̃)) is linear space, that is, sequence space.

Proof. We omit the proof which can be found in standard procedure.

Let us proceed with the following theorem about an algebraic property of this newly defined sequence
space.

Theorem 2.6. It is true that the inclusion relation ℓp(w̃) ⊂ ℓp(w̃, B̃(r̃, s̃)) is strictly valid.

Proof. If we take any x ∈ ℓp(w̃), then the following calculation shows that the inclusion is valid

w̃n |rnxn + snxn+1|
p
≤ w̃n2p−1 (|rnxn|

p + |snxn+1|
p)

≤ 2p−1max
[
|supn∈Nrn|

p, |supn∈Nsn|
p] w̃n (|xn|

p + |xn+1|
p)

by summing of n from 1 to∞, in which 1 ≤ p < ∞.
To show that the inclusion relation is strictly valid. If the sequence w̃ with (1, 1, 1, ...), we consider again

the sequence (xn) =
(

1
rn

∏n−1
i=1

(
−ri+1

si

))
∈ ℓp(w̃, B̃(r̃, s̃)). From this it is easy to deduce that (xn) < ℓp(w̃).

Theorem 2.7. If H =
{
x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)) : rnxn + snxn+1 = 0 for all n ∈N

}
, the quotient space ℓp(w̃, B̃(r̃, s̃))/H

is linearly isomorphic to the space ℓp(w̃).

Proof. The basic approach to proving this theorem is to define a new T transformation from the space
ℓp(w̃, B̃(r̃, s̃)) to ℓp(w̃) that exploits the definition of the fundamental matrix transformation, for all x ∈
ℓp(w̃, B̃(r̃, s̃)) uniquely Tx = ((Tx)n) = (rnxn + snxn+1). Since it is fairly obvious that T is linear, the first issue
here is to show that T is surjective. One of the ways to accomplish this for any y = (yk) ∈ ℓp(w̃) is to say
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xn =
1
rn

∑
∞

k=n
∏k−1

i=n

(
−si
ri+1

)
yk for all n ∈ N in the norm of ℓp(w̃, B̃(r̃, s̃)). In this case, by simple calculations, we

obtain the following equations

∥x∥p
p,w̃,B̃
=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣ rn

rn

∞∑
k=n

k−1∏
i=n

(
−si

ri+1

)
yk +

sn

rn+1

∞∑
k=n+1

k−1∏
i=n+1

(
−si

ri+1

)
yk

∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣yn +

 ∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk −

∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk


∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣yn

∣∣∣p
= ∥y∥pp,w̃
< ∞

which implies that x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)). Returning back to the T transformation described above, it is very
simple to say that Tx = y. Due to the fact that the image of the space ℓp(w̃, B̃(r̃, s̃)) under the transformation
T is ℓp(w̃) and also ker T = H, we have that ℓp(w̃, B̃(r̃, s̃))/H is linearly isomorphic to the space ℓp(w̃) under
the first isomorphism theorem.

We will use an example to show that the transformation T defined above is not injective. Namely, for
x = (xn) =

(
1
rn

∏n−1
i=1

(
−ri+1

si

))
we get Tx = 0; in other words, ker T , {0}.

3. The Norm of Matrix Operators from ℓ1(w) to ℓ1(w̃, B̃(r̃, s̃))

Having defined a function from the space ℓ1(w) to the space ℓ1(w̃, B̃(r̃, s̃)), we will compute in this chapter
that it is a norm. Before proceeding with the development of the general theory, let us start by presenting a
very simple definition.

The matrix A = (ank) is said to be quasi-summable if A is an upper triangular matrix, namely, ank = 0 for
n > k. As it can be clearly seen, the matrix satisfies

∑k
n=1 ank = 1 for all k ∈N.

Theorem 3.1. The matrix T = (tnk) is a bounded matrix operator from the space ℓ1(w) to the space ℓ1(w̃, B̃(r̃, s̃))
if M = supk∈N

λk
wk
< ∞, in which λk =

∑
∞

n=1 w̃n

∣∣∣rntnk + sntn+1,k

∣∣∣. In that case, the norm of operator is obtained as
∥T∥1,w,w̃,B̃ =M.

