
Techno-Science 6:1 (2023) 20-28 

 

 

Techno-Science 
Scientific Journal of Mehmet Akif Ersoy University 

https://dergipark.org.tr/pub/sjmakeu 

O r i g i n a l  
R e s e a r c h  

A r t i c l e  

 

 
 

_____ 
* Corresponding Author: uchenna.igboeli@uniabuja.edu.ng  
 

To cite this article: Igboeli U., (2023). Genetic Algorithm in Solving Multi-Dimensional Polynomial Function Fit to Experimental Data. Scientific 
Journal of Mehmet Akif Ersoy University, vol. 6, no. 1- 20-28 
 
e-ISSN 2651-3722 © 2018 Burdur Mehmet Akif Ersoy University (Turkey). All rights reserved.   

GENETIC ALGORITHM IN SOLVING MULTI-DIMENSIONAL POLYNOMIAL 
FUNCTION FIT TO EXPERIMENTAL DATA  

Uchenna IGBOELI1*  

 
1Department of Computer Science, University of Abuja, Nigeria  

 

A R T I C L E  I N F O   A B S T R A C T  

Article History  
Received 
Revised  
Accepted 
Available online  

 
: 
: 
: 
: 

 
29/03/2023 
21/06/2023 
26/06/2023 
03/07/2023 

 A Polynomial Genetic Algorithm (PGA) is a type of evolutionary algorithm used for optimization 
problems that involve finding the minimum or maximum of a polynomial function. The 
algorithm is based on the principles of natural selection and genetic recombination and 
mutation. The algorithm starts by initializing a random population of chromosomes. The fitness 
of each chromosome is evaluated based on the value of the polynomial function it represents. 
The fittest chromosomes are selected for reproduction, and their genetic material is combined 
through crossover and mutation to produce a new generation of chromosomes. One important 
consideration in using a genetic algorithm for polynomial optimization is the choice of 
representation for the chromosomes. Binary or integer representations can be used, with each 
bit or integer representing a coefficient in the polynomial. Alternatively, a floating-point 
representation can be used, with each chromosome representing a set of coefficients that can be 
used to construct the polynomial. 
One advantage of using a genetic algorithm is that it can find solutions to problems that are 
difficult or impossible to solve using traditional methods. It can also be used to solve problems 
that have multiple objectives or constraints. In summary, to solve a polynomial using a genetic 
algorithm, we need to define a fitness function that evaluates the fitness of each chromosome 
based on its ability to represent a good solution to the polynomial, and then use standard genetic 
algorithm techniques to evolve a population of chromosomes towards a solution. The solution 
found in this work shows that though genetic algorithm can be used to solve polynomials, other 
methods like Newton-Ralpson, Secant, Regula-falsi and Bisection can easily guess the solution 
in a few iterations thereby saving cost and time. 
 

Keywords 
Polynomial, Algorithm, 
Chromosomes, Crossover, Mutation, 
Optimization 

 

1. INTRODUCTION 
 
Genetic Algorithm (GA) is a search-based optimization technique based on the principles of genetics and natural selection. 
It is frequently used to find optimal or near-optimal solutions to difficult optimization problems. Nature has always been a 
great source of inspiration to all mankind. Genetic algorithms represent a branch of computing called evolutionary 
computation since they imitate the biological processes of reproduction and natural selection to solve for the ‘fittest’ 
solutions. Like in evolution, many of a genetic algorithm’s processes are random, however this optimization technique allows 
one to set the level of randomization and the level of control. Genetic algorithms are majorly used in solving NP (Non-
deterministic Polynomial Time) problems and it involves the use of optimization techniques in finding solutions to such 
complex problems. Optimization refers to finding the values of inputs in such a way that we get the “best” output values. The 
definition of “best” varies from problem to problem, but in mathematical terms, it refers to maximizing or minimizing one 
or more objective functions, by varying the input parameters. Using GA, the set of all possible solutions or values which the 
inputs can take make up the search space. In this search space, lies a point or a set of points which gives the optimal solution. 
This work concentrates on the use of genetic algorithm in solving polynomials which other known algorithms (Newtons 
Method, Secant Method, Regula Falsi) can as well solve. The adoption of the GA is to find an optimal solution within a 
reasonable time frame especially when complex solutions are involved. 
 

