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Abstract
In this paper, we consider the constructive equations of the fractional second-grade fluid. The considered fluid model is describedby the Caputo derivative. The problem consists to determine the exact analytical solution using the Laplace transform method. Theinfluence of the order of the used fractional operator has been presented in this paper. We also analyze the influence of the Prandtlnumber in the dynamics of the temperature distribution according to the variation of the order of the Caputo derivative. The impactof the second-grade parameter and the Grashof number in the dynamics of the velocity has been presented and discussed. Theinfluences of the parameters used in the modeling have been interpreted in terms of a fractional context. In general, it is shownthat the order of the fractional operator influences the diffusivity of the considered fluid. This influence can cause an increase ordecrease in the temperature and velocity distributions. The main findings of the paper have been illustrated using the graphicalrepresentations of the considered distributions according to the order of the fractional operator.
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1 Introduction

The field of fractional calculus and its application has grown many attractions these last decade. There exist nowadays many theories andapplications related to the field of fractional calculus [1]. The attraction of this new field is due to the memory effect and the heredity noticedin the fractional operators. We have many fractional operators as the Caputo derivative and the Riemann-Liouville derivative which areknown as the fractional derivative with singular kernels [2, 3]. We have also the so-called Atangana-Baleanu fractional operator and theCaputo-Fabrizio derivative which are known as the fractional operators with non-singular kernels [4, 5]. These singular and non-singularderivatives appear in many papers with applications to physical modeling [2, 6, 7], biological modeling [8, 9, 10, 11, 12, 13, 14], sciencesand engineering modeling [15, 16, 17, 18, 19], mathematical physics modeling [20, 21, 22, 23, 24, 25, 26], physics modeling [24, 27] andothers domains [28, 29, 30, 31, 32]. The field of fractional calculus is interesting but there also exist many questions without responses.The following questions are asked in the field of fractional calculus: what is a fractional operator, why fractional operators, what are theadvantages, and the motivations of using the fractional operators? Some of these questions have responses but some of them are stillwithout concrete responses. Modeling fluid, and nanofluid with fractional operators have attracted many authors these last decade. Theinvestigations related to modeling fluid and nanofluid with the fractional operators can be found in the following papers [20, 33, 34].The literature concerning the fluid and second-grade fluid models with fractional operators is long. In this part, we recall the literaturereview. In [33], the authors have proposed a model related to free convection flow near a vertical plate described by Caputo derivative andhave considered its solution via Laplace transform method. In [20], the authors have taken into account the analytical solutions via Laplace

➤ Received: 13.12.2021 ➤ Revised: 16.01.2022 ➤ Accepted: 22.01.2022 ➤ Published: 26.01.2022

13

https://orcid.org/0000-0002-8664-6464


14 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 1, 13–25

transform for a fractional double convection problem of fractional viscous fluid particularly described by a Caputo fractional operator. Aliet al. in [35] have proposed the exact analytical solution of MHD free convection flow of generalized Walters’-B fluid model described bynew fractional operator namely Caputo-Fabrizio derivative. In [36], the authors have obtained a solution for the free convection flow ofgeneralized Jeffrey fluid described by the Caputo-Fabrizio fractional. In [15], the authors have used the Laplace transform to get the exactanalytical solution of the MHD flow of water-based Brinkman type nanofluid. In [37], the authors have used the Caputo derivative to modelheat and mass transport of differential type fluid and have examined the exact analytical solution using the Laplace transform method.In [38], the authors have studied the unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded ina porous medium, the Laplace transform has been used in such paper to get the analytical solutions. In [21], the authors have proposed acomparative study between the Caputo-Fabrizio derivative and Atangana-Baleanu derivative in modeling the generalized Casson fluidmodel with heat generation and chemical reaction. In [28], Tahir et al. have proposed the analytical solution of the heat transfer flow ofMaxwell fluid described by Caputo-Fabrizio time-fractional derivative. In [39], the authors have studied the MHD flow of a Casson fluidover an exponentially shrinking sheet, the analytical solution of the proposed model has been proposed via the Adomian DecompositionMethod. In the same direction of investigations related to the determination of the analytical solution using Laplace transform for themodels with integer-order derivative see in [40].In this work, we focus on the analytical solutions of the constructive equations of the second-grade fluid model described by the Caputofractional operator. We use in this paper the Laplace transform method for getting the analytical solution. The advantages of the presentinvestigations are we use the resolution of second-order differential equations which are not difficult to be performed. The second advantageof the present paper is the analytical solutions can be rewritten using the exponential function, the Mittag-Leffler function, the wrightfunctions, and the Gaussian error function. The memories effect present in the Caputo derivative will also be an advantage in the presentpaper because the order of the Caputo derivative will play accelerations or retardation effect on the dynamics of the velocity and thetemperature distribution of the considered model.The contents of the present paper are structured as follows. In Section 2, we try to recall the fractional operators most used in the literatureof fractional calculus. It will permit the readers to be familiarized with the fractional operator. In Section 3, we describe the fractional modelusing the Caputo derivative. In Section 4, we give the approaches to get the analytical solutions using the Laplace transform method. Notethat the Laplace transform of the Caputo derivative will be frequently used. Discussion and the interpretations of the influences of theparameters utilized in the modeling have been provided in Section 5. We finish the paper with final remarks in Section 6.
2 Fractional operators

