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Abstract

This work investigates the complex Ginzburg-Landau equation (CGLE) with Kerr law in nonlinear optics, which represents
soliton propagation in the presence of a detuning factor. The ¢°-model expansion approach is used to find optical solitons
such as dark, bright, singular, and periodic as well as the combined soliton solutions to the model. The results presented in
this study are intended to improve the CGLE’s nonlinear dynamical characteristics, it might also assist in comprehending
some of the physical implications of various nonlinear physics models. The hyperbolic sine, for example, appears in the
calculation of the Roche limit and gravitational potential of a cylinder, while the hyperbolic cotangent appears in the
Langevin function for magnetic polarization. The current research is frequently used to report a variety of fascinating
physical phenomena, such as the Kerr law of non-linearity, which results from the fact that an external electric field
causes non-harmonic motion of electrons bound in molecules, which causes nonlinear responses in a light wave in an
optical fiber. The obtained solutions’ 2-dimensional, 3-dimensional, and contour plots are shown.

Key words: ¢°-model expansion method; complex Ginzburg-Landau equation; traveling wave solution; Kerr law nonlin-
earity
AMS 2020 Classification: 35Qxx; 35C07; 35Q51

1 Introduction

Partial differential equations were first employed for the study of surfaces in geometry [1, 2, 3, 4, 5] and a vast range of mechanical
issues. Renowned mathematicians from throughout the world were keenly interested in studying a wide range of issues brought
on by partial differential equations in the late 19th century [6]. Since optical solitons which are the solutions of the NPDEs can
be used as information carriers for transmitting digital signals over long distances in optical fiber networks, the propagation of
optical solitons in nonlinear optical fibers has received a lot of attention [7, 8, 9, 10, 11]. Maintaining a moderate balance between
nonlinearity and group velocity dispersion is the fundamental concept for the presence of the optical solitons. The study of exact
solutions of the nonlinear partial differential equations NLPDEs, as scientific methods of the concepts, will help one to clarify these
phenomena. Many successful methods for obtaining exact solutions of NLPDEs, such as the Adomian’s decomposition method [12],
exponential rational function method [13], the F-expansion method [14], the (Gi,) -expansion method [15, 16], Jacobi elliptic func-

tion technique [17, 18], the modified sub-equation method [19], the % -expansion method [20], the auto-Backlund transfor-

mation method [21], extended direct algebraic method [22], the homoclinic technique [23], reduction perturbation method [24],
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the ¢®-model expansion method [25, 26, 27, 28], the nonstandard finite difference [29]. The recent developments in the field of
mathematical modelling as well as its applications have been introduced in the last few decades [30, 31, 32].

Many researchers have recently solved the CGLE. Chu et al. [33] have solved this equation with the help of modified extended tanh
technique and received different forms of solitons, such as, hyperbolic and trigonometric functions. The modified simple equation
method is used to obtain some bright, dark and singular soliton solutions by Arnous and Ahmed [34]. Liu and Yu [35] used the

modified Hirota bilinear method and obtained Kink waves and period waves. In [36, 37], first integral method and (%) -expansion

method is used to secure the hyperbolic, trigonometric as well as rational function solution. Several integration techniques are
used to obtain multiple soliton solutions such as bright, dark and singular soliton by Mirzazadeh and Ekici [38]. The other methods
include GRE method [39], ansatz functions technique [40], and so on.

The main idea about this paper is to derive new solitons such as dark, bright, singular, rational, combined periodic, combined
singular and periodic solitary wave solutions to the CGLE model using Kerr law nonlinearity with the help of the newly developed
@®-model expansion method [41] which has not been studied yet based on our knowledge. The nonlinear responses that an
external electric field-induced nonharmonic motion of electrons trapped in molecules causes to a light wave in an optical fiber
give rise to the Kerr law of nonlinearity. The authors achieve their aims by retrieving new solutions which are different from the

previous work.

The following is the outline for this paper: In Section 2, the mathematical analysis of the model is studied. The new ¢ -model
expansion approach is described in Section 3. Section 4 consists of application of the proposed method on the complex Ginzburg-
Landau equation using Kerr law nonlinearity to retrieve solitons such as dark, bright, singular, periodic, combined singular and
combined periodic soliton solutions. Some of the traveling wave solution’s physical structures are graphically displayed in the
related 3D, 2D, and contour graphs. In Section 5, the result of the derived solutions is discussed, while the whole work is concluded
in Section 6.