https://dergipark.org.tr/pub/sjmakeu
mailto:uchenna.igboeli@uniabuja.edu.ng
https://dergipark.org.tr/pub/sjmakeu
http://www.dergipark.gov.tr/sjmakeu
https://orcid.org/0000-0002-6403-8708


IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

21 

 
Fig 1. Genetic Algorithm Cycle Source [1] 

 
1.1 Biological Background 
 
A genetic algorithm is used to solve complicated problems with a greater number of variables and possible 
outcomes/solutions. Fig 1 above shows the evolution of the algorithm. Genetic Algorithms (GAs) and Evolution strategies 
(ESs) are two strata of consciously pursued attempts to imitate principles of organic evolution processes as rules for 
optimum seeking procedures. Both rely upon the collective learning paradigm gleaned from natural evolution [2]. GA 
process of natural selection starts with the selection of fittest individuals from a population of eligible individuals all meeting 
or satisfying the initial condition for eligibility. These selected individuals will produce offspring which inherit the 
characteristics of the parents and will be added to the next generation. If parents have better fitness, their offspring will be 
better than parents and have a better chance at surviving. This process keeps on iterating and at the end, a generation with 
the fittest individuals will be found. [3] developed a GA with new features in chromosome encoding, crossover, mutation, 
selection as well as algorithm structure that is developed to be able to ‘‘learn’’ from its experience. This is based on the fact 
that integration of production planning and scheduling is a class of problems commonly found in manufacturing industry 
and a combinatorial, NP-hard problem, in a related study, [4] examines the use of a genetic algorithm to optimize the 
functional form of a polynomial fit to experimental data; the aim being to locate the global optimum of the data. A genetic 
algorithm was also described which takes a set of data and searches for the best possible functional form of a polynomial fit 
to the data. GA provides search method efficiently working on population and has been applied to many problems of 
optimization and classification [5]. General GA processes are as follows: 
1. Initial population 
2. Fitness function 
3. Selection 
4. Crossover 
5. Mutation 
 

START 
Generate the initial population 

Compute fitness 
REPEAT 
Selection 
Crossover 
Mutation 

Compute fitness 
UNTIL population has converged 

STOP 
Fig. 2 Pseudocode GA Source [6] 

 
Fig 2 above is a pseudocode of the life of a genetic algorithm implementation to problem solving. It shows the various stages 
and procedures that are undertaken in the course of the execution of a genetic algorithm-based solution. 
 
 
1.2 Initial Population 
 
GA processes begins with a set of individuals which is called a Population. Each individual is a solution to the problem. An 
individual is characterized by a set of parameters (variables) known as Genes. Genes are joined into a string to form a 
Chromosome (solution). The set of genes of an individual is represented using a string. Chromosome encoding can be 
achieved by a variety of encoding methods and the choice of method is usually dependent on the optimization problem 



IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

22 

structure and precision requisites. Some of the popular encoding techniques include binary encoding, tree encoding, 
permutation encoding and value encoding. For the purpose of this research, we are adopting the binary encoding technique. 
 

Chromosome A 010101101010010101101010110101 

 Chromosome B 010110101011101010011011010101 

Fig 3. Example of a chromosome using binary encoding 

Binary encoding consists of a system of ones and zeros, designed to represent either a "true" or a "false" value in logical 
operations. Binary encoding was developed by Claude Shannan in the 1930s using switches. This is shown in fig 3. [7] in 
their work on Initial Population for Genetic Algorithms: A Metric Approach, suggested evaluating the initial population and, 
depending of the problem being solved, one can choose gene-level diversity, chromosome-level diversity, population-level 
diversity, or a combination of those, having in mind that some metrics are more computation-ally expensive than others. 
 