This section is devoted to giving the definitions of the fractional operators and the functions which will be used in this investigation. Forpresent works, we need the Caputo fractional operator, the Riemman-Liouville integral, the derivatives with son singular kernels, theMittag-Leffler functions, the wright function, and others. We also will recall the Laplace transform of the Caputo derivative because thistool is fundamental in our investigations regarding the method utilized in the present paper. The Riemann-Liouville integral is describedin the following definition.
Definition 1 [2, 3] The representation of the Riemann-Liouville integral of a considered function g : [0, +∞[–→ R can be expressed as the
following form

(
Iαg
) (t) = 1

Γ(α)
∫ t

0 (t – s)α–1 g(s)ds, (1)
the Γ(...) denotes the Gamma function and with orderα verifying the condition thatα > 0.

The Riemann-Liouville integral has its associated fractional derivative known as the Riemann-Liouville derivative. We give its definition inthe following definition. This definition can be found in many papers in the literature.
Definition 2 [2, 3] The representation of the Riemann-Liouville derivative of the considered function g : [0, +∞[–→ R, of orderα as the form

Dαg(t) = 1
Γ (1 – α) d

dt

∫ t

0 g(s) (t – s)–α ds, (2)
the time t > 0, is the order of the operator and satisfies the condition thatα ∈ (0, 1) and Γ(...) represents the Gamma Euler function.

The Riemann-Liouville derivative has an increasing reputation in the problems related to the existence and the uniqueness, the stabilityanalysis of the fractional differential problems. In modeling real words problems the initial condition makes this operator very limitedbecause the real-world problems’ initial conditions are not compatible with the Riemann-Liouville derivative. Therefore this derivativeis not used in modeling biological models, fractional chaotic systems, and other real applications. The Caputo derivative is adequate inmodeling real word problems and is defined in the following definition.
Definition 3 [2, 3] We denote the Caputo fractional derivative with the considered function g : [0, +∞[–→ R, of order α as the following
representation

Dαg(t) = 1
Γ (1 – α)

∫ t

0
dg
ds (t – s)–α ds, (3)

with t > 0, and the order of the derivative obeys to the assumption thatα ∈ (0, 1) and Γ(...) is the Gamma Euler function.

The Caputo derivative is the most used derivative in the literature of fractional calculus. The motivation is due to the fact that this derivativeis compatible with the initial conditions used in modeling real word problems. In this paper the Laplace transform method is used forgetting the exact analytical solutions, therefore we define in the following line the Laplace transform of the Caputo derivative. We have the
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following representation [2, 3]
L
{(

Dαc g
) (t)} = sαL

{
g(t)} – sα–1g(0). (4)

with the orderα satisfies the condition thatα ∈ (0, 1). The symbol L denotes the Laplace transform. The Laplace transform in Eq. (4) willplay a fundamental role in the present investigation.Before closing this section, we recall the definitions of the fractional operators with non-singular kernels. These derivatives have manyapplications these decades and many papers have been written to illustrate the applications of these derivatives in modeling physics, biologymodels, science, and engineering.
Definition 4 [5] We represent by the following equation of the Caputo-Fabrizio derivative of the function g : [0, +∞[–→ R, of orderα in the
following term

Dα,CFg(t) = CF(α)1 – α
∫ t

0 g′(s) exp(– α1 – α (t – s)) ds, (5)
where the following the condition t > 0, the order of the fractional derivative obeys toα ∈ (0, 1) and CF(...) denotes the normalization term and
respects to the condition CF(0) = CF(1) = 1.

