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Abstract
In this paper, we consider a modified SIR (susceptible-infected-recovered/removed) model that describes the evolution in time ofthe infectious disease caused by Sars-Cov-2 (Severe Acute Respiratory Syndrome-Coronavirus-2). We take into consideration thatthis disease can be both symptomatic and asymptomatic. By formulating a suitable mathematical model via a system of ordinarydifferential equations (ODEs), we investigate how the vaccination rate and the fraction of avoided contacts affect the populationdynamics.
Key words: COVID-19; SIR model; asymptomatic cases; avoided contacts; vaccination effect
AMS 2020 Classification: 34A34; 92D30; 92D25

1 Introduction

The mathematical epidemiology research area, related to modeling infectious diseases, began to develop in 1771 having Daniel Bernoulli asone of the pioneers, [2]. The SIR models and their modified versions are simple tools that can be used to better understand the dynamics ofan epidemic, and they gave a significant contribute also for Covid-19 (coronavirus-19 disease) pandemic. The global pandemic status, dueto Sars-Cov-2, has been declared, by World Health Organization, at the beginning of 2020, while the virus started to spread around theglobe already at the end of 2019 and beginning of 2020 [1].
In the last year an increasing amount of papers for modeling Covid-19 pandemic was published, only to cite few of them see [3]-[31]. Themodeling approach helped in a better understanding of the epidemic evolution, such as transmission dynamics of Covid-19 [17]-[19],Covid-19 forecasting, [3], the importance of implementing population-wide interventions, [24]-[25], the role of asymptomatic individualsin the disease transmission, [30]-[31], the vaccination effect on the pandemic outcome, [32]-[34], etc.
Motivated by the importance of a better understanding of the vaccination effect and of the non-pharmaceutical interventions (NPIs) onthe disease spreading, here, we consider an extended version of the already studied modified SIR model, [35], considering susceptibleindividuals, infected individuals that can show symptoms (symptomatic) or not (asymptomatic), and recovered/removed individuals,respectively. The model is characterized by assuming that the infection rate can change depending on NPIs. The novelty here is to consideralso the vaccination rate for the susceptible individuals. For a qualitative analysis of the model we compute the equilibrium points andwe study their stability by analyzing the Jacobian matrix eigenvalues. We also compute the basic reproduction number. Moreover, for a
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quantitative analysis, via numerical simulation, we investigate how the fraction of avoided contacts and the vaccination rate affects themodel outcome, separately using one parameter bifurcation diagrams and jointly by approximating the two strain parameter surface.
The paper outline is as follows. In the first Section, we introduce the model describing all the hypothesis used to build it. In the secondSection, we compute a qualitative analysis of the model. In the third Section, via numerical simulations we investigate the importance ofboth vaccination rate and the fraction of avoided contacts, respectively. Last we present the conclusions of the paper.
2 Mathematical model formulation

In this study we introduce a new mathematical model, generalizing the classical SIR model used to describe the transmission and evolutionin time of infectious diseases that leads to the immunization of the diseased individual, for the specific case of Sars-Cov-2. In the SIR modelwe can distinguish three classes of individuals:
Susceptible H(t) : healthy individuals that can get the disease.
Infected I(t) : individuals that are infected and can transmit the disease.
Removed R(t) : individuals that, after being infected, once they recover become immune to the disease, are isolated or died.
For Sars-Cov-2 transmission we consider two different subgroups of the infective classes:
Asymptomatic A(t) : infected individuals that does not present symptoms. We denote withϕ the probability that the disease presentsitself in this form.
Symptomatic S(t) : infected individuals that present symptoms. The probability that the disease manifests itself in this form is 1 –ϕ.
From now on for simplicity we will abbreviate the new model with SASR (Susceptible-Asymptomatic-Symptomatic-Removed). We assumeto have a constant total population in time, N, this is reasonable for two reasons: (i) if we consider the beginning of the epidemic it meansthat only a short interval of time will be considered; (ii) while if we consider a long time after the onset of the epidemic we can assume thatthe mortality rate due to the disease is lower and lower due to a better understanding of the virus and improvement of the effects of the cure.We also consider the demographic parameters such as constant birth/immigration term,Ω, in the susceptible class and a mortality rate,
µN, due to other causes besides the disease, present in all the considered classes.The infection rate take into consideration also the effect of non-pharmaceutical interventions (NPIs) by means of a parameterψ, thefraction of avoided contacts, the infection rate readsβ = λ(1 –ψ). Here we assume that the contact rate between susceptible and infected isreduced thanks to NPIs adopted by individuals or by institutions, in order to avoid the contagion.Once infected, a fraction 1 –ϕ of individuals can develop symptoms and the remaining onesϕ stay asymptomatic. We also assume that theasymptomatic individuals can develop symptoms at rate δ. Last, we assume that both asymptomatic and symptomatic individuals canmove in the removed class at rate γA and γS, respectively, and that exist a vaccine and the susceptible individuals can be vaccinated and geta permanent immunity at rate µ.Given the assumptions introduced above the model reads:

dH
dt = Ω –βH(A + S)

