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Abstract
In the present paper, we implement a novel numerical method for solving differential equations with fractional variable-
order in the Caputo sense to research the dynamics of a circulant Halvorsen system. Control laws are derived analytically to
make synchronization of two identical commensurate Halvorsen systems with fractional variable-order time derivatives.
The chaotic dynamics of the Halvorsen system with variable-order fractional derivatives are investigated and the identical
synchronization between two systems is achieved. Moreover, graph simulations are provided to validate the theoretical
analysis.
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1 Introduction

Recently chaos theory has attracted the scientific community. It has revalorized the evolution of science and technology immedi-
ately its appearance in 1963 [1]. This is primarily due to the unpredictable dynamic behavior and the sensitivity to initial conditions.
The concept of chaotic science is extensively referred to the science of revelations, of the unpredictable and nonlinear. Therefore,
when studying chaotic phenomena one should expect the unexpected. Besides, chaos theory has become an effective research area,
because of the various applications of chaos in several disciplines like economy, chemistry, physics, engineering, ecology, robotics,
secure communications etc [2]. In the literature, there are many familiar chaotic systems like: Lorenz system, Lu system, Ikeda
system, Sprott-Linz system, Jerk system etc [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31].
Moreover, the modeling of problems in physics, engineering, and real-life phenomena reflects the mathematical tools available
at the time of their development. Therefore, most real-life problems have been described by means of differential equations with
non-integer order derivatives [32]. Recently, many papers focused their attention on ODEs and PDEs with non-integer-order
derivatives owing to their common aspect in assorted applications in finance, medical, fluid mechanics, viscoelasticity, biology,
physics, and engineering [33, 34, 35, 36, 37]. Therefore, there is abundant literature developed touching the applications of frac-
tional differential equations in non-linear dynamics [38, 39, 40, 41, 42, 43, 44]. Accordingly, considerable attention of fractional
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equations and their solutions have been given [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. Nowadays, the
variable-order fractional calculus (VOFC) is becoming a very useful instrument, due to the numerous applications in science and
engineering [62] and a few studies have been declared in the literature using derivatives with variable-order [63, 64]. More re-
cently, in [65], a physical empirical study that includes the variable-order operators has been investigated.
In this paper, we will discuss a novel numerical method for obtaining the solutions of ODEs with variable-order time-fractional
derivatives (VOFD). We then study the chaotic dynamics of a Halvorsen system with VOFD and achieve the identical synchroniza-
tion between two systems.
Our paper organization is as follows: Section 2 deals with some fundamental definitions of VOFC and stability theory as well as
it introduces a new numerical scheme for solving fractional-ordered DEs. Besides three illustrative examples explain the compar-
isons between solutions we obtained and the results in the literature in this section. In section 3, a circulant chaotic system with
fractional-order derivatives is presented, its qualitative properties are explained in detail. Section 4 deals with the synchronization
results. In section 5, numerical simulations are reported. Finally, in section 6, the main conclusions are outlined.
2 Preliminaries

Preliminaries for variable-order fractional calculus

In this section, we recall some definitions and properties of the VOFC; they are obtained by changing the order of the fractional
derivation by a continuous bounded function in the counterparts.
Definition 1 [66] For any bounded function κ(t), the variable-order Caputo fractional derivative (VOCFD) of a functionφ is given by

Dκ(t)
C φ(t) = 1

Γ(r – κ(t))
∫ t
0
[

φ(r)(s)
(t – s)κ(s)+1–r

]
ds, (1)

as long as the integral exists, with r – 1 < κ(t) ≤ r, r = [max0≤t≤Tκ(t)] + 1, where [ρ] is the integer part of ρ, and Γ(.) is the Gamma function.
When κ(t) is a constant, then we retrieve the constant-order fractional derivative in the Caputo sense.

Remark 1 Throughout this paper we think that the function κ(t) is defined such that the integral in the previous definition exists.
Remark 2 Theoretical analysis on existence of solutions of various initial value problems with VOFDs has been given in some
studies (see for instance [62] and [67]).

