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Abstract: Asymmetric behaviors are common in economics and finance. 

Since it is not possible to capture asymmetric behaviors by linear models, 

nonlinear models are developed in order to explain asymmetric behaviors 

exhibited by such time series. Findings in this study show that ISE 100 index’s 

behavior cannot be estimated by linear univariate models for the period after 

2000. Therefore, it is our aim to construct and estimate nonlinear time series 

models of ISE 100 index.  The results obtained also confirm that ISE 100 index 

exhibits nonlinear behavior.  
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İSTANBUL MENKUL KIYMETLER BORSASI 100 ENDEKSİNİN  

DEK DEĞİŞKENLİ DOĞRUSAL OLMAYAN BİR MODELİ 

 
Özet: Ekonomi ve finans alanında asimetrik davranış yaygın olarak 

gözlemlenir. Asimetrik davranışı doğrusal modellerle modellemek olanaklı 

olmadığından, bu tür zaman serilerinin sergilediği asimetrik davranışı açıklamak 

için uygun doğrusal olmayan modeller geliştirilir. Bu çalışmanın bulguları 

İMKB 100 endeksinin 2000 yılı sonrasında sergilediği davranışının doğrusal 

modeller ile tahmin edilemeyeceğini göstermektedir. Bu nedenle bu çalışmanın 

amacı İMKB 100 endeksinin zaman serisinin doğrusal olmayan bir modelini 

kurgulamak ve tahmin etmektir. Kurgulanan ve hesaplanan modelin sonuçları 

İMKB 100 endeksinin doğrusal olmayan bir davranış sergilediğini 

doğrulamaktadır. 

Anahtar kelimeler: İMKB 100, doğrusal olmayan zaman serileri, dek 

değişkenli zaman serileri 
 

I. INTRODUCTION 

Stock exchange markets provide an important channel for transferring 

savings into real economy. However, there are other alternative and competing 

financial markets to stock exchange markets. To attract more savings, each of 

these markets must provide higher returns than their competing ones. In 

addition, stability and predictability of returns are important factors for savers in 

their decision on channeling their savings. Stability and predictability of asset 

prices together determine riskiness of portfolios. As pointed out by Schwert 

(2011), it is widely agreed that volatility should be measured in percentage 

                                                 
(*)Doç. Dr. Harun Öztürkler, Kırıkkale Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, 

Ekonometri Bölümü 
** Yard. Doç. Dr. Selim Yıldırım, Anadolu Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, 

İktisat Bölümü 



 

 

 

 

 

 

 

 

 

 

86 Harun ÖZTÜRKLER,  Selim YILDIRIM  

change in prices, or rates of returns. Furthermore, large swings in returns in 

financial markets are among the leading indicators of the condition of the whole 

economy. Therefore, empirical analysis of how returns behave will provide 

important information for savers, investors, and policy makers. On the other 

hand, as mentioned by Ince (2005), financial markets are complex, 

nonstationary and deterministically chaotic systems. Thus, a linear behavior 

assumption may lead to choosing inappropriate techniques in modeling 

financial markets. That is specifically correct for financial markets in emerging 

countries such as Turkey because financial markets in those countries are more 

vulnerable to domestic as well as international economic developments. In 

emerging economies, in addition to macroeconomic variables such as real 

economic activity, money supply, inflation, exchange rates, oil prices, and 

current account deficits, the political risks also affect return on stock markets. 

Hence, in those countries a true prediction of the behavior of stock return is 

necessary.  

Estimating the behavior of stock returns from time series with high 

frequencies has received considerable attention. However, time series with high 

frequencies, including financial series, may display asymmetric behavior. Most 

of the time, this asymmetry is surmised as random behavior. Kocenda and 

Cerny (2007) explain this case as follows:  

Chaotic systems of dimensionality can generate seemingly random numbers that 

may give an impression of white noise thereby hiding their true nature. Under 

presumed randomness, a nonlinear pattern can hide without being detected. 