Definition 5 [4] The definition of the Atangana-Baleanu derivative of the function g : [0, +∞[–→ R, of orderα, that is

Dα,ABg(t) = AB(α)1 – α
∫ t

0 g′(s)Eα
(– α1 – α (t – s)α) ds, (6)

respecting the condition that t > 0, the order of the fractional derivativeα ∈ (0, 1) and AB(...) is the normalization term and obeys to the condition
AB(0) = AB(1) = 1.

We finish this section by recalling the special functions which are used to express the analytical exact solutions in this paper. We have theMittag-Leffler function and the wright function represented in the following expressions [33],
Eα,β (x) = ∞∑

k=0
xk

Γ(αk +β) , (7)

withα > 0,β ∈ R and x ∈ C, and we define the Wright function [33] with three parameters as the following
ϕ (β, –σ, x) = ∞∑

n=0
xn

Γ (n + 1) Γ (β – σn) , (8)

with the following conditions σ ∈ (0, 1),β ∈ R and x ∈ C.
3 Fractional model under Caputo derivative

This section is devoted to the presentation of the second-grade fluid model subject of our investigations. To arrive at our end, we describethe following procedure. The sketch of modeling can be found in the literature in the following papers [20, 33], the significant difference inthe model is the initial condition which play important role in the form of the analytical solutions. We take the plate vertical at x-directionand we take y-direction perpendicular to the plane generated by the plane. We consider that at the initial time, then the fluid and the plateare at rest to the constant temperature T∞. At starting time, we suppose that the heat transfer from the plate to the considered fluid isproportional to a local surface temperature denoted by T. For the rest of our modeling, we consider the use of the Boussinesq approximationand then we get the following partial differential equations
∂u
∂t = (

ν + α1
ρ

∂

∂t

)
∂2u
∂y2 + gβ (T – T∞) , (9)

∂T
∂t = κ

ρcp
∂2T
∂y2 . (10)

The initial and boundary conditions adopted in this present investigations are described as follows
v(u, 0) = 0, T(x, 0) = T∞, (11)
T(0, t) = 0, T(0, t) = T∞ + [Tw – T∞] [ t

t0
] . (12)

The problem consists to get the exact analytical solutions of the model (9)-(10), and then we need more simplifications of the previousmodel. Therefore we introduce the following changes variables
y∗ = yh

k , t∗ = t1
ν
(

k
h

)2
, u∗ = u

g
ν
(

k
h

)2
, ψ∗ = T – T∞

T∞ , (13)

Gr = βT∞, Pr = ρcp
κ

, β∗ = α1
ρ

(h
k

)2 . (14)
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We use the dimensionless variable described in Eq. (13) and Eq. (14) into Eq.(9) to Eq. (12), we get a more simplified form of the fluid modelconsidered in this paper, it is represented by the following
∂u
∂t = ∂2u

∂y2 +β ∂3u
∂t∂y2 + Grψ, (15)

∂ψ

∂t = 1
Pr
∂2ψ
∂y2 . (16)

with initial and boundaries dimensionless conditions given
u(y, 0) = ψ(y, 0) = 0, (17)
u(0, t) = 0, (18)
ψ(0, t) = t. (19)

Replacing the integer-order derivative by the Caputo derivative in Eqs. (15)-(16) due to the memory effect and the heredity of the Caputoderivative and the generalization of the integer-order derivative to non-integer partial differential equations, we get the following modelwhich will be the subject of our investigations
Dατ u = ∂2u

∂y2 +βDα
(
∂2u
∂y2

)
+ Grψ, (20)

Dατψ = 1
Pr
∂2ψ
∂y2 . (21)

As initial and boundaries conditions which the velocity and the temperature satisfy, we consider the following relationships
u(y, 0) = ψ(y, 0) = 0, (22)
u(0, t) = 0, (23)
ψ(0, t) = t. (24)

Furthermore, we add the supplementary conditions that both the temperature (ψ) and the velocity (v) converge to zero when the y tends toinfinity. In the following Table 1, the names of the parameters used in our modeling described in this Section 3 are provided.
Table 1. Parameter descriptions