The stability theorem

Consider a general variable-order fractional (VOF) system


Dκ(t)
c x(t) = ξ1(x, y, z),
Dκ(t)
c y(t) = ξ2(x, y, z),
Dκ(t)
c z(t) = ξ3(x, y, z),

(2)

where κ(t) ∈ (0, 1] is the order function that is bounded and continuous, t ≥ 0, and initial conditions (x(0), y(0), z(0)) = (x0, y0, z0).
The equilibrium of system (2) can be deduced via solving the coupled equations



ξ1(x, y, z) = 0,
ξ2(x, y, z) = 0,
ξ3(x, y, z) = 0,

(3)

and the Jacobian of system (2) is shown as follows

J =

∂ξ1
∂x

∂ξ1
∂y

∂ξ1
∂z

∂ξ2
∂x

∂ξ2
∂y

∂ξ2
∂z

∂ξ3
∂x

∂ξ3
∂y

∂ξ3
∂z

 . (4)

The stability of system (2) counts on the stability of eigenvalues λi of the Jacobian J. To categorize the equilibrium point of system
(2), we will use the extended necessary stability condition for VOF systems [66].
We denote κR = max0≤t≤T κ(t) and κr = min0≤t≤T κ(t).
Theorem 1 Say that E is a given equilibrium point of the following autonomous system

Dκ(t)
t X(t) = F(X), (5)
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where X(0) = X0, 0 < κ(t) ≤ 1 is bounded and continuous and X ∈ Rn.
If the λi values of J = ∂F

∂X |E hold
|arg(λi)| > π2 κR, (6)

in that case system (5) is locally asymptotically stable at the balance value E. Else, if |arg(λi)| < π2 κr system (5) is unstable.

A numerical scheme for solving VOF differential equations

Taking into account that variable-order fractional differentiation is a generalization constant-order fractional differentiation
(COFD), some well-known relations including composition and sequential derivative rules for COFD do not remain valid for VOFD.
Consequently, solving differential equations under variable-order derivatives needs different methodologies, modifications, and/or
generalizations for the known concepts. Inspired by the recent works [68] and [69], we introduce in what follows a new scheme
for solving FDEs with variable-order.
Let us take the following VOF system: {

C0Dxκ(t) (t) = F(t, x (t)) for 0 < t ≤ T,
x (0) = x0, (7)

where F is a general nonlinear function, 0 < κ(t) ≤ 1 and x0 is the initial condition.
Applying the operator Iκ(t) on both sides of equation (7) we get

x (t) = x0 + 1
Γ(κ(t))

∫ t
0 F (s, x (s)) (t – s)κ(t)–1ds. (8)

Now we choose the following uniform grid:

h = TN , tn = nh, forn = 0, 1, 2, ...,N, t0 = 0 and Tn = T.
For a given t = tn+1, n = 0, 1, 2 . . . ,N it yields

x (tn+1) = x0 + 1
Γ(κ(t))

∫ tn+1
0 F (s, x (s)) (tn+1 – s)κ(t)–1ds

= x0 + 1
Γ(κ(t))

n∑
k=0

∫ tk+1
tk

F (s, x (s)) (tn+1 – s)κ(t)–1ds. (9)

It is well-known that composite Lagrange interpolation consists in splitting the interval into many subintervals, and uses a
lower order Lagrange interpolation in each subinterval, in order to have a good approximation of a function. Therefore, on each
subinterval [tk, tk+1

], we approximate F (s, x (s)) with a Lagrange interpolation polynomial:

Pk (τ) = s – tk–1
tk – tk–1 F

(
tk, x (tk)) – s – tk

tk – tk–1 F
(
tk–1, x (tk–1

))
= F

(
tk, x (tk))
h

(
s – tk–1

) – F
(
tk–1, x (tk–1

))
h (s – tk)

'
F
(
tk, xk)
h

(
s – tk–1

) – F
(
tk–1, xk–1

)
h

(
s – tk) .

Coming back to (9), we get the following

xn+1 = x0 + 1
Γ(κ(t))

n∑
k=0

F
(
tk, xk)
h

∫ tk+1
tk

(
s – tk–1

) (tn+1 – s)κ(t)–1ds (10)

– 1
Γ(κ(t))

n∑
k=0

F
(
tk–1, xk–1

)
h

∫ tk+1
tk

(
s – tk) (tn+1 – s)κ(t)–1ds.