N – µN H – µH,
dA
dt = ϕβH(A + S)

N – γAA – µN A – δA,
dS
dt = (1 –ϕ)βH(A + S)

N – γSS – µN S + δA – µSS,
dR
dt = γAA + γSS – µN R + µH,

(1)

withϕ,ψ ∈ [0, 1]. In Figure 1, we have represented a sketch of the main interactions between the four classes of the SASR model.

H(t)

A(t)

S(t)

R(t)
ϕβ

µ

(1 –ϕ)β

γA

γS

δ

Figure 1. The diagram for the main interaction between the four classes of the SASR model, without considering the mortality rates and birth/immigration term.

3 Qualitative analysis of the model

Boundedness

It is important to establish that the variables cannot grow unbounded. We show now that the system’s trajectories remain within a compactset. We consider the function
φ(t) = H(t) + A(t) + S(t) + R(t).
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Summing up the equations in (1), we then have

dφ(t)
dt + µNφ(t) = Ω – µSS ⇔ dφ(t)

dt + µNφ(t) ≤Ω.
Sinceφ(0) = N, we can solve the corresponding differential equation, and find that:

φ(t) ≤ max
{
Ω

µN
, N

} ,
which guarantees that every single variable must have the same upper bound as well.
Equilibrium points

In order to find the equilibrium points we assume a = γA + µN + δ, b = γS + µS + µN and W = H(A + S)
N in (1), and get the new simplified

version of the model by equating to zero the right hand side of the obtained model:


Ω –βW – µN H – µH = 0,
ϕβW – aA = 0,
(1 –ϕ)βW – bS + δA = 0,
γAA + γSS – µN R + µH = 0,
W = H(A + S)

N ,
(2)

which is equivalent to


H = Ω –βW
µN + µ ,

A = ϕβW
a ,

S = βW(a(1 –ϕ) + δϕ)
ab ,

γA
(ϕβW

a
) + γS

(βW(a(1 –ϕ) + δϕ)
ab

) – µN R + µ(Ω –βW
µN + µ

) = 0,

W =
(Ω –βW
µN + µ

)(ϕβW
a + βW(a(1 –ϕ) + δϕ)

ab
)

N .

(3)

Solving the last equation of (3) we get
W1 = 0
or

W2 = –ϕβbΩ – aβΩ + aβϕΩ – δϕβΩ + Nab(µN + µ)
β2(–ϕb – a + aϕ – δϕ) .

• For W1 we get the disease free equilibrium (DFE)
E0 = (H0, A0, S0, R0) = ( Ω

µN + µ , 0, 0, µΩ

µN(µN + µ)
),

that is always feasible.• For W2 we get the coexistence equilibrium
E∗ = (H∗, A∗, S∗, R∗)

with
H∗ = Nab

β(a(1 –ϕ) +ϕ(b + δ)) ,
A∗ = ϕ[βΩ(a(1 –ϕ) +ϕ(b + δ)) – Nab(µN + µ)]

aβ(a(1 –ϕ) +ϕ(b + δ)) ,
S∗ = (a(1 –ϕ) + δϕ)[βΩ(a(1 –ϕ) +ϕ(b + δ)) – Nab(µN + µ)]

abβ(a(1 –ϕ) +ϕ(b + δ)) ,
R∗ = (bγAϕ + γS(a(1 –ϕ) + δϕ)[Ωβ(a(1 –ϕ) +ϕ(b + δ)) – Nab(µN + µ)] – µNa2b2

µN abβ(a(1 –ϕ) +ϕ(b + δ)) .
Notice that H∗ > 0, while
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A∗ > 0 ⇔ ϕ[βΩ(a(1 –ϕ) +ϕ(b + δ)) – Nab(µN + µ)]
aβ(a(1 –ϕ) +ϕ(b + δ)) > 0,

solving the inequality for µwe get that

µ < βΩ(a(1 –ϕ) +ϕ(b + δ))
Nab – µN

must hold. Assuming A∗ > 0 also S∗ > 0 and R∗ > 0 hold and the coexistence equilibrium E∗ is feasible.
Jacobian matrix and characteristic polynomial

In order to study the stability of the equilibrium points we need to compute the eigenvalues of the Jacobian matrix associated to system (1),evaluated at the equilibrium points. The Jacobian matrix is

J =



–β (A + S)
N – µN – µ –βH

N –βH
N 0

ϕβ
(A + S)