2 Mathematical analysis of the model

Arnous, Ahmed H., et al. [34] gives the dimensionless shape of (GCLE) that will be investigated in this article.

1
lq)*q*

ige + aqoc + cE(1q1)q = a1al (gD - B {0} ] + va, 1)

where q = q(x,t) is a complex function that describes the wave profile seen in a variety of phenomena such as nonlinear optics
and plasma physics, x is the non-dimensional distance along the fibers, t is time in dimensionless form, g* is a conjugate of
q, a,¢, e, p and v are valued constants. The coefficients a and ¢ are determined by the group velocity dispersion (GVD) and
nonlinearity, respectively. The terms with «, 3 and v result from perturbation effects, specifically detuning.

In Eq. (1), F is a real-valued algebraic function that must be smooth. F(|q|?)q is continuously differentiable k times, implying that

F(1q1)q € Uy n=rC (=1, ) x (=m, m);R?) . @)
By setting up
o= 2B, (3)
Eq. (1) turns to
ig; + aquc + cK(1q*)q = - D 21 (1P - {(|Q|2)x}2} +vq. (4)
a”q

To solve Eq. (1), the standard decomposition into phase-amplitude components yields:
q(%,t) = P(¢)el kw0, (5)
and the wave variable ¢ is given by
C=A(X-vt). (6)
The function P represents the pulse shape here, v is the soliton’s velocity. In the phase factor, k denotes the frequency of the soliton,

w the soliton wave number and the phase constant 6. Substituting the phase-amplitude decomposition into Eq. (4) results in the
following couple of equations after breaking into real and imaginary parts [33, 34]:

-(ak2+y+w)P+cF(p2)P+(a-4fs)P”:o, @)
and

v = —2ka. (8)
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In the following part after the description of the method, Eq. (7) will be examined using Kerr’s nonlinearity law.
3 Description of the method

According to Zayed et al. [28] the following are the key steps of a recent °®-model expansion method:

Step-1: Consider the following nonlinear evolution equation for q = q(x, t)

F(q, qx, qt, Gxx; Gxt» Gits ---) = O, (9)

there F is a polynomial of q(x, t) and its highest order partial derivatives, including its nonlinear terms.
Step-2: Making use of the wave transformation
q(x,t) = q(c), C=A(x-vt), (10)
where v represents wave speed, then, Eq. (9) can be converted into the nonlinear ordinary differential equation shown below
0(,9,49,9",..) = 0, (1)
where the derivatives with respect to ¢ are represented by prime.

Step-3: Suppose that the formal solution to Eq. (11) exists:

2N .
q(¢) = Y «U'(Q), (12)
i=0
where «;(i = 0,1,2,...,N) are to be determined constants, N can be obtained using the balancing rule and U(¢) satisfies the
auxiliary NLODE;
U(€) = ho + haU™(0) + hUA(C) + hU®(0), (13)

U"(2) = haU(Q) + 2h,U3(0) + 3hg U5 (2),
where h;(i = 0, 2, 4, 6) are real constants that will be discovered later.

Step-4: It is well known that the answer to Eq. (13) is as follows;

p
u(e) = %, (14)
provided that 0 < fP2(¢) + g and P(¢) is the Jacobi elliptic equation solution
P'2(2) = lg + L,P*() + 1, P*(0), (15)
where I;(i = 0,2, 4) are unknown constants to be determined, f and g are given by
e ks mRe ] o)
g= 3lohy, ’
(I = h2)? + 3loly, - 215(I; - hy)
under the restriction condition
h7(ly = h)[9lol, - (I = hy)(2ly + hy)1 + 3hg[=15 + h3 + 3101, 1% = 0. 17)

Step-5: According to [28], it is well known that the Jacobi elliptic solutions of Eq. (15) can be calculated when 0 < m < 1. We can
have the exact solutions of Eq. (9) by substituting Egs. (14) and (15) into Eq. (12).