Next, we compute the following coefficients

Aκ(t),k,1 =
∫ tk+1
tk

(
s – tk–1

) (tn+1 – s)κ(t)–1ds,

and
Bκ(t),k,2 =

∫ tk+1
tk

(
s – tk) (tn+1 – s)κ(t)–1ds.
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A simple integration leads to

Aκ(t),k,1 = (n + 1 – k)κ(t) (n – k + 2 + κ(t)) – (n – k)κ(t)(n – k + 2 + 2κ(t))
κ(t)(κ(t) + 1) , (11)

and

Bκ(t),k,2 = (n + 1 – k)κ(t)+1 – (n – k)κ(t)(n – k + 1 + κ(t))
κ(t)(κ(t) + 1) . (12)

Inserting (11) and (12) in equation (10) gives the following approximation

xn+1 = x0 + n∑
k=0
Qk
((n + 1 – k)κ(t) (n – k + 2 + κ(t)) – (n – k)κ(t)(n – k + 2 + 2κ(t)))

– n∑
k=0
Qk–1

((n + 1 – k)κ(t)+1 – (n – k)κ(t)(n – k + 1 + κ(t))). (13)

Qk = hκ(t)F(tk,xk)
Γ(κ(t)+2) and Qk–1 = hκ(t)F(tk–1,xk–1)

Γ(κ(t)+2) .
To prove the accuracy and the applicability of the above described method, we give some examples and find their solutions. The
obtained numerical solutions are compared with the exact solutions if the case arises, otherwise, we made a comparison with
obtained results via other known methods.

Example 1 First we take the following linear FDE, where the fractional operator is taken in the Caputo sense:


Dκ(t)
c x(t) = cos(2t), t ∈ [0, T]
x(0) = 0.

(14)

The application of the fractional integral on both sides of (14) gives the following exact solution:

x(t) = –23/2–κ(t)tα (t) LS (κ (t) + 1/2, 3/2, 2 t) + 2 tκ(t)+1/2κ (t)
2Γ (2 + κ (t))√t

+2 tκ(t)+1/2 – 2–κ(t)+1/2LS (κ (t) + 3/2, 1/2, 2 t)
2Γ (2 + κ (t))√t ,

where LS is the Lommel’s function. Let us take κ(t) = 0.9 – 0.05 t1+t solve equation (14) numerically using the above proposed scheme for a
step-size h = 0.01, N = 1000 and T = 10. Figure 1 plots the profile of numerical solution vs exact solution of (14), it is clear that the suggested
algorithm furnishes accurate numerical results.

Figure 1. Exact vs numerical solution of (14) for κ(t) = 0.9 – 0.05 t1+t .
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Example 2 Now we take into account the following equation


Dκ(t)
c x(t) = e–√t2 , t ∈ [0, T]
x(0) = 0.

(15)

Similarly, we get the following exact solution for equation (15)

x(t) = t1/2κ(t)e–1/2 tW (–1/2κ (t) , 1/2κ (t) + 1/2, t)
t (1 + κ (t)) Γ (κ (t))

+ t1/2κ(t)e–1/2 tW (–1/2κ (t) + 1, 1/2κ (t) + 1/2, t)
tκ (t) (1 + κ (t)) Γ (κ (t)) ,

whereW is the Whittaker function.
To prove the high accuracy of the novel method, we solve equation (15) by taking κ(t) = 0.94 + 130 sin( t6), h = 0.05 and T = 10. Figure 2
shows that an excellent agreement between the exact and numerical solution of (15).

Figure 2. Exact vs numerical solution of (15) for κ(t) = 0.94 + 130 sin (
t6
)

Example 3 Let us now consider the problem for the VFO Duffing oscillator [32]

x′′(t) + 0.2Dκ(t)

c x(t) + x(t) + x3(t) = p(t),
x(0) = 0, x′(0) = 0,

(16)

where

κ(t) = 1 – exp(–t), and p(t) = 2 + t2 + t6 + 0.4 t1+e–tet
Γ
(e–t) (1 + e–t) . (17)

The exact solution of Eq. (16) is x(t) = t2. In Figure 3, we remark that the solution we obtained and the exact solution are in high agreement for
h = 0.01.
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Figure 3. Exact vs numerical solution of (16) for κ(t) = 1 – exp(–t).

3 A variable-order fractional Halvorsen system

This section aims to present a study of a 3D circulant system, called the Halvorsen system [3] with variable fractional-order
derivative in Caputo sense, which is described by the following



Dq(t)c x = –ax – by – bz – y2,
Dq(t)c y = –ay – bz – bx – z2,
Dq(t)c z = –az – bx – by – x2.

