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Abstract
In our observation, we have used an easy and reliable approach of the reduction perturbation method to obtain the solution of theion temperature gradient mode driven linear and nonlinear structures of relatively small amplitude. One can use that methodologyin the more complex environment of the plasma and can obtain a straightforward approach toward his studies. We have studieddifferent parameter impacts on the linear and nonlinear modes of the ITG by using data from tokamak plasma. Hence, our study isrelated to the tokamak plasma and one that can apply to the nonlinear electrostatic study of stiller and interstellar regimes wheresuch types of plasma environment occur.
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1 Introduction

Most of the research work has been done on the linear and nonlinear structures over the last few decades and its applications are comparedwith the stiller and interstellar spaces where the medium is plasma [1, 2, 3]. For that purpose, many researchers investigated the electrontemperature gradient (ETG) and ion temperature gradient (ITG) drift mode in which some of them used the simplest slab geometry [4, 5]and the other used some complex geometry like toroidal geometry [6]. Mathematically ITG coefficient is defined as ηi = Ln/LT [10] while
LT = 1/∂x ln Tio(x) and Ln = 1/∂x ln nio(x) are the ion temperature and ion density scale lengths. For the first time, ITG driven mode wasstudied by Sagdeev and Rudakov [4], then the work extended to the nonuniform number density of plasma species with a shear magneticfield where ion kinetic effect was also introduced in their calculation. The same research was extended further with inhomogeneous plasmaconfiguration for the instability limits in the toroidal geometry. Further, the pressure effect in the same geometry was also observed [5].Under the external magnetic field applied to the plasma, some of the new properties of the ITG mode were introduced by Hahm and Tang[8]. Jerman et al. [10] using heat flux effect in the energy balancing equation and Braginskii’s equation to derive ITG mode equation for thesimple Maxwellian electron-ion plasma. The ITG and toroidal ITG modes were studied and coupled by Shukla [11, 12] the same scientistsalso obtained theoretical calculations for the dipolar vortices. Zakir et al. [13] calculated the nonlinear structure of dipolar vortices in the
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plasma where electrons species were considered to be super-thermal. Adnan et al. [14] observed low-frequency electrostatic waves in aninhomogeneous plasma. Whether the instability is of ηe type or ηi type these both are very strong as compared to the gyro-radius (ρe/ρi)and driven fluxes effects [18]. In the ITG mode-driven instability both temperature gradient and number density fluctuations are out ofphase, and those types of modes are robust in the non-thermal regime. ηi mode instabilities are produced due to the free energy that isstored in the form of ITG mode [16, 15].
Fluid-like plasma is complex and nonlinear where the nonlinear structures like solitary shock waves can transport heat energy, mass,and momentum inside the fluid from one to another, bringing instability in the [19, 20, 21, 22]. The nonlinear collision-less structureswere studied by Sabry et al. [23] in a plasma whose constituents are electron-positron and ions. Nonlinear solitary waves were studied bymany authors considering various models of plasma [24, 25], shocks [26] and vortices of the two dimensional by the authors [27, 28, 29].For the first time, Zakir et al. [17] studied the linear and nonlinear solitary and shock waves structure in the ITG driven mode instabilityby considering electron to be Maxwellian and ion dynamic. Khan et al. [30] extended the work by incorporating the entropy drift in themomentum equation of the fluid and the effect of entropy in the ITG mode, his study revealed that entropy is an essential factor in thetransportation of instability in the plasma. Javed et al. [32] theoretically obtained the solitary wave potential solution from the kdv equationin the ITG mode by homotopy perturbation method (HPM) and compare the solution of the analytical and HPM method and gives that bothtypes of solutions agree with each other if the time interval is taken very small. Aziz et al. [33] observed ITG mode soliton and shock inelectron-positron-ion magneto-plasma by taking electron and positron species as Maxwellian; the same work is carried out by Rehan et al.[34] and investigated the linear and nonlinear mode in (e-p-i) plasma taking electron to be super-thermal. Zakir et al. [17] studied theeffects on the shock and solitary structure by taking the heat flux effect in the energy balancing equation of the ITG mode. Aziz et al. in [35]studied electron-positron-ion magneto-plasma by considering the entropy effect has study shows that it is one of the dominant factors inplasma parameters that can change the various linear and nonlinear structures magnificently in the fluid.
To observe different nonlinear structures like a soliton, shock, etc., in various compositions and models of a plasma, we can use thereduction perturbation technique (RPT). The reduction perturbation technique was first introduced theoretically to the problem’s solutionby [36, 37]. RPT has advantages like flexibility and algorithmic methodology to solve different problems in various fields of physics. Taniutiand Wei [38, 39] suggested RPT to be a generalized technique for obtaining the nonlinear partial differential equation of the correspondingwaves in a model plasma [40]. Different types of waves to which that technique has been successfully applied are ion-acoustic in a hot andcold plasma, magnetosonic waves in both hot and cold plasma, etc. [41, 42]. As the literature shows us that no one has yet solved the shockand solitary waves solution in ITG mode by reduction perturbation technique so we for the first time investigating the problem of ITG modedriven soliton and shock formation in the electron-ion plasma by reduction perturbation method (RPT). This article is divided into thefollowing sections: Section 2 gives MHD equations and the linear root calculation by the RPM method. In sections 3 and 4, we study thesolitary and shock waves profiles; Section 5 concludes the related article.
2 Theory related to the model