For all n ∈ N, taking both wn = 1 and w̃n = 1 specially, the transformation T is a bounded operator from the
space ℓ1 to the space ℓ1(B̃(r̃, s̃)) and also ∥T∥1,B̃ = supk∈N λk.
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Proof. We take into consideration a sequence x = (xn) in ℓ1(w), thus

∥Tx∥1,w̃,B̃ =
∞∑

n=1

w̃n

∣∣∣∣∣∣∣
∞∑

k=1

(
rntnk + sntn+1,k

)
xk

∣∣∣∣∣∣∣
≤

∞∑
n=1

∞∑
k=1

w̃n

∣∣∣rntnk + sntn+1,k

∣∣∣ |xk|

=

∞∑
k=1

∞∑
n=1

w̃n

∣∣∣rntnk + sntn+1,k

∣∣∣ |xk|

=

∞∑
k=1

λk|xk|

≤M
∞∑

k=1

wk|xk|

=M∥x∥1,w.

From these equations it follows that ∥T∥1,w,w̃,B̃ ≤ M since
∥Tx∥1,w̃,B̃
∥x∥1,w

≤ M. We introduce the sequence ei =

(0, 0, ..., 0,
i.
1, 0, ...) for each i ∈ N to compute the inverse inequality, and then obtain ∥ei

∥1,w = wi and also
∥Tei
∥1,w̃,B̃ = λi. Therefore, it is easy to see that ∥T∥1,w,w̃,B̃ ≥M, and then ∥T∥1,w,w̃,B̃ =M.
Since special choices are made in the proof of the remaining part, no proof will be given here.

Theorem 3.2. Let us assume that T = (tnk) is the upper triangular matrix having the non-negative entries and
also assume that (wn) is an increasing given sequence. When the inequality tnk ≥ tn+1,k is valid for each values of
n ∈ N, constant k ∈ N and M′ = supk∈N

∑n
k=1 tnk < ∞, then T is defined as a bounded operator described from

ℓ1(w) to ℓ1(w, B̃(r̃, s̃)). At the same time, the norm of this given operator satisfies the inequality given in the form
∥T∥1,w,B̃ ≤ (supk∈N |rk| + supk∈N |sk|)M′. When the specific condition of T is being quasi summable matrix, also
rk ≥ −sk > 0 and sk−1 + rk = 1 is taken into consideration, thus the condition ∥T∥1,w,B̃ = 1 is satisfied.

Proof. Given the hypothesis, we must say that the matrix T = (tnk) satisfying the condition tnk ≥ tn+1,k (for
all n, k = 1, 2, ...) is an upper triangular and also the sequence (wn) is increasing. With simple calculations,
we can derive the following

λk =

∞∑
n=1

wn

∣∣∣rntnk + sntn+1,k

∣∣∣
=

k−1∑
n=1

wn

∣∣∣rntnk + sntn+1,k

∣∣∣ + wk|rk|tkk

≤ wk

 k−1∑
n=1

(
|rn|tnk + |sn|tn+1,k

)
+ |rk|tkk


= wk

[
(|r1|t1k + |s1|t2k) + ... +

(
|rk−1|tk−1,k + |sk−1|tkk

)
+ |rk|tkk

]
= wk [|r1|t1k + (|s1| + |r2|) t2k + ... + (|sk−1| + |rk|) tkk]

≤ (sup
k∈N
|rk| + sup

k∈N
|sk|)wk

k∑
n=1

tnk.