1.3 Fitness Function 
 
The design of fitness function is very essential in genetic algorithm as the desired output depends heavily on the design of 
fitness function [8]. The fitness function determines how fit an individual is (the ability of an individual to compete with 
other individuals). It gives a fitness score to each individual. The probability that an individual will be selected for 
reproduction is based on its fitness score. This function takes a candidate solution to the problem as input and produces as 
output how “fit” or how “good” the solution is with respect to the problem in consideration. Calculation of fitness value is 
done repeatedly in a GA and therefore it should be sufficiently fast. A slow computation of the fitness value can adversely 
affect a GA and make it exceptionally slow. In most cases the fitness function and the objective function are the same as the 
objective is to either maximize or minimize the given objective function. [9] on similar research on the effects of fitness 
functions on genetic programming-based ranking discovery for web search, concluded that the design of fitness functions is 
instrumental in performance improvement. 
There is no rule establishing that a particular function should be utilized in a particular problem. Be that as it may, certain 
capabilities have been taken on by researchers with respect to specific sorts of issues. For classification tasks where 
supervised learning is used, error measures such as Euclidean distance and Manhattan distance have been widely used as 
the fitness function. 
 
1.4 Generic Requirements of a Fitness Function 
 
The following requirements should be satisfied by any fitness function. 

• The fitness function should be clearly defined. The reader should be able to clearly understand how the fitness score 
is calculated. 

• The fitness function should be implemented efficiently. If the fitness function becomes the bottleneck of the 
algorithm, then the overall efficiency of the genetic algorithm will be reduced. 

• The fitness function should quantitatively measure how fit a given solution is in solving the problem. 
• The fitness function should generate intuitive results. The best/worst candidates should have best/worst score 

values. 
For optimization problems, basic functions such as sum of a set of calculated parameters related to the problem domain can 
be used as the fitness function. 
 
 
The fitness function shown in fig 4 above is used to compute the criteria for qualifying new genes into the next generation. 
In some cases, calculating the fitness function directly might not be possible due to the inherent complexities of the problem 
at hand. In such cases, we do fitness approximation to suit our needs. The basic fitness function is Rosenbrock's function, a 
common test function for optimizers. The function is a sum of squares as stated in equation 1: 
 
f(x) = 100(x12 – x2)2 + (1-x1)2                                                                                                                                                         (1) 
 
The function has a minimum value of zero at the point [1,1]. Because the Rosenbrock function is quite steep, plot the 
logarithm of one plus the function. 
 
 
 
 
 
 
 



IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

23 

 
public class FitnessFunction : IFitnessFunction 
{ 
            public double Evaluate(IChromosome chromosome) 
            { 
                double score = 1; 
                var values = (chromosome as TimeTableChromosome).Value; 
                var GetoverLaps = new Func<TimeSlotChromosome, 
                     List<TimeSlotChromosome>>(current => values 
                    .Except(new []{current}) 
                    .Where(slot=>slot.Day == current.Day) 
                    .Where(slot =>slot.StartAt == current.StartAt  
                                  || slot.StartAt <= current.EndAt&&slot.StartAt >= current.StartAt 
                                  || slot.EndAt >= current.StartAt&&slot.EndAt <= current.EndAt) 
                    .ToList()); 
 
                
                foreach (var value in values) 
                { 
                    var overLaps= GetoverLaps(value); 
                    score -= overLaps.GroupBy(slot => slot.TeacherId).Sum(x=>x.Count()-1); 
                    score -= overLaps.GroupBy(slot => slot.PlaceId).Sum(x => x.Count()-1); 
                    score -= overLaps.GroupBy(slot => slot.CourseId).Sum(x => x.Count()-1); 
                    score -= overLaps.Sum(item => item.Students.Intersect(value.Students).Count()); 
                } 
 
                score -= values.GroupBy(v => v.Day).Count() * 0.5; 
                return Math.Pow(Math.Abs(score),-1); 
            } 
 } 

Fig 4. Sample code to show how the fitness function is being implemented to calculate the fitness score. 