We consider a nonuniform plasma consisting of two species as electron and ion, with a background magnetic field along the z-axis i.e., B0ẑ,where ẑ represents the unit vector along the z-axis and B0 is the magnitude of the magnetic field. We also considered the temperature andnumber density gradients in the x–direction to simplify the calculation of the ion temperature gradient modes driven linear and nonlinearstudy i.e., dxni0 ̸= 0 and dxTi0 ̸= 0 for ions, here ni0, Ti0 are the equilibrium number density and ions temperature. The inertial mass for anelectron in comparison to the ion is so small, therefor ions are taken dynamic while electrons are subjected to have Maxwellian distribution.We assume here low-frequency ITG mode i.e., ∂t ≪ ωci = (eB/mic), ( here e stands for the ion charge, mi is for the ion mass, B is taken forthe magnitude of the magnetic field and c denote the speed of light). The fluctuations are considered to be electrostatic in nature, so we havetaken ∇ × E = 0 in our calculation. The first equation of our model plasma for the ion temperature gradient mode is the ion momentumequation that is [13, 17],
(∂t + vi.∇)vi = – e

mi
E – 1

mini
(∇pi), (1)

where E = –∇ϕ. Under the action of some external forces plasma species are driven so the inhomogeneity occurs in different parametersof the plasma i.e., ni = ni0 + ni1, Ti = Ti0 + Ti1 with ni1 ≪ ni0 and Ti0 ≪ Ti1 (here the quantities with subscript 0 denote the unperturbedparameters while those with subscript 1 denotes the perturbed plasma parameters). Ion velocity in the limit ∂t ≪ ωci, superposed bydifferent drifts that is given as [13, 17]
vi = vE + vDi + vpi + vixx̂, (2)

where vE = c
B0 (ẑ×∇Φ), vDi = c

eB0ni
(ẑ×∇Pi) and vpi = – c

B0ωci
(∂t + vi.∇)ẑ×vi are the E×B drift, ion diamagnetic drift and ion polarization

drift. Here Φ, Pi represents the normalized electrostatic potential, ions pressure, and vix, the drift velocity’s x—component. Here Pi = niTiis the ion pressure. The ion continuity equation is given by [13, 17]
∂tni + ∇.(nivi) = 0. (3)