Obviously, ∥T∥1,w,B̃ = supk∈N
λk
wk
≤ (supk∈N |rk| + supk∈N |sk|) supk∈N

∑k
n=1 tnk = (supk∈N |rk| + supk∈N |sk|)M′

from Theorem 3.1.
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Let us suppose that T is a quasi summable matrix, so M′ = 1. If rk ≥ −sk > 0 holds, then of course
rntnk + sntn+1,k > 0 holds for every k,n ∈ N and also if the equality sk−1 + rk = 1 is satisfied, then we can
easily write λk ≤ wk

∑k
n=1 tnk thus ∥T∥1,w,B̃ ≤ 1. To obtain the inverse inequality, let us consider the sequence

e1 = (1, 0, 0, ...). It follows that ∥e1
∥1,w = w1 and ∥Te1

∥1,w,B̃ = w1, namely ∥T∥1,w,B̃ ≥ 1. As a result, we obtain
∥T∥1,w,B̃ = 1.

In the light of the above theorems, we are concerned here with the computation of the norm of some
specific quasi summable matrices. First, we consider the transpose of the well-known Riesz matrix R̃ = (r̃nk)
which is described as follows:

r̃nk =

{ qn

Qk
, n ≤ k

0, n > k,
(1)

where (qn) is a non-negative sequence with q1 > 0 and Qk = q1 + ... + qk for all k ∈N.
Taking qn = 1 for all n ∈ N, we derive the transpose of the Cesáro matrix of order one, also known as

the Copson matrix (see [17]). We denote this particular matrix by C̃ = (c̃nk), where

c̃nk =

{
1
k , n ≤ k
0, n > k.

Corollary 3.3. When (qn) is a decreasing sequence and (wn) is an increasing sequence, in that case R̃ is a bounded
operator from the space ℓ1(w) into the space ℓ1(w, B̃(r̃, s̃)) and, also ∥R̃∥1,w,B̃ = 1 for rn ≥ −sn > 0 and sn−1 + rn = 1
for every n ∈N.

Proof. First of all, since (qn) is a decreasing sequence from the hypothesis the following inequality r̃nk =
qn

Qk
≥

qn+1

Qk
= r̃n+1,k holds for all n ∈ N, each fixed k ∈ N. For R̃ is a non-negative upper triangular matrix

and (wn) is an increasing sequence, it follows from Theorem 3.2 that R̃ is a bounded operator from ℓ1(w)
into ℓ1(w, B̃(r̃, s̃)). Also due to the fact that

∑k
n=1 r̃nk = 1 for every k ∈ N, R̃ is a quasi summable matrix. If

rn ≥ −sn > 0 and sn−1 + rn = 1 for every n ∈N, then it is clear that ∥R̃∥1,w,B̃ = 1 from Theorem 3.2.

Corollary 3.4. If supk∈N

∑k
n=1 w̃n

kwk
< ∞, then the matrix C̃ defined just above is a bounded operator from the space

ℓ1(w) into ℓ1(w̃, B̃(r̃, s̃)) and ∥C̃∥1,w,w̃,B̃ ≤ (supk∈N |rk| + supk∈N |sk|) supk∈N

∑k
n=1 w̃n

kwk
.

Proof. We get the following inequality

λk =

∞∑
n=1

w̃n

∣∣∣rnc̃nk + snc̃n+1,k

∣∣∣
≤

1
k

 k−1∑
n=1

w̃n (|rn| + |sn|) + w̃k|rk|


=

supk∈N |rk|

k

k∑
n=1

w̃n +
supk∈N |sk|

k

k−1∑
n=1

w̃n

≤
supk∈N |rk| + supk∈N |sk|

k

k∑
n=1

w̃n.

Therefore, we obtain that ∥C̃∥1,w,w̃,B ≤ (supk∈N |rk| + supk∈N |sk|) supk∈N

∑k
n=1 w̃n

kwk
from Theorem 3.1.