 
1.5 Selection 
 
The selection pressure drives the population toward better solutions while crossover, uses genes of selected parents to 
produce offspring that will form the next generation. Mutation is used to avoid premature convergence and consequently 
escapes from the local optimal. GAs have been very successful in handling hard combinatorial optimization problems [10]. 
A genetic algorithm begins with a randomly chosen assortment of chromosomes, which serves as the first generation (initial 
population). Then each chromosome in the population is evaluated by the fitness function to test how well it solves the 
problem at hand. Now the selection operator chooses some of the chromosomes for reproduction based on a probability 
distribution defined by the user. The fitter a chromosome is, the more likely it is to be selected. For example, if f is a non-
negative fitness function, then the probability that chromosome i is chosen to reproduce will be determined by equation 2: 

 

Pi = 
fi

∑ (fj)
n

j=1

                                                                                                                                                                          (2)                

 
1.6 Crossover 
 
Crossing over is a cellular process that happens during meiosis when chromosomes of the same type are aligned together. 
When two chromosomes from a mother and the father are lined up, parts of the chromosome can be switched. The two 
chromosomes contain the same genes but may have different forms of the genes [11]. 
The eggs and sperms, which could ultimately consolidate and develop into a renewed individual, each contain just a solitary 
arrangement of chromosomes. In the event that it was any other way, there would be simply such a large number of 
chromosomes drifting around. The gametes (egg and sperm cells) occur through meiotic division of germline cells with two 
full chromosome sets. There is initial a duplication of the germline cell, trailed by two divisions. After the underlying 
duplication, sets of chromosomes might trade portions of an arm. Early examiners understood that the likelihood of a 
recombination is generally corresponding to the chromosome length. The distance between two focuses on a chromosome 
that have a 1% likelihood of being isolated by a recombination occasion is 1 centimorgan (cM), named after the early 
hereditary qualities pioneer Thomas Chase Morgan. 
 



IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

24 

 
Fig 5. Crossover Techniques 

A Single Point Crossover is a crossover point in which crossovers on the parent organism string is selected. All data beyond 
that point in the organism string is swapped between the two parent organisms. Strings are characterized by Positional Bia. 
In a Two-Point Crossover, a specific case of a N-point Crossover technique. Two random points are chosen on the individual 
chromosomes (strings) and the genetic material is exchanged at these points. In a uniform crossover however, each gene 
(bit) is selected randomly from one of the corresponding genes of the parent chromosomes. These crossover techniques 
adopted in GA based solutions are shown in fig 5 above. 
In general, the crossover between two good solutions may not always yield a better or as good a solution. Since parents are 
good, the probability of the child being good is high. If offspring is not good (poor solution), it will be removed in the next 
iteration during “Selection” [12]. 
 
1.7 Mutation 
 
In certain new offspring formed, some of their genes can be subjected to a mutation with a low random probability. Normally, 
mutation takes place after crossover is done. This operator applies the changes randomly to one or more “genes” to produce 
a new offspring, so it creates new adaptive solutions good avoid local optima. For example, in binary encoding, one or more 
randomly chosen bits can be switched from 0 to 1 or from 1 to 0 [13]. 
 

 
 
Mutation occurs to maintain diversity within the population and prevent premature convergence [14]. 
 



IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

25 

In optimization, we start with some kind of initial values for the variables used in the experiment. Since these values and 
qualities may not be the best ones to utilize, we ought to transform them until getting the best ones. At times, these values 
are produced by complex capabilities that can't be tackled physically without any problem. However, it is vital to do 
improvement on the grounds that a classifier might create a bad classification accuracy. For instance, the data is noisy, or 
the used learning algorithm is weak but due to the bad selection of the learning parameters initial values. Subsequently, 
there are different optimization strategies proposed and suggested by operation research (OR) researchers to do such work 
of optimization [15]. The genetic algorithm solves optimization problems by mimicking the principles of biological evolution 
by repeatedly modifying a population of individual points using rules modelled on gene combinations in biological 
reproduction. Due to its random nature, the genetic algorithm improves the chances of finding a global solution. Thus, they 
prove to be very efficient and stable in searching for global optimum solutions. It helps to solve unconstrained, bound-
constrained, and general optimization problems, and it does not require the functions to be differentiable or continuous 
[16]. 
 

Table 1. The built-in standard genetic operators in the GA package in R 
Selection genetic operator Crossover genetic operator Mutation genetic operator 

linear-rank selection single-point crossover uniform random mutation 
tournament selection whole arithmetic crossover nonuniform random mutation 
truncation selection local arithmetic crossover random mutation around the 

solution 
 

 
Fig 6. The Process of GA package in R 

 
2. MATERIALS AND METHODS 

 
In this section, a GA is described that is used to find the best polynomial fit to a set of data. The entire process as implemented 
in R programming language is shown in fig 6. The population in this particular GA consists of strings of integers, each string 
of integers representing one particular polynomial. A maximum power for each term in the polynomial and a maximum 
number of terms in the polynomial are pre-set before the GA begins. Each term in a general polynomial consists of a constant 
multiplying a term as shown in equation 3. 
 

