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Abstract

In the present framework, the coupled mathematical model of the atmosphere-ocean system called El Nino-Southern
Oscillation (ENSO) is analyzed with the aid Adams-Bashforth numerical scheme. The fundamental aim of the present
work is to demonstrate the chaotic behaviour of the coupled fractional-order system. The existence and uniqueness are
demonstrated within the frame of the fixed-point hypothesis with the Caputo–Fabrizio fractional operator. Moreover, we
captured the chaotic behaviour for the attained results with diverse order. The effect of the perturbation parameter and
others associated with the model is captured. The obtained results elucidate that, the present study helps to understand the
importance of fractional order and also initial conditions for the nonlinear models to analyze and capture the corresponding
consequence of the fractional-order dynamical systems.
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1 Introduction

The study of mathematical models is always a venue for innovation. It attracted researchers to illustrate their viewpoints and
forecast the future significances of the associated phenomena. In this regard, the most efficient and reliable tool is calculus
with both integral and differential operators. Most of the phenomena associated with the rate of change are modelled to assist
these operators in the modernization of day-day life. For instance, the security of the country, biological processes, economic
status, physical mechanism, chemical reaction, weather forecast, coastal and ocean engineering, and many others are examined
as well moderated with the aid of mathematical modelling. Moreover, it becomes an interdisciplinary subject due to its ability to
exemplify complex phenomena, and also it plays a vital role in creating a bridge between diverse areas. However, many researchers
proved that the generalization of classical calculus is very essential to capture the more complex nature of the nonlinear problems
associated with daily life. Later, they suggest the concept of calculus with fractional order called fractional calculus (FC) [1, 2, 3, 4, 5].
Even though it originated earlier, it recently fascinated scholars to investigate more essential behaviours the mathematical models
described by differential equations [6, 7, 8, 9, 10].
On the other hand, the study of climate with irregularly intervallic changes in sea surface and wind temperatures is a hot topic
in the present era due to its significance in diverse fields associated with living beings. Here, we consider the mathematical
model exemplifying the atmospheric component coupled with the sea temperature change high air surface pressure, called El
Nino-Southern Oscillation (ENSO) [11, 12, 13, 14]. In the tropical western Pacific, La Niña is with low air surface pressure and El
Niño with high air surface pressure. The dynamics of recount the oscillating physical mechanism of the ENSO model with the
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thermocline depth anomaly v(t) and temperature of the eastern equatorial Pacific Sea surface u (t) is presented with perturbation
coefficient ε as [15, 16, 17, 18] follows

du (t)
dt = βu + ηv – εu3,

dv (t)
dt = –θu – γv, (1)

where β, η, θ and γ are physical constants. The projected coupled system plays an important role in various phenomena. The
projected system is analysed by many researchers to present their viewpoints and also capture linear and complex nature using
many semi-analytical and numerical schemes [11, 12, 13, 14, 15, 16, 17, 18]. In the literature, we have distinct fractional operators,
each one has its own limitation while examining the complex phenomena. In the present investigation, we consider the fractional
operator without singular kernel, called Caputo-Fabrizio (CF) operator in Caputo sense [6], to examine the projected system. Due
to more ability to capture the complex nature associated with history-based consequences and memory-related properties, FC is an
interdisciplinary subject. Its fundamentals and theories are considered to study diverse real-world problems and attain numerous
essential results [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Notably, results associated with hereditary, memory, random walk, long-
range memory, non-Markovian processes, anomalous diffusion, and others highly necessitate the concept of FC. In this regard,
authors in [36], the effect of generalizing the classical concept with the newly defined fractional operator to investigate about the
HBV infection with antibody immune response, the nature of Belousov–Zhabotinskii reaction systems have been captured within
the frame of Atangana–Baleanu fractional-order derivative by researchers in [37], some ingesting results are derived by authors
in [38] about the vector born disease with the help of efficient scheme and Caputo–Fabrizio derivative, the strong interacting
internal waves model has been examined with the reliable numerical method with a novel fractional operator in [39], and authors
in [40, 41, 42, 43, 44, 45] derived some essential properties of the fractional operators.
Here, we consider Eq. (1) with the CF operator as follows

CF0 Dµt u (t) = βu + ηv – εu3,
CF0 Dµt v (t) = –θu – γv, (2)

where CF0 Dµt is a CF derivative with order µ.
The rest of the investigation is organized as follows: we recalled basic definitions of the considered fractional operator in the next
section. In Section 3, the basic algorithm of the considered method is presented, and in the next section, the condition for the
existence and uniqueness of solutions for the projected system is illustrated. The results and discussion on the derived results are
illustrated in Section 5, and concluding remarks are presented in the lost section.