Theorem 3.5. Let us suppose that T = (tnk) is a matrix having the non-negative entries and the inequalities tnk ≥

tn+1,k hold for all n ∈N and each fixed k ∈N. If
∑
∞

n=1 tnk < ∞ for each k ∈N and also M′′ = supk∈N
∑
∞

n=1 tnk < ∞,
then the matrix T is a bounded operator from the space ℓ1 to ℓ1(B̃(r̃, s̃)) and the norm of operator is ∥T∥1,B̃ ≤
(supk∈N |rk|+ supk∈N |sk|)M′′. When the fact that the specific condition of T is being quasi summable matrix is taken
into consideration for rk ≥ −sk > 0 and sk−1 + rk = 1 (for all k ∈N), then the condition ∥T∥1,B̃ = 1 is derived.
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Proof. For any k ∈N, we get

λk =

∞∑
n=1

∣∣∣rntnk + sntn+1,k

∣∣∣ = (sup
k∈N
|rk| + sup

k∈N
|sk|)

∞∑
n=1

tnk.

Using Theorem 3.1 here, we find that the norm ∥T∥1,B̃ ≤ (supk∈N |rk| + supk∈N |sk|)M′′. The rest of the proof
can be done similarly to the proof of Theorem 3.2.

The matrix H = (hnk) defined as hnk =
1

n+k for all n, k ∈ N is known to be the Hilbert matrix operator.
Here, we will discover the norm of the operator just mentioned.

Now, let us give the following integral to be used in the proofs:∫
∞

0

1
tα(t + c)

dt =
π

cα sinαπ
,

in which 0 < α < 1.

Theorem 3.6. Let wn =
1

nα for all n ∈N, in which 0 < α < 1. In this case, the Hilbert matrix operator H just described
is bounded from the space ℓ1(w) to the space ℓ1(w, B̃(r̃, s̃)) and also the norm ∥H∥1,w,B̃ ≤

π
sinαπ (supi∈N |ri|+supi∈N |si|).

Proof. For all n ∈N, we have

λn =

∞∑
i=1

wi

∣∣∣rihin + sihi+1,n

∣∣∣
≤

∞∑
i=1

1
iα

(
|ri|

i + n
+

|si|

i + n + 1

)
≤

∫
∞

0

1
tα

(
supi∈N |ri|

t + n
+

supi∈N |si|

t + n + 1

)
dt

=
π

sinαπ

(
supi∈N |ri|

nα
+

supi∈N |si|

(n + 1)α

)
.

It follows that

nαλn ≤
π

sinαπ

[
sup
i∈N
|ri| + sup

i∈N
|si|

( n
n + 1

)α]
≤

π
sinαπ

(
sup
i∈N
|ri| + sup

i∈N
|si|

)
.

Considering Theorem 3.1, this means that ∥H∥1,w,B̃ ≤
π

sinαπ

(
supi∈N |ri| + supi∈N |si|

)
.

4. The Norm of Matrix Operators from ℓp(w) to ℓp(w, B̃(r̃, s̃))

In this section, we are going to discuss calculating the norm of some matrix operators from the space
ℓp(w) to the space ℓp(w̃, B̃(r̃, s̃)). We now present an essential lemma which is obtained by Jameson and
Lashkaripour, since this important result is used in the proofs.

Lemma 4.1. [17] Let us suppose that A = (ank) is a matrix operator having the nonnegative entries ank ≥ 0, also
suppose that (un) and (vk) are positive sequences given such that

u1/p
n

∞∑
k=1

ank

v1/p
k

≤ K1 (for n ∈N, K1 ∈ R)

and
1

v(1−p)/p
k

∞∑
n=1

u(1−p)/p
n ank ≤ K2 (for k ∈N, K2 ∈ R)

in that case, that inequality ∥A∥p ≤
K1/p

2

K(1−p)/p
1

is valid, in which p > 1.
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Now, let us state and prove another necessary lemma.

Lemma 4.2. Let us assume that the equality ank =
(

w̃n
wk

)1/p (
rntnk + sntn+1,k

)
is valid for the matrix operators T = (tnk)

and A = (ank). At the same time, we have ∥T∥p,w,w̃,B̃ = ∥A∥p, for p ≥ 1. Under the conditions of this hypothesis, T is
bounded operator from the space ℓp(w) to the space ℓp(w̃, B̃(r̃, s̃)) iff A is bounded operator onto the space ℓp.