(18)

It is clear that system (18) is symmetric respectively to cyclic interchanges of the states x, y, and z. According to Halvorsen,
system (18) is chaotic for the values of the parameters are given as a = 1.3 and b = 4 (for the classical case q(t) = 1). In what
follows, we describe the qualitative properties of the Halvorsen chaotic system (18). Throughout this section we will take q(t) =
0.7 + 0.2 exp(–t)1+exp(–t) .

Dissipativity

As in [3], the Halvorsen system (18) can be written as
Dq(t)c X(t) = F(X(t)), (19)

where X =
 x
y
z

, F =
 f1(X)
f2(X)
f3(X)

 and



f1(X) = –ax – by – bz – y2,
f2(X) = –ay – bz – bx – z2,
f3(X) = –az – bx – by – x2.

The divergence of the vector field f on R3 is expressed as

divF = ∂f1
∂x + ∂f2

∂y + ∂f3
∂z = –3.9 < 0. (20)

Let us denote byΩ a subset of R3 with a smooth boundary such thatΩ(t) = Φt(Ω) where Φt is the flow of F. Additionally, let V(t)
refers to the hypervolume of Ω(t). By the Liouville’s theorem, we get

dV
dt =

∫
Ω(t) divFdxdydz. (21)

Replacing divF from (20) into (21), we get
dV
dt = –3.9

∫
Ω(t) dxdydz = –3.9V(t), (22)



Hammouch et al. | 17

Integrating equation (22) we obtain
V(t) = V(0) exp(–3.9t). (23)

According to Eq. (23), V(t) is converging to zero exponentially as t becomes infinite. Consequently, the VOF Halvorsen system (18)
is a dissipative one.

Equilibrium point and the stability

The equilibria of the VOF Halvorsen system (18) are deduced by solving the following system


–ax – by – bz – y2 = 0,
–ay – bz – bx – z2 = 0,
–az – bx – by – x2 = 0.

(24)

We find that (24) has two equilibrium points, namely
E0 = (0, 0, 0) and E1 = (–9.27, –9.27, –9.27). (25)

The Jacobian matrix of the VOF Halvorsen system (24) at E0 is obtained as

JE0 =


–1.27 –4 –4
–4 –1.27 –4
–4 –4 –1.27

 . (26)

The matrix JE0 has the eigenvalues
 λ1 = 2.73,
λ2 = –9.27,
λ3 = 2.73.

 (27)

Similarly, the Jacobian matrix of system (24) at E1 is given as

JE1 =


–1.27 14.54 –4
–4 –1.27 14.54

14.54 –4 –1.27

 . (28)

The eigenvalues of JE1 are :
 κ1 = –6.54 + 16.0561109861635i,
κ2 = –6.54 – 16.0561109861635i,

κ3 = 9.27.

 (29)

We conclude that the equilibrium point E0 is a saddle then it is unstable. Therefore, the necessary condition to ensure chaos is
satisfied.

Quantitative characterization of VOFD Halvorsen system

The computation of Lyapunov exponents (LE) is a basic problem in the study of dynamical systems since they provide a quantifi-
cation of the exponential divergence of initially close state-space trajectories and measure the amount of chaos in a given system
[3]. Actually, a positive (LE) is sufficient to claim the presence of chaos in a dynamical system.
A numerical calculation using the Gram-Schmidt orthonormalization procedure for the initial conditions (x, y, z) = (0.2, 0.6, 0.2)
reveals that system (24) when q(t) = 0.7 + 0.2 exp(–t)1+exp(–t) , has the following Lyapunov exponents :

 L1 = 0.7935801,
L2 = 0.0002090,
L3 = –4.6037936.