Exchange rates, stock market returns, and other macroeconomic variables of 

generally high frequency, for example, may originate from low-dimensional 

chaos. (p.118) 

Hence, the purpose of this study is to establish whether the return on ISE 100 is 

generated through a nonlinear process, and to model the series with appropriate 

techniques if the data generating process in not linear. We utilize BDS (Brock, 

Dechert, and Scheinkman), Keenan, and Tsay tests to determine whether the 

return is linear.  After testing the series, we use DTARCH (Double Threshold 

Autoregressive Conditional Heteroscedasticity) in modeling the series.  

 

II. ECONOMETRIC METHODOLOGY 

In this subsection we briefly explain the tests utilized in determining 

whether the return on ISE 100 is linear. Both nonparametric and parametric 

tests are used for this purpose. The BDS test is a nonparametric test, while 

Keenan and Tsay tests are parametric tests. Finally in this section we elaborate 

on DTARCH process used in modeling the series.  

 

BDS Test: Brock, Dechert, and Scheinkman (1987) developed the so-

called BDS test on the basis of the assumption that there cannot be hidden 

(nonlinear) patterns in a purely random independent and identically distributed 
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(iid) process. BDS test is a nonparametric test with null hypothesis that the 

series is iid.  Since this procedure is based on whether the residuals are iid, this 

test can be used for model specification (Kocenda and Cerny, 2007). 

According to Tsay (2005, 185), the basic idea of BDS test is to make 

use of ‘correlation integral’ which is a popular concept of chaotic time series 

analysis. This integral was defined by Grassberger and Procaccio (1983), and as 

pointed out by Kocenda and Cerny (2007, p.120), it is unique in revealing 

nonlinearity without being affected by the linear dependency in the series.   

Given k-dimensional time series
 tX

 
and observations 

1

kT

t t
X


, Tsay (2005, 

p.185) defines this integral as follows: 

 
 

 
2
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k i j
T

i jk k

C I X X
T T
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



  (1) 

where  ,I u v
 is an indicator variable that equals one if u v    and zero 

otherwise, and . is sup-norm. Correlation integral measures the fraction of 

pairs of observations within   tolerance distance. In other words, if the 

distance between two observations in the k-dimensional series is less than  , 

indicator becomes 1, and correlation integral sums this value over all pairs in 

order to measure its ratio in tX
 
observations.  

k-dimensional series
 tX  and observations

 
 

1

kT

t t
X


 in Tsay’s (2005) 

correlation integral definition indicate that the original time series is embedded 

in k dimension. In other words, the observations  
1

kT

t t
X


 are no longer scalar 

but vectors of k dimension. In order to check whether  1 2 3, , , , NX x x x x  

series is linear, we transform each consecutive k observations into k 

dimensional vectors and obtain tX  series in which each observation is a vector 

itself. Observations of this new series, which are referred to in  
1

kT

t t
X


 form, 

can be explicitly expressed as follows:  
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where kT  shows the number of observations in tX
 
series. The number of data 

points of the newly constructed k-dimensional series is kT N k  , N is the 

number of observations in the original series, and K is the dimension of each 

data point in the new series. 
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After the new series embedded in k- dimension is constructed, 

observations are paired with each other such that each observation is paired 

with one of the remaining  observations once. Then whether a pair is in 

 tolerance distance is established. In this formulation, the correlation integral 

measures the fraction of pairs within   tolerance distance. 

If the series consists of observations that are iid random variables, then 

correlation integral should satisfy the relation    1

k

kC C  . A deviation 

from this relationship means that the observations in the series are not iid. 

Utilizing this feature, the test statistic of the BDS test is defined as follows: 

 
   

 

1
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1, ,
,

,

k
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l
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 ,k T 
 
term in equation (2) is the standard deviation of the series generated 

by the    1, ,
k

kC T C T   operation in the numerator.  The test statistic has 

a standard normal limiting distribution.  