Proof. If the x lying in the space ℓp(w) is taken as arbitrarily, and the sequence y = (yk) is defined as
yk = w1/p

k xk for all k ∈N by making use of it, then we derive that equality ∥x∥p,w = ∥y∥p. Therefore, the proof
should be clear with the following basic calculations

∥T∥p
p,w,w̃,B̃

= sup
x∈ℓp(w),x,0

∥Tx∥p
p,w̃,B̃

∥x∥pp,w

= sup
x∈ℓp(w),x,0

∑
∞

n=1 w̃n

∣∣∣∑∞k=1
(
rntnk + sntn+1,k

)
xk

∣∣∣p∑
∞

k=1 wk|xk|
p

= sup
y∈ℓp

∑
∞

n=1

∣∣∣∣∑∞k=1

(
w̃n
wk

)1/p (
rntnk + sntn+1,k

)
yk

∣∣∣∣p∑
∞

k=1 |yk|
p

= sup
y∈ℓp

∑
∞

n=1

∣∣∣∑∞k=1 ankyk

∣∣∣p∑
∞

k=1 |yk|
p = sup

y∈ℓp

∥Ay∥pp
∥y∥pp

= ∥A∥pp.

Theorem 4.3. Let us assume that the matrix operator R̃ is as defined in (1), and also assume that (qn) is a decreasing
sequence having q1 = q2 = 2 and limn→∞Qn = ∞. For all n ∈N, if the sequence (wn) is taken as

(
2Qn−1

qn

)p
with Q0 = 1,

in that case, R̃ is bounded operator from the space ℓp(w) to the space ℓp(B̃(r̃, s̃)) and ∥R̃∥p,w,B̃ ≤
supn∈N |rn |+supn∈N |sn |

2 for
p > 1.

Proof. In Lemma 4.2, utilize the matrix R̃ in place of T. So, the matrix A = (ank) is described by

ank =


qk

2Qk−1Qk

(
rnqn + snqn+1

)
, n < k

1
2 rk

q2
k

Qk−1Qk
, n = k

0, n > k

and besides that, ∥R̃∥p,w,B̃ = ∥A∥p is obtained.
We derive

∞∑
k=1

ank =
rn

2
qn

qn

Qn−1Qn
+

1
2
(
rnqn + snqn+1

) ∞∑
k=n+1

qk

Qk−1Qk

=
rn

2
qn

(
1

Qn−1
−

1
Qn

)
+

1
2
(
rnqn + snqn+1

) 1
Qn

=
rn

2
qn

Qn−1
+

sn

2
qn+1

Qn

≤
supn∈N |rn| + supn∈N |sn|

2
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for all n ∈N. Also, we derive

∞∑
n=1

ank =
1
2

qk

Qk−1Qk

 k−1∑
n=1

(
rnqn + snqn+1

) + rk

2
qk

Qk−1Qk
qk

=
1
2

qk

Qk−1Qk

r1q1 +

k−1∑
n=1

(rn+1 + sn) qn+1


≤

supk∈N |rk| + supk∈N |sk|

2
qk

Qk−1Qk

k∑
n=1

qn

≤
supk∈N |rk| + supk∈N |sk|

2

for all k ∈ N. Now, In Lemma 4.1, if we take un = vn = 1 for all n ∈ N, we get K1 ≤
supn∈N |rn |+supn∈N |sn |

2 and

K2 ≤
supk∈N |rk |+supk∈N |sk |

2 which require that ∥R̃∥p,w,B̃ ≤
supn∈N |rn |+supn∈N |sn |

2 for p > 1.

Theorem 4.4. Let wn =
1

nα for all n ∈N, in which 1−p < α < 1 and p > 1. In that case, the Hilbert matrix operator
H is a bounded operator from the space ℓp(w) to the space ℓp(w, B̃(r̃, s̃)) also following inequality

∥H∥p,w,B̃ ≤
(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
max

{
π

sin βπ
,
π

sinγπ

}
,

is valid, in which β = 1−α
p and γ = p−1+α

p .