2 Preliminaries

The basic notions of FC are recalled in the present segment [30, 31].
A real function f(t), t > 0 is said to be in space Cν,ν ∈ R if there exists a real number k(> ν), such that f(t) = tkf1, where f1(t) ∈ C[0,∞),
which is also in space if and only if u(n) ∈ Cν, n ∈ N.
Definition 1. The Caputo fractional derivative of f ∈ Cn–1 is presented as

Dµt f (t) = 1
Γ(n – µ)

∫ t

0 (t – ϑ)n–µ–1 dn

dtn f (ϑ) dϑ. (3)

Definition 2. The Caputo-Fabrizio (CF) fractional derivative in Caputo sense for a function f ∈ H1 (a, b) ( b > a) is [6]
CF0 Dµ0,t

(
f (t)) = N [µ]1 – µ

∫ t

0 f
′ (ϑ) exp

[
–µ (t – ϑ)

1 – µ
]

dϑ, (4)

where N [µ] (N [0] = N [1] = 1) is normalization function.
But, in case the function u does not belong to H1(a, b), the CF derivative for this version is defined as

CF0 Dµ0,t
(

f (t)) = µN [µ]1 – µ
∫ t

0 f(t) – f (ϑ) exp
[
–µ (t – ϑ)

1 – µ
]

dϑ. (5)

Later, Losada and Nieto in [20] modified the above CF fractional derivative as follows
CF0 Dµ0,t

(
f (t)) = (2 – µ)N [µ]

2(1 – µ)
∫ t

0 f
′ (ϑ) exp

[
–µ (t – ϑ)

1 – µ
]

dϑ. (6)

Definition 3. The Caputo-Fabrizio (CF) fractional integral for µ ∈ (0, 1) is defined as
CF0 Iµt

(
f (t)) = 1 – µ

N [µ] f(t) + µ

N [µ]
∫ t

0 f (ϑ) dϑ, t ≥ 0. (7)
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3 Numerical method

In this segment, with the Caputo–Fabrizio operator, the two-step Adams–Bashforth method is hired [32, 33, 34]
CF0 Dµt (u (t)) = N [µ]1 – µ

∫ t

0 u
′ (ϑ) exp

[
–µ t – ϑ

1 – µ
]

dϑ . (8)

Now, the grid size for some integer N for finite difference method is k = 1
N . Further, the grid points are presented in the time

interval [0, T] as tn = nk, n = 0, 1, 2, . . . , TN. At the grid point, the value of the function ui = u
(

ti
). For the fractional-order

Caputo–Fabrizio derivative, a discrete approximation is presented as [34]
CF0 Dµt (u (tn)) = N [µ]1 – µ

∫ tn

0 u
′ (ϑ) exp

[
–µ tn – ϑ

1 – µ
]

dϑ . (9)

By the assist of first-order approximation, the above equation simplifies
CF0 Dµt

(
u
(

tj
)) = N [µ]1 – µ

n∑
j=1

∫ jk

(j–1)k

(
uk+1 – uk

∆t +O (∆t)
)

exp
[
–µ tj – ϑ

1 – µ
]

dϑ . (10)

But
N [µ]1 – µ

n∑
j=1

(
uj+1 – uj

∆t +O (∆t)
) ∫ jk

(j–1)k
exp

[
–µ tj – ϑ

1 – µ
]

dϑ , (11)

CF0 Dµt
(

u
(

tj
)) = N [µ]

µ

n∑
j=1

(
uj+1 – uj

∆t +O (∆t)
)

dj,k, (12)

where
dj,k = exp

[
–µ k

1 – µ (n – j + 1)
]

– exp
[
–µ k

1 – µ (n – j)
]

. (13)

Finally, we obtained
CF0 Dµt (u (tn)) = N [µ]

µ

n∑
j=1

(
uj+1 – uj

∆t

)
dj,k + N [µ]

µ

n∑
j=1

dj,kO (∆t). (14)