 

Keenan Test: Keenan (1985) adapted Tukey’s one degree of freedom 

for nonadditivity test in order to test for linearity versus second-order Volterra 

expansion. “The test is designed to have optimal local power against departure 

from the linear autoregressive function in the direction of the square of the 

linear autoregressive function” (Chan, 2012, p.36). According to Tsay (2005), 

this method is similar to RESET, but it is modified by including squares of 

independent variables as dependent variable in auxiliary regression and 

eliminating linear dependency between estimated squared term and lagged 

terms. 

Keenan (1985, p.39) states Volterra expansion, which is a common 

form in nonlinear stationary time series, as follows:  

, , ,

...t u t u uv t u t v uvw t u t v t w

u u v u v w

Y a a a      
  

     

  

        (3) 

where  ,t t     is strictly stationary and an iid process with zero mean. 

Keenan (1985, 40) takes linearity as the absence of multiplicative terms in 

equation 3. Therefore the test of linearity is to test whether the multiplicative 

terms in equation 3 is statistically significant. Accordingly the null hypothesis 

of the test is 0̂ =0, where 0̂  is the regression coefficient of the auxiliary 

regression of two residuals (Tsay, 2005, p.187).   

For a fixed M, Keenan (1985, p.41) recounts the steps of the procedure 

as follows:   
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Regress sY  on  11, , ,s s MY Y 
and calculate fitted values  ˆsY

 
and 

residuals ˆse  for s = M+1, …, n, and the residual sum of squares 

2ˆ ˆ ˆ, se e e . 

Regress ˆ
sY on  11, , ,s s MY Y 

 and calculate residuals  ˆs  for s = M+1,..., n. 

Regress  1
ˆ ˆ ˆ, ,M ne e e  on  1

ˆ ˆ ˆ, ,M n    and obtain ̂  and F̂  via 
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where 0̂ is regression coefficient, and 
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where the degrees of freedom associated with ˆ ˆ,e e  are (n-M)-M-1.  

 

Tsay Test: Tsay (1986) developed another test which “…retains the 

simplicity Keenan test has, yet it is considerably more powerful” (Tsay, 1986, 

p.462). This new test dubbed Tsay test is also base on Volterra expansion. In the 

Volterra expansion expressed in (3), if we take   
as mean, and the terms 

   , ,uv uvwa a   different from zero, then tY  is not linear. 

Using 
2ˆ

tY  in the second step in Keenan test procedure only requires 1 

degree of freedom and it is useful in small samples (Tsay, 1986, p.462). On the 

other hand, in medium and large samples, if we use the modified second step 

instead of summed 
2ˆ

tY , the power of the test should increase. 

The steps of the procedure in Tsay test is as follows (1986, p.462): 

Regress
 tY  on  11, , ,t t MY Y 

by least square method and obtain the residuals 

 ˆse for t = M+1, …, n. The regression model will be denoted by  

t t tY W e 
                 

(4) 

where  11, , ,t t t MW Y Y  and  0 1, , ,
T

t t t M      with M being a 

prespecified positive integer, n sample size, and the superscript T denoting the 

matrix transpose. 

Regress tZ vector on  11, , ,t t MY Y 
 and obtain the residual vector  X̂  for  

t = M+1, …, n . Here the multivariate regression model is   
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t t tZ W H X    

where 
tZ  is an 

1
( 1)

2
m M M   dimensional vector defined as 

 T T

t t tZ vech U U
 

where   1, ,t t t MU Y Y   and vech denotes the half 

stacking vector. In other words 
T

tZ  is obtained from the symmetric matrix 

T

t tU U by the usual column stacking operator but using only the elements on or 

below the main diagonal of each column.
 

Regress t̂e  on ˆ
tX  and let F̂ be the ratio of the mean square of regression to the 

mean error. That is, fit    

 ˆˆ 1, ,t t te X t M n      (5) 

and define 
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where the summations over t from M+1 to n and t̂  is the least squares residual 

for (5). 

The null hypothesis of the Tsay test is that the series are generated by 

an AR process. “The AR order, if missing, is estimated by minimizing AIC via 

ar function, i.e. fitting autoregressive model to the data. The default fitting 

method of the ar function is ‘Yule-Walker’ ” (Chan, 2012, p.69). 