Proof. Let us define the matrix A = (ank) as follows

ank =

(
k
n

)α/p ( rn

n + k
+

sn

n + k + 1

)
for all n, k ∈ N. In this case, ∥H∥p,w,B̃ = ∥A∥p which obtained by using Lemma 4.2. Specifically, when we
choose un = vn = n in Lemma 4.1 for all n ∈N, we find that

un
1
p

∞∑
k=1

ank

vk
1
p

= n1/p
∞∑

k=1

1
k1/p

(
k
n

)α/p ( rn

n + k
+

sn

n + k + 1

)
≤ nβ

∞∑
k=1

1
kβ

(
|rn|

n + k
+

|sn|

n + k + 1

)
≤ nβ

∫
∞

t=0

1
tβ

(
supn∈N |rn|

t + n
+

supn∈N |sn|

t + (n + 1)

)
dt

= nβ
(

supn∈N |rn|π

nβ sin βπ
+

supn∈N |sn|π

(n + 1)β sin βπ

)
≤

π
sin βπ

(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
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for all n ∈N also

1

v
1−p

p

k

∞∑
n=1

un
1−p

p ank =
1

k(1−p)/p

∞∑
n=1

n(1−p)/p
(

k
n

)α/p ( rn

n + k
+

sn

n + k + 1

)

≤ kγ
∞∑

n=1

1
nγ

(
|rn|

n + k
+

|sn|

n + k + 1

)
≤ kγ

∫
∞

t=0

1
tγ

(
supn∈N |rn|

t + k
+

supn∈N |sn|

t + (k + 1)

)
dt

= kγ
(

supn∈N |rn|π

kγ sinγπ
+

supn∈N |sn|π

(k + 1)γ sinγπ

)
≤

π
sinγπ

(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
for all k ∈N, where β = 1−α

p and γ = p−1+α
p . We therefore obtain that

∥H∥p,w,B̃ ≤
(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
max

{
π

sin βπ
,
π

sinγπ

}
from Lemma 4.1.

5. Lower Bounds of Matrix Operators from ℓp(w) to ℓp(w̃, B̃(r̃, s̃))

An important problem posed in this paper is to calculate the lower bound of an operator T from the
space ℓp(w) to space ℓp(w̃, B̃(r̃, s̃)). Thus, the goal is to obtain the lower bound of the operator T for the largest
value L satisfying the following inequality

∥Tx∥p,w̃,B̃ ≥ L∥x∥p,w

for every decreasing sequence x = (xk) with xk ≥ 0.
We need the following lemma to perform the calculations in the proofs in this section.

Lemma 5.1. [17] Let us assume that both (qn) and (xn) are non-negative sequences, and that (xn) is also a decreasing
sequence satisfying condition limn→∞ xn = 0. For Qn =

∑n
i=1 qi with Q0 = 1 also Rn =

∑n
i=1 qixi, the following

statements holds, in which p ≥ 1 and n ∈N.

1. Rp
n − Rp

n−1 ≥ (Qp
n −Qp

n−1)xp
n.

2. When the series
∑
∞

i=1 qixi converges, the following inequality is satisfied. ∞∑
i=1

qixi


p

≥

∞∑
n=1

Qp
n(xp

n − xp
n+1).