The energy balance equation is given as [13, 17]
32 (∂t + vi · ∇) Ti + Ti(∇ · vi)ni = – 1

ni
∇. [(5Ti/2eB0)ẑ × ∇Ti

] , (4)
(5Ti/2eB0)ẑ × ∇Ti is known as Righi-Leduce heat flux term for ions due to the ion temperature gradient. Now at the last Poission equation(that is based on the Gauss’s law for electric flux) is as [13, 17]

∇2ϕ = 4πe(ni – ne). (5)
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Now to incorporate drift speed of ion vi in the equations of (1-5) and after a little manipulation we can get the continuity equation as [13, 17]
Di

tN + τvni∇Φ – 12ρ2
i τ

–1∂t∇
2(T + N + Φ) + ∂zviz = 0. (6)

In above expression, the new terms introduced are defined as Di
t = (∂t + vE.∇) [13, 17], vni = ( cTio

eB0
)
∇ ln nio × ẑ, τ = Teo

Tio
,T = Ti1

Tio
, N = nio1nioand Φ = eϕ

Teo
. The momentum equation obtained is as

(∂t + viz∂z)viz + c2
s ∇
[
Φ + τ–1(T + N)] = 0. (7)

here cs = ρsωci. Using the drift approximation in Eq. (4) and neglected the Righi-Leduce heat flux term in the same equation we can getthe energy balance equation as
∂tT – 23 ∂tN = τ

(
ηi – 23

)
vni.∇Φ. (8)

While the Poisson equation in the form of
∇2Φ = α1

(ne0
ni0 Φ – N

) , (9)

where α1 = 4πe2ni0
Te

in the Poisson equation which is based on the electric flux according to Gauss’s law.

Phase velocity

To get dispersion relation for the ITG mode, we use a compelling reduction perturbation method (RPM). From the dispersion relation,we then can extract phase velocity for the same mode that will reveal the linear behavior of the ITG mode. To proceed further, we firstintroduce the stretching coordinate to express all the differential equations of Eqs. (1)-(5) in terms of ξ– the coordinate system as did by
[44]. The stretching coordinates are given as ξ = ϵ

12 ( x
u – t) and ℓ = ϵ

32 t where the parameter ϵ has a very small value that represents, theweakness of the mode amplitude and u is the phase velocity of the mode. We write equations (6)-(9) in the stretching coordinate and thenuse the following power series for the different normalized quantities i.e.,


N
vix
T
Φ

 =


1010

 + m∑
n=1

ϵn


N(n)
v(n)

ix
T(n)
Φ(n)

 , m is a higher order of the perturbation, (10)

which gives a number of equations. To express the lowest order of different normalized quantities in terms of each other we compare ϵpower one to both sides of each equation in the form of
N(1) = τvni

u Φ(1) + v1
ix
u , (11)

v(1)
ix = c2

s
u
[
Φ(1) + τ–1 (T(1) + N(1))] , (12)

T(1) = 23 N(1) – τ

(
ηi – 23

) vni
u Φ(1), (13)

N1 = Φ1. (14)
When coupled equations of (11 – 14), we can get

1 – τvni
u – c2

s
u2
{

1 + 5τ–1
3 – (ηi – 23

) vni
u

}
= 0. (15)

Eq. (15) is a cubic root equation w.r.t u, where u is the phase velocity for the ITG mode. By a little algebraic calculation, we can find easily theroots of Eq. (15). As the phase velocity is obtained from the linear algebraic equations, we can describe the linear properties of the modefrom the roots. One root of Eq. (15) is as
u = 16τ