 (30)
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Since L1 + L2 + L3 = –3.8100045 < 0, the VOF Halvorsen chaotic system (24) is dissipative.
Moreover, the Kaplan-Yorke dimension of the VOF Halvorsen chaotic system (24) is obtained as

DKY = 2 + L1 + L2|L3| = 2.1724206533, (31)

which is fractional.
4 Active control synchronization

The synchronization of two coupled chaotic systems is an important topic due to its applications in various fields of science and
engineering, for instance, secure communication, cryptography, analog and digital signals, control processing, time series analy-
sis, as well as earthquake dynamics [70]. Moreover, numerous techniques have been investigated for chaos synchronization like
linear and nonlinear feedback control [71], back stepping nonlinear control approach [72], sliding mode control [73], adaptive
control [74], etc. In this paper, we will design active nonlinear controllers to synchronize two identical Halvorsen systems with
variable-order time-fractional derivatives.
To achieve synchronization, we define the drive-response scheme of two VOF identical Halvorsen systems, namely

Drive



Dq(t)t x1 = –ax1 – by1 – bz1 – y21 ,
Dq(t)t y1 = –ay1 – bz1 – bx1 – z21 ,
Dq(t)t z1 = –az1 – bx1 – by1 – x21 .

(32)

Response



Dq(t)t x2 = –ax2 – by2 – bz2 – y22 + U1(t),
Dq(t)t y2 = –ay2 – bz2 – bx2 – z22 + U2(t),
Dq(t)t z2 = –az2 – bx2 – by2 – x22 + U3(t),

(33)

where Ui(t); i = 1, 2, 3 are unknown active control functions to be computer lated. Recall that the initial conditions (x1,0, y1,0, z1,0)
and (x2,0, y2,0, z2,0) are different and we target to synchronize the signals even if there is discrepancy between the initial conditions.
First, we define the error vector e(t) as the following



e1 = x2 – x1,
e2 = y2 – y1,
e3 = z2 – z1.

(34)

Subtracting (32) from (33) and using (34), we find


Dq(t)t e1 = –ae1 – be2 – be3 – (y22 – y21 ) + U1(t),
Dq(t)t e2 = –ae2 – be3 – be1 – (z22 – z21 ) + U2(t),
Dq(t)t e3 = –ae3 – be1 – be2 – (x22 – x21 ) + U3(t).

(35)

Let 

U1(t) = be2 + be3 + (y22 – y21 ),
U2(t) = (z22 – z21 ) + be3,
U3(t) = (x22 – x21 ).

(36)

Consequently, the fractional-order error dynamical system is reduced to


Dq(t)t e1 = –ae1,
Dq(t)t e2 = –ae2 – be1,
Dq(t)t e2 = –be1 – be2 – ae3.

(37)
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Theorem 2 For any initial conditions, the drive and response defined by the synchronization scheme (32) and (33) are with the control law
(36).

Proof The above error system (37) has a unique equilibrium point (0, 0, 0) and the Jacobian matrix at this point is

J(0,0,0) =


–1.3 0 0
–4 –1.3 –4
0 0 –1.3

 .

Clearly, λ = –1.3 is triple eigenvalue of J(0,0,0) and |arg(λ)| = π which is always greater than π2 qM. Therefore, based on the stability
theorem, we conclude that it is direct to see that the error dynamics converge to the manifold (e1, e2, e3) = (0, 0, 0) as t → ∞.
Consequently, the synchronization between two identical systems (32) and (33) is achieved via the control law (36).
5 Numerical simulations

This section presents the numerical simulations of Sections 3 and 4. The time step is fixed to h = 0.01 and the calculations are
carried out for q(t) = 0.7 + 0.2 exp(–t)1+exp(–t) .

(a) (b)

(c)

Figure 4. Time series of system (18) : (a) x(t), (b) y(t) and (c) z(t).
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(a) (b)

(c) (d)

Figure 5. (a) Phase plane x – y, (b) Phase plane x – z, (c) Phase plane y – z and (d) The attractor x – y – z.

(a) (b)

(c) (d)

Figure 6. Synchronization of the VOF system (18): (a) x1(t) vs x2(t), (b) y1(t) vs y2(t), (c) z1(t) vs z2(t) and (d) The error functions e1(t), e2(t), e3(t) → 0 as t → ∞.

6 Conclusion

This paper introduced a novel numerical method for solving ordinary differential equations with variable-order time-fractional
derivatives. It is shown that there is no computational complexity in the algorithm, the method is easy to program. The accuracy
of the method is demonstrated through numerical examples. Moreover, the chaotic dynamics of a Halvorsen system with variable-
order fractional derivatives are investigated and the identical synchronization between two systems is achieved. Besides, the
results of this paper reveal that the variable-order derivation can be very useful for describing chaotic phenomena, their control,
and synchronization.
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