N ϕβ
H
N – a ϕβ

H
N 0

(1 –ϕ)β (A + S)
N (1 –ϕ)βH

N + δ (1 –ϕ)βH
N – b 0

µ γA γS –µN


. (4)

We compute the characteristic polynomial associated to J by computing det(J – xI), and we get

p(x) = (–µN – x)
N ·

[
Nx3 + x2(β(A + S – H) + N(a + b + µN + µ))+

+ x(–βH(µN + µ + a(1 –ϕ) +ϕ(b + δ)) +β(A + S)(a + b) + N(ab + (µN + µ)(a + b)))+
–βH((µN + µ)(a(1 –ϕ) +ϕ(b + δ))) + abβ(A + S) + Nab(µN + µ)]. (5)

Substituting in (5) the values of E0 we get

p0(x) = (µN + x)(µN + µ + x) [x2 + (
a + b – βΩ

N(µN + µ)
)

x + ab – βΩ[a(1 –ϕ) +ϕ(b + δ)]
N(µN + µ)

] ,
that has two negative eigenvalues x1 = –µN e x2 = –(µN + µ). In order to have a stable DFE we should analyze the sign of the real parts ofthe roots of the second degree polynomial

x2 + (
a + b – βΩ

N(µN + µ)
)

x + ab – βΩ[a(1 –ϕ) +ϕ(b + δ)]
N(µN + µ) . (6)

Notice that, ∀ϕ,ψ ∈ [0, 1], the two roots of (6) are real. Imposing the second and the third coefficients of (6) to be positive and solving withrespect to the vaccination rate, µ, we get the condition

µ > max{
βΩ

N(a + b) – µN, βΩ[a(1 –ϕ) +ϕ(b + δ)]
Nab – µN

} ,
that guaranties that the second degree equation, (6), has two negative real roots and thus the stability of E0.In analogues way we study the stability of the coexistence equilibrium. We evaluate the Jacobian matrix (4) at E∗ and we compute theassociated characteristic polynomial

p∗µ (x) = (µN + x)(x3 + a2x2 + a1x + a0
) (7)

with
a2 = 1

N

[ Nab(a(1 –ϕ) +ϕ(b + δ)) + βΩ(a(1 –ϕ) +ϕ(b + δ))
ab + N(a + b)] ,

a1 = 1
N

[ –Nab(µN + µ)(a(1 –ϕ) +ϕ(b + δ)) + [βΩ(a(1 –ϕ) +ϕ(b + δ))](a + b)
ab

] ,
a0 = 1

N
[
βΩ(a(1 –ϕ) +ϕ(b + δ)) – Nab(µN + µ)] .

The root x1 = –µN is always negative while for the coexistence equilibrium to be stable the Routh–Hurwitz criterion must hold a0 > 0 (trueif the equilibrium is feasible), a2 > 0 (true) and a1a2 > a0.
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Table 1. Parameters of the model for data considering Italy. a [36](ISTAT 2018), b Ωwas chosen such that H(0) ≃ Ω/µN , c [38], d [39], e Fitted usingdata from [37].
Parameters Name Value Unit

N total population 60.36 × 106 a human
Ω birth and immigration 633780 b human/day
λ infection rate 0.292 c day–1
ψ fraction of avoided contacts test pure number
ϕ prob. of undergoing asympt. infection 0.5 d pure number
γA per capita recovery rate A 0.028 day–1
γS per capita recovery rate S 0.028 e day–1
µN mortality rate due to other causes 0.0105 a day–1
µ vaccination rate test day–1
δ transition from A → S 0.067 d day–1
µS mortality rate due Covid-19 0.0069 e day–1
a γA + µN + δ 0.1055 day–1
b γS + µS + µN 0.0454 day–1

Basic reproduction number R0
The basic reproduction number, R0, is "the expected number of secondary cases produced, in a completely susceptible population, by atypical infective individual", (e.g. [40]). The importance of R0 in the spreading of a disease is related to its value. The ideal scenario is R0 < 1,in this case the infection cannot grow. This means that on average an infected individual produces less than one new infected individualover the course of its infectious period. Conversely if R0 > 1, the disease spread over the population, in fact each infected individual produces,on average, more than one new infection. We compute the basic reproduction number using the next generation matrix technique, (for adetailed description of the method see [40], [41]), and we get

R0 = λ(1 –ψ)Ω(µN + µ)Nab
[(1 –ϕ)a +ϕ(b + δ)] , (8)

where we used thatβ = λ(1 –ψ). From (8) one can see that also in presence of the vaccine the epidemic can evolve and the stability ofthe coexistence equilibrium is reached. In order to have the stability of the DFE the vaccination efficiency must be greater than a certainthreshold