𝑋1
𝑝1 𝑋2

𝑝2 𝑋3
𝑝3 𝑋4

𝑝4 𝑋5
𝑝5…….. 𝑋𝑛

𝑝𝑛                                                                                                                                                                         (3) 

 
Where n is the number of variables and ∑ 𝑝𝑖=1 𝑖 must be less than or equal to the maximum power. Note that a 
constant term in the polynomial will have pi=0 for all i. An example of how a particular polynomial is represented by a string 
of integers is given by the polynomial: 
 
α1x5x22x31 + α2x10x22x33 + α3x11x27x30 + α4x10x20x30                                                                                                                                                                                          (4) 
 



IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

26 

which has four terms and three variables. This polynomial is represented within the GA by the string of integers: 
 
{(5,2,1), (0,2,3), (1,7,0), (0,0,0)} 
 
The cost function (or fitness function) in the GA is defined as the value after a linear least square fit has been performed to 
find the optimal values of the coefficients, α1, α2, α3 …. α4. 
 
The initial population is a set of randomly chosen polynomials. A random number is chosen to represent the number of 
terms in the polynomial (which must be less than the maximum number of terms) and random sequences of integers are 
chosen as the powers (with the restriction that their sum for each term must be less than the maximum power). To describe 
the crossover technique used, consider that each parent consists of a selection of polynomial terms. Crossover should 
somehow randomly distribute the terms of the parents to terms in the offspring, i.e., offspring number 1 would have some 
of parent l's terms and some of parent 2's terms, and likewise with offspring 2. The crossover technique must also take into 
account that repeated terms are not allowed. Suppose the two selected parents are:  
 
{(5,2,1), (0,2,3), (1,7,0), (0,0,0)} for parent 1 
and 
{(0,0,8), (0,2,3), (0,2,4), (3,0,1)} for parent 2 
 
Then for each chromosome/term in parent 1 a random number between 0 and 1 is picked. For the first chromosome in 
parent 1, (5,2,1), suppose the random number picked is 0.75, then (5,2,1) will go to child 1 with probability 0.75 and child 2 
with probability 0.25. This is repeated for all chromosomes in parent 1, so we may finish with offsprings:  
 
{(0,2,3), (0,0,0), .......... Child 1 
{(5,2,1), (1,7,0), .......... Child 2 
 
The same procedure is repeated for the chromosomes of parent 2. When the chromosome (0,2,3) is picked from parent 2 
(note that it already exists in child 1), probabilities are not used because repeat terms are not allowed, and it automatically 
goes to child 2. Mutation is performed by randomly introducing a completely new term in the polynomial, checking that this 
particular term does not already exist [17]. 
 
Genetic algorithms are a type of optimization algorithm inspired by the process of natural selection. They are widely used 
in various fields, including machine learning, engineering, and optimization. Polynomials, on the other hand, are 
mathematical expressions involving one or more variables raised to a power and multiplied by coefficients. They are widely 
used to approximate complex functions and to model real-world phenomena. Genetic algorithms can be used to find the 
coefficients of a polynomial that best fits a given set of data points. The process involves encoding the coefficients as 
chromosomes, and using genetic operators such as selection, crossover, and mutation to evolve a population of candidate 
solutions. The fitness function is typically defined as the sum of the squared errors between the polynomial and the data 
points. 
 