4 Existence and uniqueness of solutions

Here, present the existence and uniqueness of the hired model within the frame of the fixed-point theorem. The system defined
in Eq. (2) hired as follows { CF0 Dµt [u (t)] = G1 (t, u) = βu + ηv – εu3,

CF0 Dµt [v (t)] = G2 (t, v) = –θu – γv. (15)

Now, using Eq. (2), we have
u (t) – u (0) = CF0 Iµt

{
βu + ηv – εu3} ,

v (t) – v (0) = CF0 Iµt {–θu – γv} . (16)
Then we have from [35] as follows

u (t) – u (0) = 2µ
(2 – µ)N (µ)

∫ t

0 G1 (ζ, u) dζ + 2 (1 – µ)
(2 – µ)N (µ)G1 (t, u) ,

v (t) – v (0) = 2µ
(2 – µ)N (µ)

∫ t

0 G2 (ζ, v) dζ + 2 (1 – µ)
(2 – µ)N (µ)G2 (t, v) . (17)

Theorem 1. The kernels G1 and G2 satisfies the Lipschitz condition and contraction if 0 ≤
(
β + ηλ2 – ε(a2 + b2 + ab

)) < 1 and
0 ≤ (θλ1 + γ) < 1, satisfies respectively.
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Proof. We consider the two functions u and u1 to prove the required result, then
‖G1 (t, u) – G1 (t, u1)‖ = ∥∥∥(β [u (t) – u (t1)] + ηv (t) – ε[u3 (t) – u3 (t1)]

)∥∥∥
= ∥∥∥(β [u (t) – u (t1)] + ηv (t) – ε[u2 (t) + u2 (t1) + u (t) u (t1)] [u (t) – u (t1)]

)∥∥∥
≤

∥∥∥β + ηv (t) – ε(a2 + b2 + ab
)∥∥∥ ∥∥u (t) – u(t1)∥∥

≤
(
β + ηλ2 – ε(a2 + b2 + ab

))∥∥u (t) – u(t1)∥∥ , (18)
where ‖v (t)‖ ≤ λ2 be the bounded function. Since u and u1 are bounded, we have ‖u (t)‖ ≤ a and ‖u (t1)‖ ≤ b. Setting ρ1 =
β + ηλ2 – ε(a2 + b2 + ab

) in the above inequality, then we have
‖G1 (t, u) – G1 (t, u1)‖ ≤ ρ1 ‖u (t) – u (t1)‖ . (19)

Eq. (19) provides the Lipschitz condition for G1. Similarly, we can see that if 0 ≤ (β + ηλ2 – ε(a2 + b2 + ab
)) < 1, then it implies

the contraction. In the same way for ρ2 = θλ1 + γ, we can prove
‖G2 (t, v) – G2 (t, v1)‖ ≤ ρ2 ‖v (t) – v (t1)‖ . (20)

By the assist of Eq. (20), Eq. (17) gives

u (t) = u (0) + 2µ
(2 – µ)N (µ)

∫ t

0 G1 ( ζ, u) dζ + 2 (1 – µ)
(2 – µ)N (µ)G1 ( t, u) ,

v (t) = v (0) + 2µ
(2 – µ)N (µ)

∫ t

0 G2 ( ζ, v) dζ + 2 (1 – µ)
(2 – µ)N (µ)G2 ( t, v) . (21)

Then obtain the recursive form as
un (t) = 2µ

(2 – µ)N (µ)
∫ t

0 G1 (ζ, un–1) dζ + 2 (1 – µ)
(2 – µ)N (µ)G1 (t, un–1) ,

vn (t) = 2µ
(2 – µ)N (µ)

∫ t

0 G1 (ζ, vn–1) dζ + 2 (1 – µ)
(2 – µ)N (µ)G1 (t, vn–1) . (22)

The associated initial conditions are
u (0) = u0 (t) and v (0) = v0 (t) . (23)

Now, between the terms the successive difference is presented as

φ1n (t) = un (t) – un–1 (t) = 2 (1 – µ)
(2 – µ)N (µ) (G1 (t, un–1) – G1 (t, un–2)) + 2µ

(2 – µ)N (µ)
∫ t

0 (G1 (t, un–1) – G1 (t, un–2)) dζ,
φ2n (t) = vn (t) – vn–1 (t) = 2 (1 – µ)

(2 – µ)N (µ) (G2 (t, vn–1) – G2 (t, vn–2)) + 2µ
(2 – µ)N (µ)

