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Abstract
In this paper, we simulate an epidemic model of cholera disease in the sense of generalized Liouville-Caputo fractional derivative.We provide the results related to the existence of a unique solution by using some well-known theorems. Numerical solutionsof the given model are derived by using two different numerical methods along with their importance. A number of graphs areplotted to understand the given cholera disease dynamics. The main motivation to do this research is to understand the givendisease dynamics as well as the efficiency of both methods which are very recent to the literature.
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1 Introduction

The bacterium ’Vibrio Cholerae’ causes cholera, which is a bacterial illness. This bacterium is commonly found in contaminated foods.It’s a Gram-negative bacteria which is curved and comma-shaped. It may be found in sewage and coastal saltwater environments. It’salso found where there aren’t enough sanitary facilities. During the 1800s, this illness was initially discovered in the United States. Forhundreds of years, humans have been suffering from cholera sickness. If left untreated, this condition can cause severe diarrhoea anddehydration in the body. It can sometimes result in a deadly condition. They cling to shellfish, crabs, and other creatures’ shells. Variousillnesses, including cholera, are spread by drinking polluted water. This bacteria dwells in the human body’s small intestine and releasesan exotoxin, which induces a flow of water and electrolytes into the small intestine, including sodium bicarbonate, chloride, and others [1, 2].
Causes of cholera: (i) It is brought on by causes such as a polluted water source. (ii) It occurs as a result of the intake of tainted foods andbeverages offered by street vendors. (iii) Vegetables that are cultivated with the help of human waste and water. (iv) Contaminated seafood,which has been contaminated by sewage. (v) Foods that have an adverse effect on the digestive system are to blame. Some of the symptomsof Cholera are: (i) High fever. (ii) Weight loss. (iii) Increased thirst. (iv) Feeling of Nausea. (v) Vomiting sensation. (vi) A kind bloating inthe belly. (vii) Blood pressure becomes low. (viii) The elasticity of the skin is lost. (ix) Develop cramps in the muscles. (x) A rapid increase inthe heart rate. (xi) Dryness in the mouth, nose, and eyelids. (xii) Formation of blood or mucus or sometimes undigested materials in thestool [1, 2].
Replacement of lost fluid and electrolytes is part of the cholera therapy. Dehydration may be avoided by drinking enough of ORS (OralRehydration Solution). Intravenous fluid replacement may be necessary if the disease worsens. Antibiotics and zinc supplements may be
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prescribed by doctors to treat diarrhoea. Recently, some novel mathematical studies have been come out to define the dynamics of cholera.In [3], a cholera disease model with optimal control treatment is defined. Authors in ref. [4] have given some mathematical modellingrelated analysis on the dynamics of cholera. Study given in ref. [5] describes the transmission dynamics of cholera by using a mathematicalmodeling along with control strategies. In [6], spatial synchrony in fractional order metapopulation cholera transmission is given.
As we know that the fractional derivatives [7, 8] are helpful operators to study real-world problems in the sense of mathematical mod-eling. Recently, a number of studies have been coming to the literature on this topic. In the epidemic modelings, disease like COVID-19[9, 10, 11, 12, 13, 14, 15, 16, 17, 18], cancer therapy [19], tuberculosis [20], malaria [21], lassa hemorrhagic fever [22], and canine dis-temper virus [23], etc. have been successfully studied. Applications of fractional derivatives in psychology [24], ecology [25, 26], andplant epidemiology [27, 28] have been derived by many researchers. Several novel fractional-order mathematical models for studyingthe calcium distribution in nerve cells are introduced in refs. [29, 30, 31, 32]. Also, some novel recent applications of fractional-ordercomputational methods in different real-world problems can be studied from refs. [33, 34, 35, 36, 37]. Nowadays, scientists use differenttypes of fractional derivatives with or without singular kernels in a huge amount to solve various types of real-world problems. In ourstudy, we use the generalised Liouville-Caputo fractional derivative to simulate a mathematical model of the cholera epidemic. The noveltyof this work is to explore the given disease dynamics as well as the efficiency of both numerical schemes which are very recent to the literature.
This article is divided into number of sections. After defining cholera epidemic, we mention two necessary definitions in Section 2.In Section 3, a cholera model followed by the fractional model is proposed. In Section 4, results related to existence and uniqueness analysisare given. The solution of the model by using two different numerical methods is given in Section 5. All results and discussion are explainedin Section 6. Finally, concluding remarks are given in the last Section 7.
2 Preliminaries

Here we recall the definitions of two fractional derivatives.