Parameters Descriptions
Pr Prandtl number
Gr Grashof number
cp Heat at a constant pressure
g Acceleration constant
β Volumetric coefficient of thermal expansion
ν Kinematics viscosity of the fluid
κ Thermal conductivity of the fluid
α1 Second grade parameter
ρ Fluid density

4 Analytical approaches

In this section, we consider the initial and boundary conditions in Eqs. (22)-(24) to give the analytical solution of equations (20) and (21)via the Laplace transform method. The basic tool here is solving the second-order differential equations via the Laplace transform. Thesketch of the proof consists in first getting the exact analytical solution of Eq. (21) and using this solution to determine also the analyticalsolution of Eq. (20).
Here we begin with Equation (21) under initial and boundary conditions described in Eqs. (22)-(24). Applying the Laplace transform toboth sides of Eq. (21), we have that

sαψ̄ – sα–1ψ(y, 0) = 1
Pr
∂2ϕ̄
∂y2 ,

sαψ̄ = 1
Pr
∂2ψ̄
∂y2 ,

∂2ψ̄
∂y2 – Prsαψ̄ = 0. (25)

Before continuing the resolution we also apply the Laplace transform to the boundary condition (24), we get thatψ (0, s) = 1/s2. Then the
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analytical solution of the second-order differential equation (21) in terms of Laplace transform is given as the following form

ψ̄ (x, s) = exp [–x
√

Prsα
]

s2 . (26)
The determination of the inverse of the Laplace transform needs to use the called wright function. This function is recalled to the preliminarysection. Then the inverse of the Laplace transform given by Eq. (26) is given by

ψ (x, t) = tϕ
(2, –α/2, –x

√
Prt–α/2) . (27)

We now consider a special case obtained when the order of the Caputo derivative converges to one, that isα = 1. We repeat the procedure ofthe solution with Eq. (25). Let consider this equation with the caseα = 1, we have the following relationship

ψ̄ (x, s) = exp [–x
√

Prs
]

s2 . (28)
The final step of the resolution consists to apply the inverse of the Laplace transform to both sides of Eq. (28), it yields that

ψ (x, t) =
(

x2Pr2 + t
)

erfc
(

x
√

Pr
2√t

)
– x

√
Prt2√π exp

(
– x2Pr4t

)
. (29)

The second step of the determination of the exact analytical solution of our model will finish with the resolution of Eq. (20). The method issimilar to the procedure previously applied with the temperature distribution. In the step of the determination of the velocity, we apply theLaplace transform to both sides of equation (20), we get that
sαū – sα–1ū(y, 0) = (1 +βsα

) ∂2ū
∂x2 + Grψ̄,

sαū = (1 +βsα
) ∂2ū
∂y2 + Grψ̄,

∂2ū
∂y2 – sα1 +βsα ū = – Gr1 +βsα

exp [–x
√

Prsα
]

s2 . (30)
The solution in terms of the Laplace transform of the second-order differential equation (30) with initial and boundary conditions takeninto account is given by the following relationship

ū (x, s) = C

 exp [–x
√

Prsα
]

sα – exp [–x
√

sα1+βsα
]

sα

 , (31)

where C is given as
C = –Gr

[
s–2

1 +βsα – Prs–2
βPrsα + Pr – 1

]
. (32)

To get the analytical solution, we have to apply the inverse of the Laplace transform to both sides of Eq.(31) and use the convolution productproperties. We have the following analytical solution
u (x, t) = ∫ t

0 a(t – τ) (b(x,τ) – c(x,τ)) dτ. (33)
For obtaining the form of function, we apply the inverse of Laplace transform of the function C, we need to utilize the Mittag-Lefflerfunction. That is

a (x, t) = – Grt1+α
β

[
Eα,2+α

(– 1
β

tα
) – Eα,2+α

(– Pr – 1
βPr tα

)] . (34)
We continue with the inverse of the Laplace transform of the function represented as the following form

b̄ (x, s) = exp [–x
√

Prsα
]

sα , (35)
which needs some manipulations. The inverse of the Laplace transform is given by the following relationship

b (x, t) = tα–1ϕ(α, –α/2, –y
√

Prt–α/2) . (36)
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We finish this procedure of inverse of the Laplace transforms by inverting the function defined as the form

c̄ (x, s) = exp [–x
√

sα1+βsα
]

sα , (37)
and then propose the analytical solution of the Eq. (20). The inverse of the Laplace transform to both sides of Eq. (37) is given by thefollowing representation

c (x, t) = ∫∞
0 m(y, u)ϕ (0, –α, ut–α) du, (38)

where
m (y, u) = 1 – 2

π
√
β

∫∞
0

sin(yu)
u
(

u2 + 1/√β) exp
 –u2ut
β
(

u2 + 1/√β)
 du. (39)