 

The DTARCH Model: As the name suggests DTARCH (Double 

Threshold ARCH) has threshold in both mean and variance. Therefore 

DTARCH process captures the asymmetric behaviors in conditional mean and 

conditional variance together. In a way DTARCH process is equivalent to 

modeling the conditional variance with TARCH (Threshold ARCH) and 

conditional mean with SETAR (Self-Exciting Threshold AR) processes 

simultaneously. 

SETAR process is fundamentally an augmentation of AR model.  If a 

series follows a process where it cannot be modeled with a single ar function 

throughout the series, such that above or below certain values it is modeled with 

a different AR processes this indicates that the series is generated by a TAR 

(Threshold Autoregressive) process. The values that assort the observations 

according to the AR process they follow are called thresholds. Thresholds 

separate the series into regimes. Each AR process that forms the TAR model is 

called a regime. A TAR model has at least two regimes. This means it is 

possible for a series to have one threshold as well as many. Furthermore, the 
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thresholds can be established using another series or the original series itself. If 

a different series is used to determine the thresholds, the process is named TAR.  

When the thresholds are established by using the series itself, the process is 

called SETAR. In other words Self-Exciting term in a TAR process indicates 

whether the observations of the series itself are employed while the values for 

thresholds are searched. Stigler (2012, 8) depicts a general TAR process as 

follows 

 

1 1,1 1 1, 1 1 1

2 2,1 1 2, 2 2 1 2

,1 1 , 1

t p t p t t d m

t p t p t m t d m
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t d
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   

    
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    


     
 

 
     

 

where the parameters of the process is listed as below 

m:  the number of regimes 

1 m  : the intercepts in each regime 

,1 , 1j j mp p 
:  the number of lags in regime j 

1 1m   : the thresholds 

d :  the delay of the transition variable  

t dX  : the transition variable 

The transition variable indicates the series employed for establishing 

the thresholds. If the transition variable for the specified d  the delay value is 

chosen as the original series t d t dX Y  , then the model is called SETAR.  

ARCH process is developed by Engel (1982). Let tX  and tY  be two time series 

and t
 
be the information set, first order ARCH process is depicted as below:  
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iid N h
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Furthermore, for a q-order ARCH process only the last equation 

changes into: 

2 2 2 2
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The idea that both SETAR and ARCH processes may be observed in 

the same series originates from Tong (1993). This process is named SETAR-
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ARCH, since only the conditional mean has a threshold. Let  t  has an iid 

standard normal, 0  , 0i 
 
and Vt have the form 

2

0

1

,
q

t i t i

i

V X  



   

and finally let the terms of f
 
be piecewise linear; Tong (1993, p.116) defines 

the SETAR-ARCH model as follows: 

 1t t t k t tX f X X V    
 .
 

Although SETAR-ARCH model combines the advantages of the 

SETAR model and the ARCH model, it assumes a fixed description of the 

conditional variance (Li and Li, 1996).  Conditional variance may display 

behaviors that are asymmetric as well, and therefore cannot be modeled by 

SETAR-ARCH (Baragona and Battaglia, 2006, p.443). In other words SETAR-

ARCH model cannot model asymmetric behavior of the conditional variance 

successfully. SETAR-ARCH process models the conditional variance so that it 

consists of a single regime when in fact the series may be generated by a 

process where the conditional variance is separated into several regimes. Such a 

model where both conditional mean and conditional variance consist of several 

regimes separated by thresholds is developed by Li and Li (1996) and Liu, Li, 

and Li (1997). These are the DTARCH models mentioned at the beginning of 

this section. The time series  tX
 
generated with a DTARCH process may be 

modeled as follows:
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where t  
term is the white noise process with   0t  ,  2 2

t     

and 1 2( | , , )t t t th Var X X X  is the conditional variance which is written as 
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in an explicit form. The parameters in this process are as follows: 

u: the number of regimes in the SETAR part of the model 

v: the number of regimes in the TARCH part of the model 

d: the delay of the transition variable in the SETAR part of the model   

c: the delay of the transition variable in the TARCH part of the model   

1, , kp p : The AR order in the SETAR part of the model  

1, , hq q : The ARCH order in the TARCH part of the model 
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*,u vR R : transition variable for the SETAR and TARCH parts of the model 

respectively. 