[ (2vniτ
2 + (2 × 3√2τ(v2

niτ
3 + c2

s (5 + 3τ))))
Γ

+ 2 23 × Γ

]
, (16)

where Γ = (s1 + s2) 13 , s1 = 33c2
s vniτ

3 – 27c2
s vniηiτ

3 + 9c2
s vniτ

4 + 2v3
niτ

6 and
s2 = √

τ3(–4(v2
niτ

3 + c2
s (5 + 3τ))3 + v2

niτ
3(2v2

niτ
3 + c2

s (33 – 27ηi + 9τ))2). In Fig. (1), the graph shows the phase velocity against the
electron to ion temperature ratio τ and the ion temperature gradient coefficient ηi. Observation of the graph shows that by enhancing theelectron to ion temperature ratio, the phase velocity of the ITG mode decreases to the negative values, but the effect reverses as ηi value ofthe plasma enlarge in value. On the other side, the phase velocity increases with the ion temperature coefficient ηi. These observations
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Figure 1. ITG driven mode phase velocity against τ and ηi .

Figure 2. ITG driven mode phase velocity against τ and vni .

Figure 3. ITG driven mode phase velocity against τ and ηi .
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remain valid with the mathematical reasoning because τ is related inversely with the ion temperature of the plasma so τ value increasemeans that the ion temperature decreases in the plasma, therefore, the mobility of the ion species decreases and also the phase velocity. Onthe other hand, the ion temperature coefficient is related directly to the change of ion temperature of the plasma, so an increase in the ηivalue means increasing the value of the ion temperature in the plasma and the mobility of the ions phase velocity. Fig. (2) shows us thatwith vni and τ value the phase velocity of the linear mode can be enhanced here again. The ion drift speed vni related directly with the iontemperature of the plasma by increasing the vni value means to increase the value of the ion temperature and we can see from the Fig. (2)that τ value changes by minimal factor but with a significant chance of the vni the phase velocity of the mode change abruptly. Now Fig. (3)reveals the same variation for the phase velocity against vni and ηi as in the graph first of the article for τ and ηi.

3 Solitary waves

Now to obtain a nonlinear structure in the ITG driven mode (i.e., solitary and shock waves). We compare the next higher power of ϵ in themagnetohydrodynamics equations (such as in the continuity equation, momentum equation, energy balancing equation, and Poissonequation). We obtained linear and nonlinear differential equations in the form
∂ξN(2) – τvni

u ∂ξΦ
(2) – τvni∂ℓΦ

(1) – 12
ρ2

i τ
–1

u2 ∂3
ξ

(
T(1) + N(1) + Φ(1)) + 1

u∂ξv(2)
ix = 0, (17)

– ∂ξv(2)
ix + v(1)

ix
u ∂ξv(1)

ix + c2
s

u ∂ξ

[
Φ(2) + τ–1 (T(2) + N(2))] + c2

s ∂ℓ

[
Φ(1) + τ–1 (T(1) + N(1))] = 0, (18)

– ∂ξT(2) + 23 ∂ξ N(2) = τ

(
ηi – 23

)
vni

( 1
u∂ξΦ

2 + ∂ℓΦ
1) , (19)

1
u2α1 ∂

2
ξΦ

1 = (N2 – Φ2), (20)
where, N(1), N(2) are the normalized ion-number density of order first and second, Φ(1), Φ(2) are the normalized perturbed potential of
order first and second, T(1), T(2) are the normalized ion-temperature of order first and second, vix, v(1)

ix are the ion-drift x-component oforder first and second, vni ion-number density drift, u phase velocity of the mode, ρi ion gyro-radius, cs acoustic speed, ηi ion-temperaturegradient coefficient, α1 = (4πe2nio)/Te, and τ = Teo/Tio. Now, combining Eqs. (17)-(20) we get the following nonlinear Korteweg-de-Vries(KdV) type of equation as
A1∂ℓΦ