∫ t

0 (G2 (t, vn–1) – G2 (t, vn–2)) dζ. (24)

Notice that

un (t) = n∑
i=1
φ1i (t),

vn (t) = n∑
i=1
φ2i (t). (25)

Therefore

‖φ1n (t)‖ = ‖un (t) – un–1 (t)‖ =
∥∥∥∥ 2 (1 – µ)

(2 – µ)N (µ) (G1 (t, un–1) – G1 (t, un–2)) + 2µ
(2 – µ)N (µ)

∫ t

0 (G1 (t, un–1) – G1 (t, un–2)) dζ
∥∥∥∥∥ . (26)

The above equation simplifies with the assist of the triangular inequality, as

‖φ1n (t)‖ = ‖un (t) – un–1 (t)‖ = 2 (1 – µ)
(2 – µ)N (µ) ‖(G1 (t, un–1) – G1 (t, un–2))‖ + 2µ

(2 – µ)N (µ)
∥∥∥∥∥
∫ t

0 (G1 (t, un–1) – G1 (t, un–2)) dζ
∥∥∥∥∥ . (27)

Then we have for u admitting the Lipschitz condition

‖φ1n (t)‖ = ‖un (t) – un–1 (t)‖ ≤ 2 (1 – µ)
(2 – µ)N (µ)ρ1

∥∥∥φ1(n–1) (t)∥∥∥ + 2µ
(2 – µ)N (µ)ρ1

∫ t

0
∥∥∥φ1(n–1) (t)∥∥∥ dζ. (28)
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Similarly, one can get

‖φ2n (t)‖ ≤ 2µ
(2 – µ)N (µ)ρ2

∫ t

0
∥∥∥φ2(n–1) (ζ)∥∥∥ dζ + 2 (1 – µ)

(2 – µ)N (µ)ρ2
∥∥∥φ2(n–1) (t)∥∥∥ . (29)

Now, we state the following theorem with the assist of the above attained results:
Theorem 2. If we have specific t0 , then the solution for Eq. (2) will exist and be unique. Further, we have for i = 1, 2.

2 (1 – µ)
(2 – µ)N (µ)ρi + 2µ

(2 – µ)N (µ)ρit0 < 1,

Proof. Let u (t) and v (t) be the bounded functions admitting the Lipschitz condition. Then, we get by Eqs. (28) and (29)
∥∥φ1i (t)∥∥ ≤ ‖u (0)‖

[ 2µ
(2 – µ)N (µ)ρ1t + 2 (1 – µ)

(2 – µ)N (µ)ρ1
]n,

∥∥φ2i (t)∥∥ ≤ ‖vn (0)‖
[ 2µ

(2 – µ)N (µ)ρ2t + 2 (1 – µ)
(2 – µ)N (µ)ρ2

]n. (30)

Therefore, for the obtained solutions, continuity and existence are verified. Now, to prove the Eq. (30) is a solution for Eq. (2), we
consider

u (t) – u (0) = un (t) –K1n (t) ,
v (t) – v (0) = vn (t) –K2n (t) . (31)

Let us consider
‖K1n (t)‖ = ‖ 2 (1 – µ)

(2 – µ)N (µ)
(
G1 (t, u) – G1(t, un–1)) + 2µ

(2 – µ)N (µ)
∫ t

0 (G1 (ζ, u) – G1 (ζ, un–1)) dζ‖

≤
2 (1 – µ)

(2 – µ)N (µ) ‖(G1 (t, u) – G1 (t, un–1))‖ + 2µ
(2 – µ)N (µ)

∫ t

0 ‖(G1 (ζ, u) – G1 (ζ, un–1))‖ dζ

≤
2 (1 – µ)

(2 – µ)N (µ)ρ1 ‖u – un–1‖ + 2µ
(2 – µ)N (µ)ρ1 ‖u – un–1‖ t. (32)

This process gives

‖K1n (t)‖ ≤
( 2µ

(2 – µ)N (µ) t + 2 (1 – µ)
(2 – µ)N (µ)

)n+1
ρn+11 M.