We now consider a special case obtained when the order of the Caputo derivative converges to 1 that isα = 1, and the parameterβ = 0. Notethat the parameterβ is zero whenα1 = 0 in Eq. (14). In this case, we consider the Laplace transform described in Eq. (31) with the previousassumptions, there is

ū (x, s) = Gr
Pr – 1

 exp [–x√s
]

s3 – exp [–x
√

Prs
]

s3
 . (40)

We now apply the inverse of the Laplace transform, which is given by the following analytical form
u (x, t) = Gr

Pr – 1
∫ t

0 (t – τ) erfc
( x2√τ

)
dτ (41)

– Gr
Pr – 1

∫ t

0 (t – τ) erfc
(

x
√

Pr2√τ
)

dτ. (42)
Before closing this section it is important to mention the method to get the Nusselt number. This number is obtained with the temperaturedistribution by the following formula

Nu = –L–1 [ lim
x→0

∂ϕ̄ (x, s)
∂x

]
. (43)

5 Discussion on the findings

In this section, we discuss the findings of the paper. We analyze the impact of the Caputo order derivative in the dynamics of the temperatureand the velocity distribution. The impact of the Prandtl number, Grashof number, time, and second-grade coefficient will be discussed interms of the variation of the Caputo derivative in detail.
The temperature distribution

We begin the discussion with the temperature distribution. In this part, the fractional-order and the Prandtl number will be analyzed interms of their impacts on the dynamics of the temperature distribution. In this section, we consider Eq. (27) in the graphical representations.We fix the time t = 0.6 for Figures 1a, 1b and t = 10 for Figures 2a, 2b, and also we consider different values of the order of the Caputofractional operator. We have the following graphical results: We now analyze the behaviors of the dynamics presented in the previousfigures. Let the time t less than one, this assumption corresponds to Figures 1a, 1b. We observe that when the order of the Caputo derivativeincreases with the increase of the state y, we note that, the temperature distribution decreases. These dynamics can be explained by thefact for a short time the accumulation of the memory and heredity affects the diffusivity of the considered model. The increase in the orderincreases the diffusivity which generates a decrease in the temperature of the fluid. The second conclusion concerns that when the time isgreater than 1, see Figures 2a, 2b, in this case, the accumulation of the memory effect and heredity makes the system more diffusive whichaffects the temperature distribution 2a, 2b and causes its increase. In the considered cases in this part, we note that the Caputo derivativeplays an acceleration effect in the dynamics of the temperature distribution.Let us now analyze the impact of the Prandtl number in the dynamics of the considered fluid particularly on the temperature distribution.We take two different times t = 0.6 for Figures 3a, 3b, and t = 10 for Figures 4a, 4b, different orders of the derivative have been consideredand we increase the values of the Prandtl number. We have the following graphical representations:
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Figure 1. Temperature distribution for different values of the orderαwith Pr = 6 (a) and Pr = 12 (b).
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Figure 2. Temperature distribution for different values of the orderαwith Pr = 6 (a) and Pr = 12 (b).
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Figure 3. Temperature distribution for different values of the Prandtl number withα = 0.75 (a) andα = 0.95 (b).

The graphical representations 3a, 3b, 4a, 4b inform us that when the values of the Pr increase then temperature distribution decreases aswell. These behaviors can be explained by the fact when the order of the fractional operator increases and the Prandtl number increasesthen the diffusivity of the system is reduced, thus its impact on the temperature distribution decreases. Let us now see what happens
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Figure 4. Temperature distribution for different values of the Prandtl number withα = 0.75 (a) andα = 0.95 (b).

with the temperature distribution when the time varies significantly and the Prandtl number increases. We have the following figures
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Figure 5. Temperature distribution for different values of Pr with t = 5 (a) and t = 10.
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Figure 6. Temperature distribution for different values of Pr with t = 15 (a) and t = 20 (b).
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Comparing the Figures 5a, 5b, 6a, 6b, we can observe that when the Pr number increases, then the temperature distribution decreases.In conclusion, the time does not play a role if the Prandtl number increase. For all considered times the increase of the Prandtl numbergenerates a decrease in the temperature distribution.