A DTARCH model with two regimes in both mean and variance or a 

DTARCH
 
 1 2 1 2, ; ,p p q q  model may be displayed as follows: 
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In order to display this model; the same parameters mentioned 

previously for the compact form of DTARCH are used.  The simple explicit 

display of  DTARCH
 
 1 2 1 2, ; ,p p q q

 
above can be generalized for a 

DTARCH  1 2 1 2, , , ; , , ,m mp p p q q q  model. Additionally the model may 

also be reduced so that it may explain simpler processes. For example, the 

model turns into a SETAR-ARCH model when the conditional variance is 

modeled with a single regime. In other words 

DTARCH  1 2, , , ;mp p p q  SETAR-ARCH  1 2, , , mp p p
 .
 

DTARCH model requires two sets of thresholds to be discovered. This 

raises cost of the computational resources and complicates the estimation 

procedure. Baragona and Cucina (2008) propose a method based on genetic 

algorithms. This method utilizes genetic algorithms in order to discover 

structural parameters such as the threshold and the order of ARCH and AR 

processes in each regime. 

 

III. DATA AND EMPIRICAL RESULTS 

This study aims to model the returns on ISE 100 index after 2002. The 

daily closing values of the index are obtained from the online database of 

Central Bank of the Republic of Turkey (TCMB) for the period between 

December 20, 2002, and August 3, 2012. Rather than investigating a high 

frequency series in a short period of time, the study aims to lower the frequency 

and scrutinize a longer period thus the general properties of the ISE 100 index 

may be established. Therefore, the average of the daily closing prices is 

calculated in order to obtain weekly return series.  



 

 

 

 

 

 

 

 

 

 

94 Harun ÖZTÜRKLER,  Selim YILDIRIM  

Let tR
 
be the returns and  tP  be the weekly average of closing prices of 

ISE 100 index, then the returns is calculated by 1100*(ln ln )t t tR P P   

equation. This new series is consists of 450 observations and is depicted 

graphically in Figure 1. 

 

Figure 1: Returns on ISE 100 Index 
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Stationarity of the returns series is tested with the Philips-Perron (PP) 

unit root test. The reason PP test is employed is that although it is based on 

Augmented Dickey-Fuller (ADF) test; it is also autocorrelation and 

heteroscedasticity robust. The result of the test (test statistic =           -18.8547 

and p-value: 0.01) shows that the returns on ISE 100 is stationary.  

The linearity of the series is tested using BDS, Keenan and Tsay tests. 

BDS test is a nonparametric test and based on whether two pairs in a series 

embedded in k-dimension is within a specified distance.  The BDS test is 

conducted for the embedding dimension two through four. The neighborhood 

values around the closed points are 1.7247, 3.4493, 5.1740 and 6.8987. The 

neighborhood values are determined by multiplying the standard deviation of 

the weekly average of returns on the ISE 100 index with 0.5, 1, 1.5 and 2 

respectively. 

The test statistics of the BDS test is depicted in Table 1. The first row of 

Table 1 contains  neighborhood values for the closed points in bracket. The first 

column consists of embedding dimension. The test statistics regading the 

neighborhood values for the closed points is computed for each embedding 

dimension. Since test statistic has standard normal distribution the comuputed 

test values is compared with this distribution and the pertinent p-value is written 

besides the test value.  
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Table 1: BDS test statistics 

 [1.7247 ] [3.4493 ] [5.1740 ] [6.8987 ] 

[ 2 ] 3.3896  
(0.0007) 

3.7275  
(0.0002) 

3.9715  
(0.0001) 

4.7517  
(0.0000) 

[ 3 ] 4.4188   
(0.0000) 

4.8960  
(0.0000) 

5.0201  
(0.0000) 

5.5920  
(0.0000) 

[ 4 ] 
[ 5 ] 
[ 6 ] 