Function m-—1 m — 0  Function m—1 m— 0
sn(¢, m) tanh(g) sin(¢) ds(¢, m) csch(c) cse(Q)
cn(¢,m)  sech(c)  cos(¢)  sc(¢,m)  sinh(¢)  tan(C)
dn(¢, m) sech(q) 1 sd(¢, m) sinh(¢) sin(q)
ns(¢,m)  coth(¢)  csc(¢)  ne(g,m)  cosh(c)  sec(c)
cs(¢, m) csch(g) cot(¢) cd(¢, m) 1 cos(¢)
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4 Application of the ¢°-model expansion method

The Kerr law of nonlinearity is derived from the fact that a light wave in an optical fiber experiences nonlinear reactions due to
non-harmonic electron motion in the presence of an external electric field. Since F(u) = u for Kerr law nonlinearity, Eq. (4) is
reduced to [33]

. 2
ige + agoc + c1a1)q = — 5 [ZIqlz(lqlz)xx— {Gar)} } +v4, (18)
[9]” q*
and Eq. (7) is transformed
—(Clkz+y+w>P+CP3+7\2(a—4[3)P” =0, (19)

from Eq. (19), we get N = 1 by balancing P" with P3, we can obtain the following by substituting N = 1 in Eq. (12)
P(¢) = ag + aqU(2) + aaU(0), (20)

where «g, «; and «, are constants to be determined.
We obtain the follpwing algebraic equations by substituting Eq. (20) along with Eq. (13) into Eq. (19) and setting the coefficients
of all powers of U'(¢),i=0,1,...,6 to be equal to zero;

U°(0); - oo (ak2 ty+tw-— C‘x%) +2aA\*hg o, - 8A%ho oy = 0,

Ul(c); - o (ak2 +y+ w) +aA%hyoq - 4BA%hy o + 3oy = 0,

U%(2) : 3cxpad — xy (ak2 +y o+ w) + 4aA%hy 0 — 16BA2hy oy + 3Cad oy = O,
U3(¢) : 2aA%h 0 - 8BA%h 04 + cod + 6cagay oy = O,

U4(Q) + 6an*h, oy - 24BA%h 00 + 3cad oy + 3Cao o3 = 0,

U%(¢) : 3aA%hgoy - 12BA%hg o + 3coq 3 = 0,

U®(C) : 8ar?hgoy - 32BA%hga, + o3 = 0,

we get the following result after solving the resulting system:

,/2h4\/—a+4|3)\
o =0, 0‘1:T, o =0, (21)
ak? +y + w
h = e, he = 0.
>7 (@-4p)az 6

In view of Egs. (14), (20) and (21) along with the Jacobi elliptic functions in the table above, we obtain the following exact solutions
of Eq. (18).
LIflg =11, =-(1+m?),1, =m?, 0 <m<1, then P(¢) = sn(¢, m) or P(¢) = cd(¢, m), and we have

\/2hg/—a+ 4BA sn(g, m) pi(—kxrwtso)

Qi (X, 0) = (22)
ve f (sn(c,m)* + g
or
VJ2h,\/—a+ 4BA .
@2ty = Y cd(c, m) elClcwtz0) (23)
ve f(cd(c,m))* + g
such that 0 < ¢, ¢ =A(x-vt)and f and g in Egs. (16) are given by
1+m?2+hy)h
p= Lom ot (24)

T 1-m2+mh-h2’
} ~3h,
T 1-m2+mé-h2’

under the restriction condition

-h? (—1 -m?- h2) (—1 +2m? - hz) (—2 +m?+ hz) = 0. (25)
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If m — 1, then the dark optical soliton is obtained

VQEZVKQFTZBXtanh(C) i(~kcrwt+0)
e )

qy3 (x,t) = (26)
Ve (a-4ﬁ)A2h4(-3(a-4ﬁ)A2+(akz+y+(u+z(a-4ﬁ)A2)tanhZ(cg
-(ak2 +y+w)?+(a-4B )2 A4
such that
—hz (2 + hz) [—1 + hz]z =0. (27)
Re[g1,3(x,8)],Im[g1,3(x,1)]
Re[gualxOlimlgra(xy] - .
" = 151
1or Re(q)

Figure 1. The numerical simulations corresponding to |qy 3| given by Eq. (26), for m = 1; (a) is the 3D graphic while (b) is the contour and (c) is the 2D graphic

If m — o, then the periodic solution is obtained

\/Em)\ sin(¢) pi(-kx+wt+0)

(28)
e \/(0-46)7\2114(—3(0—46)7\2+(ﬂk2+v+w+(a-4(5)7\2)Sinz(C))

q,, (x,t) =

—(aR2+y+w)+(a-4B )24
such that
h7 (-1-hy) [(-2+ hy) (1+ hy)] = 0. (29)

2. Iflg =1-m?, 1, =2m? - 1,1, = -m?, 0 < m < 1, then P(¢) = cn(, m), therefore

e R ———
& ©©®©® @
3@@@@@@@9
PO e e d
S SO @@ @@
@ @® @@ @@
& & ©©©®

®

_— Re(q)