 
3. RESULTS 

 
The genetic algorithm iteratively generates new candidate solutions by selecting the fittest individuals from the current 
population, applying genetic operators to generate new offspring, and evaluating their fitness. The process continues until 
a termination criterion is met, such as reaching a maximum number of generations or achieving a certain level of fitness. 
Genetic algorithm generally may not give the best solution at the first instance. For a better solution, the operators, the 
number of iterations or the crossover and mutation rates may need to be changed. The Griewank function is a function 
widely used to test the convergence of optimization functions. It contains a lot of local optimums. The Griewank function of 
order n is defined by  

𝑓(𝑥) = 1 + 
1

4000
 ∑ 𝑥𝑖

2 −  ∏ 𝑐𝑜𝑠

𝑛

𝑖=0

(
𝑥

√𝑖
)

𝑛

𝑖=1

 

                                                                                                                              (5) 
𝑜𝑟 

𝑓(𝑥) =  ∑
 1

4000
 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠

𝑛

𝑖=1

(
𝑥

√𝑖
)

𝑛

𝑖=1

+ 1 

                                                                                                                              (6) 
 



IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

27 

 
Fig 7. The Girewank function 

The function is usually evaluated on the hypercube xi ∈ [-600, 600], for all i = 1, …, d. It is defined as:  
 

f(x) = 1 + (1
4000⁄  * sum(xi2) - prod(cos(xi/√𝑖)))                                                                                                                         (7) 

 
where xi is the ith element of the vector x, and i ranges from 1 to the dimension of the vector x. The function has a global 
minimum of 0 at x = (0, 0, ..., 0). The Griewank function shown in fig 7 above is commonly used to test the performance of 
optimization algorithms because it has many local minima and a large search space. It is also known for having a high degree 
of correlation between its variables, which can make optimization more challenging. The function's complexity increases 
with the dimension of the input vector x, which means that it becomes increasingly difficult to find the global minimum as 
the number of variables increases. A fitness function quantifies the optimality of a solution (chromosome) so that that 
particular solution may be ranked against all the other solutions. A fitness value is assigned to each solution depending on 
how close it actually is to solving the problem. Ideal fitness function correlates closely to goal and is quickly computable.  
Since we have determined the fitness function, let’s determine the chromosome type, fitness function, how many genes the 
chromosome will consist of, maximum iteration, selection type, population size and elitism. Elitism refers to the copying of 
the best chromosomes or chromosomes within the population as they are to the new population. In this work, we did not 
apply it for this example, but values such as 1–2 can be given. The crossover ratio is 0.8 and the mutation rate is 0.1. We can 
change those values if we want to. The selection type is the roulette wheel, the crossover type is single-point, and the 
mutation type is uniform random. 
 
4. DISCUSSION 

 
Genetic algorithms are a type of metaheuristic optimization algorithm inspired by the process of natural selection. They are 
commonly used to solve optimization problems that involve a large search space or multiple constraints. Polynomials are 
mathematical functions that involve a sum of powers in one or more variables. They are widely used in various fields of 
mathematics and engineering to approximate complex functions. Genetic algorithms can be used to find the coefficients of 
a polynomial that best fits a set of data points. This process involves encoding the coefficients as chromosomes and using 
genetic operators such as selection, crossover, and mutation to evolve a population of candidate solutions. The fitness 
function in this case is typically the sum of the squared errors between the polynomial and the data points. The genetic 
algorithm iteratively generates new candidate solutions by selecting the fittest individuals from the current population, 
applying genetic operators to generate new offspring, and evaluating their fitness. This process continues until a termination 
criterion is met, such as reaching a maximum number of generations or achieving a certain level of fitness. The results 
obtained from this experiment shows that though genetic algorithm can be used as a method of solving polynomials, they 
are expensive and take a little longer time to converge than using other known methods like Bisection, Regular-falsi and the 
rest. This can however be shortened by adjusting the population size and efficient fitness functions. 
 
5. CONCLUSION 
 
Using a genetic algorithm to fit a polynomial can be a computationally intensive process, especially for high-degree 
polynomials and large datasets. The process is repeated for several generations until a stopping criterion is met, such as a 



IGBOELI U., Techno-Science 6:1 (2023) 20-28 

 

28 

maximum number of generations or a satisfactory level of fitness. The final solution is the chromosome with the highest 
fitness value. PGAs can be effective for solving a wide range of optimization problems, particularly those that involve 
polynomial functions. However, they can be computationally expensive and may require careful tuning of parameters such 
as population size, mutation rate, and crossover rate to achieve good results. 
 
REFERENCES 
 

[1] BajPai, P., Kumar, M. (1999). Genetic Algorithm – an Approach to Solve Global Optimization Problems, Indian 
Journal of Computer Science and Engineering, Vol 1 No 3 199-206. 