µ > (R0 – 1)µN = λ(1 –ψ)Ω(a(1 –ϕ) +ϕ(b + δ))
Nab – µN . (9)

For values ofµ for which (9) does not hold the disease spread and the coexistence equilibrium stability is reached.
4 Numerical analysis of the model

In this section we will analyze, from a numerical perspective, how the vaccination rate and the fraction of avoided contacts affects thesolutions of the system of ordinary differential equations, defined in (1). We also find the transcritical bifurcation value for µ fixing all theother parameter values as in Table 1 andψ = 0. Assuming that µ = 0, no vaccination is available, we investigate the importance of thefraction of avoided contact parameter,ψ. In Figure 2 are reported the solutions of system (1) for 5 different values ofψ in [0, 1] with step0.2. Notice that ifψ = 1, meaning that the virus does not circulate and the infection rate is zero, the DFE become stable, on the other sideforψ = 0 no measures to avoid contact are taken and the coexistence equilibrium reach its stability. It is worth noting that increasingthe NPIs the maximum value of the peak in the asymptomatic and symptomatic populations not only decrease but is also shifted to theright, so there is a delay which can give an advantage in those situations where the ICU (Intensive Care Units) are overloads. In Figure 3we have plotted the six numerical solutions of the ODE system (1), fixing all the parameter values as in Table 1,ψ = 0 and µ assuming 6different values in the interval [0, 0.5] with step 0.1. Notice that without a vaccine (µ = 0) both asymptomatic and symptomatic individualsreaches their highest peak, with all the other solution pressed against the abscissa axis, though they are not zero. In fact in Figure 4 we havereported a zoomed version of this two populations for values ofµmuch closer to 0, that confirm the stability of the coexistence equilibrium(for the first three lowest values) where the disease it is not yet eradicated and for µ = 0.06 the stability of the DFE. In Figure 5 we haveplotted one parameter bifurcation diagram with respect to µ (left panel) andψ (right panel), respectively. For µ ≃ 0.059 (or forψ ≃ 0.81) atranscritical bifurcation arises and for system (1) the coexistence equilibrium interchanges its stability with the disease free equilibrium. InFigure 6 we have represented a two strain parameter plot with respect to both µ andψ. We can see that without vaccination the systemreach the DFE stability only for values of the fraction of avoided contact close to 1, that means strict measures are needed in order to have aninfection rate close to 0. Moreover if we assume that the fraction of avoided contacts is 0, which means no measures are taken, the DFE it isstable for a vaccination rate higher than 0.06 (⩽ 17 days). In Figure 7 we represented the contour plots of the surfaces introduced in Figure6.
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Figure 2. The numerical solutions of system (1) fixing all the parameter values as in Table 1, µ = 0 (no vaccination) andψ assuming 6 different values in the interval [0, 1]with step 0.2. Top row: Susceptible individuals in time (left panel) and asymptomatic individuals in time (right panel). Bottom row: symptomatic individuals in time (left
panel) and recovered/removed individuals in time (right panel).

5 Conclusions

In this paper we have introduced a SASR (Susceptible-Asymptomatic-Symptomatic-Recovered/Removed) model to describe the dynamicsof four different classes of individuals where Sars-Cov-2 virus infection is considered. In this model we have also considered the vaccinationrate and a parameter in the infection rate that represent the avoided contacts between individuals due to NPIs. We computed the disease freeequilibrium and the coexistence equilibrium and analyzed their local stability. Moreover we have computed the basic reproduction number.
From the numerical investigation we can conclude that: (i) increasing the fraction of avoided contacts ψ leads to, not only to delaythe peak, but also to lower the maximum value, with a direct consequence on decreasing the pressure on the ICU; (ii) assuming to have anefficient vaccine with a permanent immunity, we found a critical value for the vaccination rate, bellow which the disease free equilibrium islocally asymptotically stable, while if above this threshold we have the confirmation that higher the efficiency of vaccine lower the peak ofinfected individuals at the coexistence equilibrium. From the two strain parameter analysis we can conclude that both an efficient vaccineand a high fraction of avoided contacts lead to the stability of the disease free equilibrium, but also that higher the efficiency of the vaccinesmaller the fraction of avoided contact must be.
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Figure 3. The numerical solutions of system (1) fixing all the parameter values as in Table 1,ψ = 0 and µ assuming 6 different values in the interval [0, 0.5] with step 0.1. Top
row: Susceptible individuals in time (left panel) and asymptomatic individuals in time (right panel). Bottom row: symptomatic individuals in time (left panel) and

recovered/removed individuals in time (right panel).
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Figure 4. Zoomed version of Figure 3 for asymptomatic (left) and symptomatic (right) populations, respectively, assuming µ varying in [0, 0.06] with step 0.015.
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Figure 7. Contour plot of the surfaces represented in Figure 6.
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