Definition 1 [8] The Liouville-Caputo non-integer order derivative of L ∈ Cd–1 is defined by

Dϱ
t L (t) =


dqL(t)

dζq , ϱ= q ∈ N
1

Γ(q–ϱ)
∫t0 (t – ϑ)q–ϱ–1L(q) (ϑ) dϑ, q – 1 <ϱ< q , q ∈ N. (1)

Definition 2 [38] The generalized Liouville-Caputo-type non-integer order derivative, Dϱ,ρ
d+ of order ϱ> 0 is given by

(Dϱ,ρ
d+ L)(ξ) = ρϱ–q+1

Γ(q– ϱ)
∫ξ

d
sρ–1(ξρ – sρ)q–ϱ–1(s1–ρ d

ds

)q
L(s)ds, ξ > d, (2)

where ρ > 0, d ≥ 0, and q – 1 <ϱ≤ q.

3 Model description

Now we describe the dynamics of the mathematical model used to study the cholera epidemic. Recently, authors in ref. [4] proposed aninteger-order mathematical model consisting following ordinary differential equations


S′ = b – dS – βSI + νV + γR,
I′ = –dI + βSI – σI – ωI – αI,
R′ = –dR + αI – γR,
V′ = σI – νV,

(3)

where N = S + I + R + V. In this model, the cholera disease is distributed into four classes. S is for susceptible class, I is for infected individualsat contact rate β, R is for recovered humans at a rate α and V is for the environment. A brief description of all parameter values is given inTable 1. The disease-free equilibrium is defined by
(S∗, 0, 0, 0) = ( b

d , 0, 0, 0). (4)
The endemic equilibrium is

(S∗∗, I∗∗, R∗∗, V∗∗) = ( (d + ω + σ + α)
β

, (d + γ)R∗

α
, (d + βI∗)S∗ – b

γ
, σ(d + γ)R∗

να

), (5)
and then the basic reproductive number is calculated as

R0 = βb
d – (d + ω + σ + α). (6)
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Table 1. Parameter values cited from [4]
Parameter Description Values
b Recruitment rate 0.000096274
d Natural death rate 0.00002537
ω Disease induced death rate 0.0004
α Recovery rate 0.2
γ Rate of recovered humans return to the susceptible class 0.002
σ Rate of infectious humans contaminate the environment 0.1
ν Environment infect humans with the bacteria at a rate 0.075
β Contact rate with infectious humans 0.011

To capture the hysteresis memory effects in the given model, the generalization of the proposed model (3) in the generalised Liouville-Caputosense is described as follows: 

CDϱ,ρ
t S = b – dS – βSI + νV + γR,

CDϱ,ρ
t I = –dI + βSI – σI – ωI – αI,

CDϱ,ρ
t R = –dR + αI – γR,

CDϱ,ρ
t V = σI – νV.

(7)

where CDϱ,ρ
t is the notation of generalised Caputo type fractional derivative operator with fractional order ϱ and the extra parameter ρ.