4.5320   
(0.0000) 
3.5386   
(0.0004) 
3.5971   
(0.0040) 

5.1088   
(0.0000) 
5.9942   
(0.0000) 
5.4386   
(0.0000) 

5.2329  
(0.0000) 
5.2336  
(0.0000) 
5.5640  
(0.0000) 

6.0085  
(0.0000) 
6.1297  
(0.0000) 
6.3298  
(0.0000) 

 

The results of BDS test indicates that the series is not linear. The result 

of Keenan test (test statistic: 1. 970989 and p-value: 0.161)  denotes that the 

null hypothesis of linearity cannot be rejected. However Tsay test, which is 

based on Keenan test but more powerful, has the test statistic value of  3.136 (p-

value: 0.0007) and thus rejects linearity hypothesis. Among BDS, Keenan and 

Tsay tests Both BDS and Tsay tests acknowledges that the series is nonlinear. 

Furthemore Keenan test the only test that cannot reject linearty is considerably 

less powerful than Tsay test. Therefore it is concluded that the series cannot be 

modelled with a linear process. 

 

Table 2: DTARCH (3,2;2,3)  model on returns on ISE 100 Index 

Parameters Regime 1 Regime 2 

Phi(0) -0.740988 0.283235 

Phi(1) -0.014504 0.193909 

Phi(2) -0.194608 0.076709 

Phi(3)   0.223210          - 

Sigma(0) 8.801216 6.481065 

Sigma(1) 1.323428 0.135555 

Sigma(2) 0.154899 0.066662 

Sigma(3)          - 0.190085 

Taking the asimetric behavior of the conditional variances of the series 

in financial markets into consideration the returns series is modelled as depicted 

in Table 2. The series is modelled with as a DTARCH (3,2;2,3)  process where 

different threshold values are chosen for conditional mean and conditional part 

of the models. Conditional mean and variance both exhibit two regimes.  The 

threshold value of the conditional mean of the model is -1.901567 and the 
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threshold value of the conditional variances is -1.352475. In the SETAR part of 

the model first regime consists of 151 observations, the second regime consists 

of 346 observations. In the TARCH part of the model first regime consists of 

135 observations, the second regime consists of 362 observations. 

The Portamanteu test, which checks whether autocorrelation exists between the 

residual terms of the model, has the following test statistics:  (for conditional 

mean) Qm= 11.09040 and (for conditional variance) Qmm= 8.16314 for up to ten 

lags. These results indicate that up to ten lags there is no autocorrelation in the 

residuals.    

IV. CONCLUSION 

This study concludes that returns on ISE 100 index is stationary and can 

be modeled by nonlinear processes. The nonlinearity of the series is tested with 

three tests where two test indicated nonlinearity. Though Keenan test could not 

reject linearity, the other two rejected linearity and one of them is a more 

powerful version of the Keenan test. Consequently the returns on ISE 100 index 

is modeled with DTARCH (3,2;2,3) process.  

This information is very important in both forecasting behavior of stock 

exchange markets and policy formulation on the basis of that forecasting. A 

linear behavior assumption may lead to inappropriate policy design in 

channeling savings into real economy, and therefore misallocation of limited 

resources. A nonlinear behavior naturally leads to further risks, which must be 

taken into account in decision making by both market participants and policy 

makers.   

The nonlinear behavior is captured through thresholds in both the 

conditional mean and variance. Both parts of the model exhibit two regimes. 

SETAR part of the model presents two very different regimes. While economy 

is in the first regime (below the threshold) return values has a tendency to 

switch to the second regime. The second regime is more stable, parameters in 

are all positive, indicating that former return values have positive effect on the 

current return. The TARCH part of the model indicates that first regime depicts 

more volatility relative to the second regime. This leads to the conclusion that 

although return values has a tendency to be above -1.901567, the return values 

below -1.352475 indicate high volatility which my prolong the switch to the 

second regime. On the other hand when the return prices are at second regime 

for conditional variance or above -1.352475 then, although returns may not be 

positive, return values tend to be less volatile and remain in this regime.  
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