[2] Hoffmeister, F., Bäck, T. (1991). Genetic Algorithms and evolution strategies: Similarities and differences. Lecture 
Notes in Computer Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007 /BFb0029787. 

[3] Dao, S.D., Abhary, K. & Marian, R. (2017). An improved genetic algorithm for multidimensional optimization of 
precedence-constrained production planning and scheduling. J Ind Eng Int 13, 143–159. 
https://doi.org/10.1007/s40092-016-0181-7 

[4] Clegg J., Dawson J., Stuart P., Barley M.  (2005). The use of a genetic algorithm to optimize the functional form of a 
multi- dimensional polynomial fit to experimental data. In: IEEE Congress on Evolutionary Computation, Edinburgh. 
IEEE Congress on Evolutionary Computation, Edinburgh , pp. 928-934. 

[5] Goldbeg, D. (1999). Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley Publishing 
Co.inc. 

[6] Chudasama, C., Shah, S., Panchal, M. (2011). Comparison of Parents Selection Methods of Genetic Algorithm for 
TSP. Proceeding published by International Journal of Computer Application (IJCA). International Conference on 
Computer Communication and Network CSI-COMNET-2011. 

[7] Diaz-Gomez, P., Hougen, D. F. (2007). Initial population for genetic algorithms: a metric approacs. In: Proceedings 
of the 2007 International Conference on Genetic and Evolutionary Methods, GEM, Nevada, USA. 2007; pp. 55–63. 

[8] Kour, H., Sharma, P., Abrol, P. (2015). Analysis of fitness function in genetic algorithms, Journal of Scientific and 
Technical Advancements, Volume 1, Issue 3, pp. 87-89, ISSN: 2454-1532. 

[9] Fan, W., Fox, E., Pathak, P., Wu, H. (2004). The effects of fitness functions on genetic programming‐based ranking 
discovery for Web search, Journal of the Association for Information Science and Technology, https://doi.org/10. 
1002/asi.20009. 

[10] Varnamkhasti, J., Lee, L. (2012). A Fuzzy Genetic Algorithm Based on Binary Encoding for Solving 
Multidimensional Knapsack Problems, Journal of Applied Mathematics Volume 2012, Article ID 703601, 
http://dx.doi.org/10.1155 /2012/703601. 

[11] Wetterstrand, K. (2023). Crossing Over, National Human Genome Research Institute, 
https://www.genome.gov/genetics-glossary/Crossing-Over, accessed on 2023-02-13. 

[12] Dutta, A. (2019). Crossover in Genetic Algorithm, https://www.geeksforgeeks.org/ crossover-in-genetic-algorithm/, 
accessed on 2023-03-02. 

[13] Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., Prasath, V. (2019). Choosing Mutation 
and Crossover Ratios for Genetic Algorithms—A Review with a New Dynamic Approach. Information, 10(12), 390. 
MDPI AG. Retrieved from http://dx.doi.org/ 10.3390/ info10120390, accessed on 2023-03-18. 

[14] Mallawaarachchi, V. (2017). Introduction to Genetic Algorithms, https://towardsdatascience.com/introduction-to-
genetic-algorithms-including-example-code-e396e98d8bf3, accessed on 2023-02-15. 

[15] Gad, A. (2018). Introduction to Optimization with Genetic Algorithm https:// towardsdatascience.com/introduction-
to-optimization-with-genetic-algorithm-2f5001d9964b, accessed on 2023-01-11. 

[16] Mishra, S., Sahoo S., Das, M. (2017). Genetic Algorithm: An Efficient Tool for Global Optimization, Advances in 
Computational Sciences and Technology, ISSN 0973-6107 Volume 10, Number 8 (2017) pp. 2201-2211.  

[17] Clegg, J., Dawson, J., Porter, S., Barley, M. (2005). The use of a genetic algorithm to optimize the functional form of a 
multi- dimensional polynomial fit to experimental data. In: IEEE Congress on Evolutionary Computation, 
Edinburgh. IEEE Congress on Evolutionary Computation, 02-05 Sep 2005 IEEE , Edinburgh , pp. 928-934. 

 
 

Techno-Science Paper ID: 1273265 
 

 

http://creativecommons.org/licenses/by-nc/4.0/