4 Existence and uniqueness analysis

In this section, we do the analysis for the existence of a unique solution to the proposed model with the help of the consequences of fixedpoint theory. We perform the analysis for class S(t) and it is relevant to write that the same analysis will be applicable for the rest of theequations of model (7). Let us write the model (7) in the following compact form:


CDϱ,ρ
t S(t) = L1(t, S),

CDϱ,ρ
t I(t) = L2(t, I),

CDϱ,ρ
t R(t) = L3(t, R),

CDϱ,ρ
t V(t) = L4(t, V),

(8)

with the initial conditions S(0) = S0, I(0) = I0, R(0) = R0, and V(0) = V0.For proving the analysis for S(t) class, define the initial value problem (IVP)
CDϱ,ρ

t S(t) = L1(t, S), (9a)
S(0) = S0. (9b)

The relative Volterra integral equation of the above IVP is
S(t) = S(0) + ρ1–ϱ

Γ(ϱ)
∫ t

0 θρ–1(tρ – θρ)ϱ–1L1(θ, S)dθ. (10)
Now we proceed to the following results:
Theorem 1 [39, 40] Let 0 <ϱ≤ 1, S0 ∈ R, K > 0 and T∗ > 0. Consider L := {(t, S) : t ∈ [0, T∗], |S – S0| ≤ K} and let the function L1 : L → R be
continuous. Also, let M := sup(t,S)∈L |L1(t, S)| and

T =


T∗, if M = 0,
min{T∗,(KΓ(ϱ +1)ρϱ

M

) 1
ϱ } otherwise. (11)

Then, there exists a function S ∈ C[0, T] that satisfies the IVP (9a) and (9b).

Theorem 2 [39, 40] Let S(0) ∈ R, K > 0, T∗ > 0, 0 <ϱ≤ 1. Define the set L as in Theorem 1 and let the function L1 : L → R be continuous and
satisfies a Lipschitz condition with respect to the second variable, i.e.

|L1(t, S1) – L1(t, S2)| ≤ L|S1 – S2|,
for some constants L > 0 independent to t, S1, and S2. Then, there exists a unique solution S ∈ C[0, T] for the IVP (9a) and (9b).
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5 Numerical solution of the model

Solution of the projected model using modified Predictor-Corrector algorithm

Nowadays, a number of numerical methods are available in the literature. Recently, a modified version of the Predictor-Corrector (P-C)scheme to solve delay-type fractional initial value problems has been proposed in ref. [41]. In this part of the study, we write the numericalsolution of the proposed cholera model with the help of the generalised P-C method investigated in ref. [38]. The reason to use thisgeneralised Liouville-Caputo derivative is its features to generate more varieties in the graphical observations in the presence of bothparameters ϱ and ρ. Now first we consider the solution for the first equation of the cholera model (7) by taking equivalent Volterra integralequation
S(t) = S(0) + ρ1–ϱ

Γ(ϱ)
∫ t

0 θρ–1(tρ – θρ)ϱ–1L1(θ, S)dθ. (12)
Now by dividing the interval [0, T] into N unequal sub-intervals {[tk, tk+1], k = 0, 1, ..., N – 1} taking the mesh points

t0 = 0,
tk+1 = (tρk + h)1/ρ, k = 0, 1, ..., N – 1, (13)

where h = Tρ

N . Now, to evolute the approximations Sk, k = 0, 1, ..., N, we are assuming that we have already derived the approximations
Sj ≈ S(tj)(j = 1, 2, ..., k), and we want to calculate the approximation Sk+1 ≈ S(tk+1) by means of the integral equation

S(tk+1) = S(0) + ρ1–ϱ

Γ(ϱ)
∫ tk+1

0 θρ–1(tρk+1 – θρ)ϱ–1L1(θ, S)dθ. (14)
Let us take z = θρ, we get

S(tk+1) = S(0) + ρ–ϱ

Γ(ϱ)
∫ tρk+1

0 (tρk+1 – z)ϱ–1L1(z1/ρ, S(z1/ρ))dz. (15)
That is

S(tk+1) = S(0) + ρ–ϱ

Γ(ϱ)
k∑

j=0
∫ tρk+1

tρj
(tρk+1 – z)ϱ–1L1(z1/ρ, S(z1/ρ))dz. (16)

To approximate the right-hand side of Eq. (16), we use the trapezoidal quadrature rule with respect to the weight function (tρk+1 – z)ϱ–1, by
replacing the function L1(z1/ρ, S(z1/ρ)) by its piecewise linear interpolant with nodes chosen at the tρj (j = 0, 1, ..., k + 1), then we obtain