1 + A2Φ1∂ξΦ
1 + A3∂3

ξ
Φ1 = 0, (21)

where A1 = {τvni + u (1 + τvni) – 2c2
s

u2
(
ηi – 23

)
vni + c2

su
(1 + 5τ–13

)} , A2 = –u (u – τvni)2 and
A3 = { u

α1 + 12ρ2
i τ

–1u
( 83 – τ

(
ηi – 23

) vniu
) + 53 c2

s τ
–1

u3α1
}. Dividing both sides of Eq. (21) by A1 coefficient we get
∂ℓΦ

1 + AΦ1∂ξΦ
1 + B∂3

ξ
Φ1 = 0, (22)

where A = A2
A1 and B = A3

A1 . The solution of Eq. (22) can be written (using a new variable as Ω = ξ – uℓ where u is the speed of the solitorywaves in the ITG mode) as
Φ = Φ0 sec h2 [Ω

W

] , (23)

where 3u
A = Φ0 and√ 4B

u = W .

Ti = 0.1Te
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Figure 4. ITG driven mode KDV equation nonlinear coefficient versus ηi . under the effect of ion to electron temperature ratio.
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Figs. (4) and (5) show that the nonlinear A and dispersion B coefficients of the kdv equation become smaller in value with the ion to electrontemperature ratio Ti/Te of the electron-ion plasma. So, we can observe the effects of different plasma parameters on the nonlinear anddispersion coefficients that will affect the magnitude as well as the sign of the coefficients hence the solitary and shock wave structure inthe plasma can be changed from the compressional to the refractional type of soliton/shock.
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Figure 5. ITG driven mode KDV equation dispersion coefficient versus ηi under the effect of ion to electron temperature ratio.

Figure 6. ITG driven mode solitary wave potential against the phase of the soliton η and ηi .
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Figure 7. ITG driven mode solitan potential against phase of the soliton Ω and τ.

Figure 8. ITG driven mode solitary wave potential against phase of the soliton Ω and vni .
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Figure 9. ITG driven mode solitary wave potential against phase of the soliton Ω.
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Figure 10. ITG driven mode solitary wave potential against phase of the soliton Ω.

That observation shows that both types of solitary waves can exist in the ITG mode at the low value of ηi–mode plasma a depth type ofsolitary waves are generated. In contrast, for ηi ≥ 1 hump type of solitary waves are generated in the plasma it depends on the sign of thenonlinear coefficient of the KdV type of equation for a low value of ion temperature gradient coefficient its value is negative so refractivesolitary waves are produced. Still, when the ion temperature gradient coefficient value is more significant than one, the compressive typeof solitary waves is generated in the plasma. Also, dispersive properties of the solitary waves increase with the lowering of the ηi valuewhile its amplitude is decreased by decreasing ηi value. Fig.(7) has been sketched among the soliton potential Φ against the soliton phase
Ω, and its phase velocity u, which show that the solitary wave potential enhances in amplitude for low phase velocity while diminishingfor the high phase velocity and also the dispersion properties of the soliton increases with the high phase velocity of the solitary wavesin the electron-ion plasma. Fig. (8) is the graph of solitary wave potential against its phase and ion number density drift vni that showsthe same situation as the previous graph i.e., with the drift velocity of the ion number density soliton potential decreasing in amplitudebut its dispersive properties increases. Maybe the decrease in the amplitude of the solitary wave is due to the ion temperature and greaterion number density of the plasma because these plasma parameters can change its viscosity and bring more dissipation in the plasma.In Fig. (9) we have investigated the solitary wave potential against its phase Ω , which shows that the amplitude of the solitary wave isindependent of the external magnetic field applied to the ITG mode driven electron-ion magnetoplasma. Still, the dispersion properties ofthe small amplitude solitary waves decrease with the background magnetic field’s strength. While Fig. (9) shows the relation of the solitarywaves against the soliton phase, with the ion temperature coefficient ηi the amplitude of the solitary wave becomes enhanced, and thedispersion properties of the waves is also increased with ηi. We can obtain the electric field from the solitary wave potential using a basicdefinition, i.e., E = –∇Φ.