Theorem 5.2. When T = (tnk) is a matrix operator with tnk ≥ 0 from the space ℓp(w) into the space ℓp(w̃, B̃(r̃, s̃)),
in which p ≥ 1, the following inequality tnk ≥ tn+1,k is valid for all n ∈ N, each fixed k ∈ N also the series

∑
∞

n=1 wn
diverges to infinity, in that case, for every decreasing sequence x = (xk) having xk ≥ 0, we have

∥Tx∥p,w̃,B̃ ≥ L∥x∥p,w

in which Lp = infn∈N
Sn
Wn

, Wn =
∑n

k=1 wk and Sn =
∑
∞

i=1 w̃i
(∑n

k=1
(
ritik + siti+1,k

))p where rn ≥ −sn > 0 for all n ∈N.
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Proof. Under the conditions of the hypothesis formulated in the theorem, we can give the proof as fol-
lows. Since

∑
∞

n=1 wn = ∞, we obtain limk→∞ xk = 0, and also, we can be establish that the series∑
∞

k=1
(
rntnk + sntn+1,k

)
xk is convergent for all n ∈ N. On the other hands, using Lemma 5.1 and Abel

summation, we have

∥Tx∥pp,w̃,B =
∞∑

n=1

w̃n

 ∞∑
k=1

(
rntnk + sntn+1,k

)
xk


p

≥

∞∑
n=1

w̃n

∞∑
i=1

 i∑
k=1

(
rntnk + sntn+1,k

)
p

(xp
i − xp

i+1)

=

∞∑
i=1

 ∞∑
n=1

w̃n

 i∑
k=1

(
rntnk + sntn+1,k

)
p (xp

i − xp
i+1)

=

∞∑
i=1

Si(x
p
i − xp

i+1) ≥ Lp
∞∑

i=1

Wi(x
p
i − xp

i+1) = Lp
∥x∥pp,w

which completes the proof.

The following lemma can be verified using a technique similar to the proof of Proposition 1 in [17].

Lemma 5.3. Let us assume that T = (tnk) be a non-negative matrix operator defined from the space ℓp(w) to the space
ℓp(w̃, B̃(r̃, s̃)), in which p ≥ 1. If the following inequality

rntnk + sntn+1,k ≥ rntn,k+1 + sntn+1,k+1

is valid also tnk ≥ tn+1,k for all k ∈ N, each fixed n ∈ N and rn ≥ −sn > 0, if the series
∑
∞

n=1 wn is divergent the
infinity, then we have

Lp
≥ inf

n∈N
[np
− (n − 1)p]

tn

wn
,

in which tn =
∑
∞

i=1 w̃i
(
ritin + siti+1,n

)p.

Theorem 5.4. Let H = (hnk) is the Hilbert matrix operator, wn =
1

np+α and w̃n =
1

nα for every n ∈N, in which p ≥ 1,
0 ≤ p + α ≤ 1 and rn ≥ −sn > 0. For every decreasing sequences x = (xk) that are not negative terms, we have

∥Hx∥p,w̃,B̃ ≥ L∥x∥p,w

in which Lp
≥

∑
∞

i=1
1

iα(i+1)p(i+2)p .

Proof. It is clear that both the Hilbert matrix H = (hnk) and the sequence (wn) satisfy the conditions listed in
Lemma 5.3, therefore, we obtain

Lp
≥ inf

n∈N
[np
− (n − 1)p]

tn

wn

≥ inf
n∈N

np−1np+α
∞∑

i=1

1
iα

( ri

i + n
+

si

i + n + 1

)p

≥ inf
n∈N

n2p+α−1
∞∑

i=1

1
iα

( ri

i + n
+

si

i + n + 1

)p
.

The rest of the proof can be obtained in the same way as in the proof of Theorem 4.3 in [19].
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Conclusion
In this manuscript, we have presented the norms for matrix operators which are defined between the

weighted sequence space denoted by ℓp(w) and the weighted difference sequence space ℓp(w̃, B̃(r̃, s̃)) which
is valid for 1 ≤ p < ∞. To make the presentation more understandable, we have used some specific matrices
like quasi summable ones (that is the transposes of Riesz and Cesàro matrices of the first order) and Hilbert
matrix. Firstly, ℓp(w̃, B̃(r̃, s̃)) space has been presented and its properties have been scrutinized. Next, we
have tried to compute the lower bound for the matrix given from ℓp(w) into ℓp(w̃, B̃(r̃, s̃)).
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