∫ tρk+1
tρj

(tρk+1 – z)ϱ–1L1(z1/ρ, S(z1/ρ))dz ≈
hϱ

ϱ (ϱ +1)
[((k – j)ϱ+1 – (k – j– ϱ)(k – j + 1)ϱ)L1(tj, S(tj))

+ ((k – j + 1)ϱ+1 – (k – j+ ϱ +1)(k – j)ϱ)L1(tj+1, S(tj+1))].
(17)

Now putting the above approximations into Eq. (16), we obtain the corrector formula for S(tk+1), k = 0, 1, ..., N – 1,

S(tk+1) ≈ S(0) + ρ–ϱhϱ

Γ(ϱ +2)
k∑

j=0
aj,k+1L1(tj, S(tj)) + ρ–ϱhϱ

Γ(ϱ +2)L1(tk+1, S(tk+1)), (18)

where
aj,k+1 =

{
kϱ+1 – (k– ϱ)(k + 1)ϱ if j = 0,(k – j + 2)ϱ+1 + (k – j)ϱ+1 – 2(k – j + 1)ϱ+1 if 1 ≤ j ≤ k. (19)

In order to obtain the predictor value SP(tk+1), we apply the one-step Adams- Bashforth method to the integral equation (15). In this case,
by replacing the function L1(z1/ρ, S(z1/ρ)) by the quantity L1(tj, S(tj)) at each integral in Eq. (16), we get

SP(tk+1) ≈ S(0) + ρ–ϱ

Γ(ϱ)
k∑

j=0
∫ tρj+1

tρj
(tρk+1 – z)ϱ–1L1(tj, S(tj))dz

= S(0) + ρ–ϱhϱ

Γ(ϱ +1)
k∑

j=0
[(k + 1 – j)ϱ – (k – j)ϱ]L1(tj, S(tj)).

(20)
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Now replacing S(tk+1) given in the right side of (18) by SP(tk+1), our P-C algorithm, for finding the approximation Sk+1 ≈ S(tk+1), iscompletely expressed by the formula

Sk+1 ≈ S(0) + ρ–ϱhϱ

Γ(ϱ +2)
k∑

j=0
aj,k+1L1(tj, Sj) + ρ–ϱhϱ

Γ(ϱ +2)L1(tk+1, SP
k+1), (21)

where Sj ≈ S(tj), j = 0, 1, ..., k, and the predicted value SP
k+1 ≈ SP(tk+1) is given in Eq. (20) with the weights aj,k+1 being defined according to

(19).So, the Predictor-Corrector formulae for the system (7) are given by

Sk+1 ≈ S(0) + ρ–ϱhϱ

Γ(ϱ +2)
k∑

j=0
aj,k+1L1(tj, Sj) + ρ–ϱhϱ

Γ(ϱ +2)L1(tk+1, SP
k+1),

Ik+1 ≈ I(0) + ρ–ϱhϱ

Γ(ϱ +2)
k∑

j=0
aj,k+1L2(tj, Ij) + ρ–ϱhϱ

Γ(ϱ +2)L2(tk+1, IP
k+1),

Rk+1 ≈ R(0) + ρ–ϱhϱ

Γ(ϱ +2)
k∑

j=0
aj,k+1L3(tj, Rj) + ρ–ϱhϱ

Γ(ϱ +2)L3(tk+1, RP
k+1),

Vk+1 ≈ V(0) + ρ–ϱhϱ

Γ(ϱ +2)
k∑

j=0
aj,k+1L4(tj, Vj) + ρ–ϱhϱ

Γ(ϱ +2)L4(tk+1, VP
k+1),

(22)

where
SP(tk+1) ≈ S(0) + ρ–ϱhϱ

Γ(ϱ +1)
k∑

j=0
[(k + 1 – j)ϱ – (k – j)ϱ]L1(tj, S(tj)),

IP(tk+1) ≈ I(0) + ρ–ϱhϱ

Γ(ϱ +1)
k∑

j=0
[(k + 1 – j)ϱ – (k – j)ϱ]L2(tj, I(tj)),

RP(tk+1) ≈ R(0) + ρ–ϱhϱ

Γ(ϱ +1)
k∑

j=0
[(k + 1 – j)ϱ – (k – j)ϱ]L3(tj, R(tj)),

VP(tk+1) ≈ V(0) + ρ–ϱhϱ

Γ(ϱ +1)
k∑

j=0
[(k + 1 – j)ϱ – (k – j)ϱ]L4(tj, V(tj)).