Similarly, at t0we can obtain

‖K1n (t) ‖ ≤
( 2µ

(2 – µ)N (µ) t0 + 2 (1 – µ)
(2 – µ)N (µ)

)n+1
ρn+11 M. (33)

As n → ∞ and from Eq. (33), ‖K1n (t)‖→ 0. Similarly, we can verify for ‖K2n (t)‖. Next, for the solution of the projected model, we
prove its uniqueness. Suppose u∗ (t) and v∗ (t) , be the set of other solutions, then

u (t) – u∗ (t) = 2 (1 – µ)
(2 – µ)N (µ)

(
G1 (t, u) – G1 (t, u∗)) + 2µ

(2 – µ)N (µ)
∫ t

0
(
G1 (ζ, u) – G1 (ζ, u∗)) dζ. (34)

Now, employing the norm on the above equation, we get
∥∥u (t) – u∗ (t)∥∥ =

∥∥∥∥∥ 2 (1 – µ)
(2 – µ)N (µ)

(
G1 (t, u) – G1 (t, u∗)) + 2µ

(2 – µ)N (µ)
∫ t

0
(
G1 (ζ, u) – G1 (ζ, u∗)) dζ

∥∥∥∥∥
≤

2µ
(2 – µ)N (µ)ρ1t

∥∥u (t) – u∗ (t)∥∥ + 2 (1 – µ)
(2 – µ)N (µ)ρ1 ∥∥u (t) – u∗ (t)∥∥ . (35)

On solving
∥∥u (t) – u∗ (t)∥∥(1 – 2µ

(2 – µ)N (µ)ρ1t – 2 (1 – µ)
(2 – µ)N (µ)ρ1

)
≤ 0. (36)

From Eq. (36), it is clear that u (t) = u∗ (t), if(
1 – 2µ

(2 – µ)N (µ)ρ1t – 2 (1 – µ)
(2 – µ)N (µ)ρ1

)
≥ 0. (37)

Hence, Eq. (37) proves our required proof.
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5 Results and discussion

The study of complex nature associated with real-world models always attracted young researchers to present their viewpoints
and illustrated novel properties of the corresponding system. In this work, we hired coupled system exemplifying the atmospheric
ocean, namely ENSO model using a novel fractional derivative. The considered coupled system is analysed with the initial conditions
u (0) = u0 (t) = 1 and v (0) = v0 (t) = 1. The nature of hired model for different µ is captured in Figure 1. From these figures, we can
observe that as order increase, the complex nature reduces, specifically for µ = 0.85 we can observe more cycles in the plots. For
different values of the perturbation parameter, the response of the achieved results is captured and cited in Figure 2. For η = 4,
we can evidence the more complex nature as compared to η = 2. Similarly, we captured the nature for distinct θ and presented
it in Figure 3. The present investigation confirms that the slight changes in the physical parameters associated to systems and
furthers will help us investigate and predict the corresponding essential behaviour of the system. The fractional operator allows
us to capture the more complex nature of the same system associated with time-based properties.
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μ= 0.99
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Figure 1. Behaviour of the results achieved for (a) µ = 0.85, (b)µ = 0.90 and (c)µ = 0.99 at β = 1, η = 1, θ = 1,γ = 1 and ε = 0.1.
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Figure 2. Nature of the results achieved for (a) η = 2 and (b)µ = 4 at β = 1, µ = 0.95, θ = 1,γ = 1 and ε = 0.1.
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Figure 3. Response of the results achieved for (a) θ = 2, (b) θ = 3 and (c) θ = 4 at β = 1, η = 1,µ = 0.95,γ = 1 and ε = 0.1.

6 Conclusion

In the present study, we analysed the atmospheric ocean model within the frame of the novel fractional operator using an efferent
numerical scheme. The complex nature of the considered ENSO model captured for distinct fractional order in parametric plots.



P. Veeresha | 9

The behaviour for different parameters associated with coupled system is analysed and presented in plots. The conditions for
both existence and uniqueness are archived in the present study for the considered system with the aid of Fixed-point theory and
Banach space.
The capture plots show that the hired system is exceptionally reliant on the fractional operator. The projected method finds the
solution for the employed system without making any perturbation, transformations, or discretization. The consequences attained
in the present study are simulating as related to results available in the literature. Moreover, the hired system plays an important
part in weather forecast and ocean consequences related to the daily life of the living beings. Hence, the present investigation
can aid the researchers to investigate more regarding the model and opens the door for innovation. Finally, the efficiency and
reliability of both considered operator and algorithm can be evidence with the help of the present investigation and further, they
can employ for the complex model to study corresponding consequences.
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