4 Shock wave

The shock wave can be generated in a fluid only when the dissipation effect is larger in a medium as compared to the dispersion. So,
including the dissipative terms (i.e., η1 ∂2vi

∂2
x

) in the ion momentum equation, we will get a nonlinear Burger-like differential equation
whose solution gives us the shock structure in the medium

A1∂ℓΦ
1 + A2Φ1∂ξΦ

1 – A4∂2
ξΦ

1 = 0. (24)
A1 = {τvni + u (1 + τvni) – 2c2

s
u2
(
ηi – 23

)
vni + c2

su
(1 + 5τ–13

)} ,
A2 = –u(u – τvni)2, and
A4 = η1(u – τvni) dividing both sides of Eq. (24) we get the nonlinear partial differential equation in the form as

∂ℓΦ
1 + AΦ1∂ξΦ

1 – C∂2
ξΦ

1 = 0, (25)
where A = A2

A1 and C = A4
A1 the solution of Eq (25). By using a new variable as Ω = ξ – uℓ is given as

Φ = Φ0
[

1 – tan h
(

Ω4C
u

)]
, (26)

here u
A = Φ0 and 4C

u = Z.
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Figure 11. ITG driven mode Shock wave potential against phase of the shock Ω and ηi .

Figure 12. ITG driven mode Shock wave potential against phase of the shock Ω and τ.

Figure 13. ITG driven mode Shock wave potential against phase of the shock Ω and vni .
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Figure 14. ITG driven mode Shock wave potential against phase of the shock Ω.
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Figure 15. ITG driven mode Shock wave potential against phase of the shock Ω.

Fig. (11) is a graph of the shock wave potential against the phase of the shock and ion temperature gradient coefficient ηi. That figuregives a very interesting observation about the shock wave profile that for ηi < 1 then a rarefaction type of shock waves is produced in theplasma while compression type of the shock waves is produced when ηi > 1. Here the reason is the same as for the solitary waves becausethe nonlinear and dissipation coefficients of the kdv-Burger equation Eq. (25) can change its sing by changing the values of the plasmaparameters. Fig. (12) reveals that the shock wave amplitude becomes smaller with the electron to ion temperature ratio, possibly, thehigh temperature species electron of the plasma presents opposition to the shock wave in the plasma due to the ion species. Similarly,the effect observed in Fig. (13) where the rise in the drift velocity of the ion can enlarge the shock wave amplitude and vice versa, may bethe high ion number density in the fluid offer resistance to the production of the shock wave. In Fig. (14) we have compared the shockwave against its phase the 2-dimensional plot, here we can see that the amplitude of the shock with the ion temperature coefficient ηiincreases and the same variation observed in Fig. (15) for the shock wave potential against its phase for the different values of the ion toelectron temperature ratios, here we see the vibration of the shock wave amplitude is larger as compare to the previous Fig. (14). We haveused the following parameters in analyzing the linear dispersion relation, nonlinear shock and solitory wave n = 1014cm–3, B0 = 1 × 10–4,
Ti = 0.1Te, np = 0.001ne , ηi = 2, cs = 106 cm

s , ion gyro-frequency ωci = 104 rad
s , in ξ-coordinates u = 106 cm

s , α = 0.1rad. These values are inagreement with the previous literature [13, 15, 17, 33, 35].

5 Conclusion

We have studied here the linear and nonlinear properties related to the ion temperature gradient (ITG) driven mode in the electron-ionplasma. Ions are observed to have dynamics while electrons follow the Maxwellian distribution in our consideration. We have derived thelinear and nonlinear ITG modes by using a set of MHD equations for electron-ion plasma and then using the reduction perturbation methodto derive the phase velocity for the mode that was independent of the wavenumber k of the wave, as has been shown in the calculation.Then we obtained a nonlinear structure in the form of solitary and shock waves in the same electron-ion magneto-plasma. We have shownin our calculation that different parameters like ion temperature, ion number density, magnetic field, etc., can affect the phase velocity aswell as the shock and solitary waves in the electron-ion plasma.
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