(23)

Theorem 3 [39] Assume that L1(t, S), L2(t, I), L3(t, R), L4(t, V) satisfy the Lipschitz condition and Sj, Ij, Rj, Vj (j = 1, ..., k + 1) are the solutions
of the Predictor-Corrector method (22) and (23). Then, the proposed numerical scheme is conditionally stable.

Solution of the model by Kumar-Erturk (K-E) fractional numerical algorithm

Now we utilize one more method which is a very recent numerical method given by Kumar et al. in [42] to simulate nonlinear fractional-orderIVPs. The scheme is defined by the following theorem:

Theorem 4 Recall the IVP (9a)-(9b). Let

F(ν, S∗(ν)) = L1
({

tρ – (tϱ – νΓ(ϱ +1)ρϱ) 1
ϱ

} 1
ρ , S(tρ – (tϱ – νΓ(ϱ +1)ρϱ) 1

ϱ ) 1
ρ

)
,

with the assumption of Theorem 1 hold. Then, a solution of (9a)-(9b) is defined by

S(t) = S∗(tϱρ–ϱ/Γ(ϱ +1)),
where S∗(ν) is a solution of classical differential equations

dS∗(ν)
dν = F(ν, S∗(ν)), (24)

and

S∗(0) = S0. (25)
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Proof Let us assume from Theorem 1 that S(t) is a solution of (9a)-(9b) which also satisfies (10). Let τρ = tρ – (tϱ – νΓ(ϱ +1)ρϱ)1/ϱ. ThenEq. (10) can be re-written as
S(t) = S0 + ∫ tϱρ–ϱ/Γ(ϱ+1)

0 L1
({

tρ – (tϱ – νΓ(ϱ +1)ρϱ) 1
ϱ

} 1
ρ , S(tρ – (tϱ – νΓ(ϱ +1)ρϱ) 1

ϱ ) 1
ρ

)
dν

= S0 + ∫ tϱρ–ϱ/Γ(ϱ+1)
0 F(ν, S∗(ν))dν.

(26)

Also, every solution of (24)-(25) is the solution of the VIE given below and vice versa.
S∗(ν) = S0 + ∫ν

0 F(s, S∗(s))ds, 0 ≤ ν ≤ aϱρ–ϱ/Γ(ϱ +1). (27)
Since, 0 ≤ tϱρ–ϱ/Γ(ϱ +1) ≤ aϱρ–ϱ/Γ(ϱ +1), the right-hand side of equation (26) is equal to S∗(tϱρ–ϱ/Γ(ϱ +1)). ■

Now we derive the numerical solution of the considered model (7) based on the above methodology. Firstly, the corresponding classicalmodel is
dS∗
dν = b – S∗ – βS∗I∗ + νV∗ + γR∗,
dI∗
dν = –dI∗ + βS∗I∗ – σI∗ – ωI∗ – αI∗,
dR∗
dν = –dR∗ + αI∗ – γR∗,

dV∗
dν = σI∗ – νV∗.

(28)

If the solution of this system is (S∗(ν), I∗(ν), R∗(ν)), V∗(ν)), then the solution of the model is (S∗(tϱ/Γ(ϱ +1)), I∗(tϱ/Γ(ϱ +1)), R∗(tϱ/Γ(ϱ+1)), V∗(tϱ/Γ(ϱ +1))).