The velocity distribution

In this sub-section, we try to explain and interpret the dynamics generated by the velocity. We first consider analyzing the influence ofthe fractional-order in the dynamics. In this section, we condition Eq. (33) in the graphical representations. In the second part, we willanalyze the influence of the parameters as the Grashof number Gr and second-grade coefficientβ. Let us represent the dynamics of thevelocity for different values of the Caputo fractional order in the following Figures 7a, 7b, 8a, 8b. Let that t = 5, we have the followinggraphics 7a, 7b, 8a, 8b for the velocity The influence of the order of the fractional derivative is analyzed in terms of the variation of the
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Figure 7. Velocity distribution for different values of the orderαwith Pr = 5 (a) Pr = 10 (b).
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Figure 8. Velocity distribution for different values of the orderαwith Pr = 15 (a) Pr = 20 (b).

Prandtl number. We observe that when the order of the Caputo derivative increases, the velocity increases. Thus, the fractional-order hasan acceleration effect in the present case. We also notice that when the Prandtl number increase, the velocity decreases, as well. The Prandtlnumber has the same influence on the temperature distribution and the velocity. We now consider a second case where the time is greaterthan 1 (t = 10) and the variation of the Grashof number is assumed. We have the following graphical representations 9a, 9b, 10a, 10b We canobserve that with the previous figures the increase in the order of the Caputo derivative generates an increase in the velocity. The increasein the velocity is due to the fact when time is greater than 1, the Caputo derivative generates accumulation in the memory which causes anincrease in the value of the velocity. Here, the order of the Caputo derivative has an acceleration effect. We analyze the impact of the Grashofnumber Gr, we can do it by analyzing the previous Figures 9a, 9b, 10a, 10b. Comparing the Figures 9a, 9b, 10a, 10b, we can observe thatwhen the Grashof number increases, it generates an increase in velocity. This increase in the velocity is explained by the fact that when theGrashof number increases then we have increased in the thermal buoyancy force. Let us now analyze the second-grade parameter. We have
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Figure 9. Velocity distribution for different values of the orderαwith Gr = 5 and Gr = 10.
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Figure 10. Velocity distribution for different values of the orderαwith Gr = 15 and Gr = 20.

the following graphical representations 11a, 11b, 12a, 12b, when the value of the second-grade parameter increases When we compare the
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Figure 11. Velocity distribution for different values of the orderαwithβ = 0 (a) andβ = 0.5 (b).

values of the velocity in Figures 11a, 11b, 12a, 12b, we notice when the values of the second-grade parameter increase, then the velocity
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Figure 12. Velocity distribution for different values of the orderαwithβ = 0 (a) andβ = 0.5 (b).

decreases as well. This behavior is explained by the fact that in general the increase of the thickness of the boundary layer is caused by thedecrease of the second-grade parameter. The present investigations are similar to the investigations provided by Shah et al in [41]. In [41],the authors consider the same model addressed in this paper with the fractional derivative with the exponential kernel. The main findingsin [41] and the results in the present paper are in good agreement. One of the main advantages of the present investigations regarding theinvestigations existing in the literature is here we use the Caputo derivative which the application of the Laplace transform and its inverseis trivial and the expressions of the exact analytical solutions of the considered fluid model can easily be expressed via Gaussian function,exponential function, and Mittag-Leffler function.
6 Conclusion

In this paper, we have discussed the exact analytical solutions of the second-grade fluid model described by the Caputo fractional operator.After modeling the fluid model via Caputo derivative, we have used the Laplace transform method to get the analytical solutions of thefluid model considered in this paper. Many results have been proposed in our present paper. As the first finding, the order of the fractionaloperator accelerates the diffusion or can have a retardation effect, that depends on the considered time. We noticed that with the increase ofthe Prandtl number for a specific order of the Caputo derivative then the temperature distribution of the considered fluid decreases aswell. This behavior is due to the reduction of the diffusivity as previously mentioned in the paper. Note that with the increase of Grashofnumber Gr then it generates an increase in the velocity distribution of the considered fluid. For the future direction of researches, the samesecond-grade fluid model can be described by non-singular fractional operators as the Atangana-Baleanu derivative and Caputo-Fabrizioderivative, and getting the exact solutions with the Laplace transform constitutes an open problem and can be focused on in the future.
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