Remark 1 This method is one of the fast numerical methods as compared to other available methods to solve the fractional-order initial value
problems. The output processing time of the algorithm is very less,which means the scheme gives the outputs in a very short of time. Also, it is very
easy to code this algorithm via any software like, Mathematica, Maple or MATLAB.

6 Simulation results

Now we perform the analysis for the given cholera model (7) with the help of real parameter values given in Table 1. For the initial valuesof all four classes of cholera model, we assume S(0) = 20000, I(0) = 30, R(0) = 0 and V(0) = 1000000. In Figure 1, we plotted the graphsof infectious class I(t) versus time variable t at various fractional order values along with the fixed values of extra parameter ρ = 0.75 byusing both (K-E and P-C) numerical methods. Where-from sub-figure 1a we can observe the variations in the infected individuals by K-Emethod and from sub-figure 1b by using P-C method. We can see that the outputs of both methods are slightly different. In the case of K-Emethod, as much as time increasing, the infectious population is converging to the lower values much faster than the case of P-C method.

(a) Output via K-E method (b) Output via modified P-C method
Figure 1. Dynamics of infectious class I(t) at fractional-order values ϱ= 1, 0.95, 0.90.



108 | Mathematical Modelling and Numerical Simulation with Applications, 2021, Vol. 1, No. 2, 102–111

(a) Output via K-E method (b) Output via modified P-C method
Figure 2. Dynamics of recovered class R(t) at fractional-order values ϱ= 1, 0.95, 0.90.

(a) Output via K-E method (b) Output via modified P-C method
Figure 3. Dynamics of enviroment V(t) at fractional-order values ϱ= 1, 0.95, 0.90.

In Figure 2, the graphs of recovered class R(t) versus time variable t at various fractional orders along with ρ = 0.75 by using both numericalmethods are given. From sub-figure 2a, we can see the variations in the recovered individuals by K-E method and from sub-figure 2bby using P-C method. Again the outputs of both methods are slightly different. In the case of K-E method, the recovered populationis increasing much faster then the case of P-C method. Similarly, decrement in the environmental infection or the number of bacteriaconcentrations V(t) can be observed from Figure 3 (sub-figure 3a via K-E method and sub-figure 3b via P-C method). For understandingthe role of extra parameter ρ, we plotted the group of Figures 4, 5, and 6. Here we notice that the variations caused by extra parameter ρ inK-E method (sub-figures 4a, 5a, 6a) are totally reverse to the variations caused by ρ in P-C method (sub-figures 4b, 5b, 6b). It means thatboth methods process the role of ρ in a different way, which makes their comparison more interesting.

(a) Output via K-E method (b) Output via modified P-C method
Figure 4. Variations caused by extra parameter ρ in class I(t) at fractional-order ϱ= 0.95.
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(a) Output via K-E method (b) Output via modified P-C method
Figure 5. Variations caused by extra parameter ρ in class R(t) at fractional-order ϱ= 0.95.

(a) Output via K-E method (b) Output via modified P-C method
Figure 6. Variations caused by extra parameter ρ in class V(t) at fractional-order ϱ= 0.95.

From the above given graphical simulations, we can see that both methods perform well to simulate the dynamics of the given choleramodel. The outputs of both methods are slightly different which justify the importance of both schemes in this study. But when we comparethe processing speed of both methods then K-E method is very fast as compared to P-C scheme because it takes only 1/4th processing timeof the P-C method. The stability of the given P-C method is available as mentioned in Theorem 3 but the analysis related to the stability ofK-E method still needs to be studied.
7 Conclusion

In this research work, we have investigated a mathematical model of cholera disease in the sense of the generalised Liouville-Caputofractional derivative. We have proved the results for the existence of a unique solution. Numerical solutions to the considered model havebeen derived with the help of two different methods and the importance of both schemes has been justified. A couple of figures are simulatedto explore the given cholera disease dynamics. The main aim of this work has been to explore the given disease dynamics as well as theefficiency, accuracy, and differences of both numerical methods. In the future, the given model can be solved by using any other fractionalderivatives and the proposed schemes can be utilized to solve different types of non-linear fractional order models.
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