%
%
%

2 T Im(q)

*4
X0

ISR S eSOt X
DSBS e "
}@@@@@@ﬁ@@ﬁi

4\

Figure 2. The numerical simulations corresponding to \q114| given by Eq. (28), for m = 0 ; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

V2hgv/-a+ 4pA cn(¢, m) pi(-kxewt+0)

4 (%, 0) = (30)
Ve f(cn(g,m)* +g

where f and g are determined by
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_ (—1 + 2m2 - hz)h4

f= 1-m2+m4-h3’ (31
3 <—1 + m2> h4
9= 1-m2+méb - h3’
under the constraint condition
hi (—1 +2m? - hz) [(—2 +m?+ hz) <1 +m?+ hz)] =0. (32)
If m — 1, then the bright optical soliton solution is retrieved
\/2h, /- Asech .
P P i b it S (33)
' Ve, [ a-4BINhysech2(C)
¢ akZ+y+w+(a-4B)A2
provided that
hi (1-hy) [h3 +hy - 2] = 0. (34)
If m — 0, then the periodic solution is obtained
Relgz(x,01Imlgz,1(x,9]
: I\
0 P —— Re[qaslximlgz(xt)
I —— Im(q)
of Re(q)

Figure 3. The numerical simulations corresponding to |q5 | given by Eq. (33), for m = 1; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

\/2h4\/=a+ 4BAsin(C) pi(-kxrwtr0)

Y (a—4[5))\2h4(—3(a—4[3)}\2+(ak2+y+w+(a—4{5))\2)sin’"(c))
-(ak2+y+w)?+(a-4B)>Ak

4, (X,t) = (35)

such that

h7 (-1-hy) [(-2+ hy) (1 + hy)] = 0. (36)
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Figure 4. The numerical simulations corresponding to {q2,2| given by Eq. (35), for m = 0 ; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

3.Iflg=m?-1,1, =2-m?, 1, = -1,0 < m < 1, then P(¢) = dn(¢, m) which gives

g5 (%, 1) =
’ Ve dn(c,m))* + g

where f and g are determined by
C(=2+ m? + ha)hy,

f= 1-m2+mb-h2’

-3 (—1 + mz) h,

g_l—m2+m4—h%’

under the restriction condition

hz (2— m? - hz) [— (—1+2m2 +h2> <1+ m? +h2>] =0.

If m — 1, then the bright optical soliton solution is obtained

@mxsech(o i(~keswt+0)
e )

| -(a-4B)A%h,sech2(c)
Ve ak2+y+w+(a-4p)A2

Q3,1 (Xr t) =
provided that

hi (1-hy) [—2 +hy + h%] =0.

If m — 0, then the rational solution is obtained

V 2h4 v —a+4BA ei(—kx+wt+9)

-(a-4B)A%hy,

43, (X, 1) =
\/E\/4{3}\2+y+w+a(k—7\)(k+7\)

such that

h2 (2 - hy) [(1 + hz)z] =o.

4. Iflg=m? 1, = - (1 + mz), I, =1,0<m<1, P(¢) = ns(¢, m) or P(¢) = dc(¢, m) then

q, . X, t) =
o Ve ns(¢,m))* +g

\/2hy/=a+ 4B { dn(¢, m) ] pi(—kx+wt+0)
f(

\/EWA [ ns(z, m) ]ei(-mwue)
f(

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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or

) \/E\/m% dc(c, m) i(-kx+wt+0)
4, (1) = 7 T.|° ’
f(d(g,m))” +g

where f and g are given by

_ (1+m2+h2)h4
T 1-m2+mh-h2’

f

. T3m?hy
g_1—m2+m4—h§'

under the constraint condition

h2 (-1 -m?- h2> [- (-1 +2m? - hz) (-z +m?+ hz)] = 0.

If m — 1, then the dark singular soliton solution is obtained

\/2h,\/=a+ 4B A coth() i(~kxsws0)
e )

e (a-4B)A2 (—3(a—4[5)?\2+(ak2+;/+w+2(a—4f5))\2) cothz(c)) hy,
—(ak2+y+w)*+(a-4B)> N4

4,5 (%, 0) =

such that

hZ (-2 - hy) [(-1 + hz)z] = o.

If m — o, then the periodic solution is obtained

V Zh[* V-a+ 4B A cse(?) i(-kx+wt+0)
e )

—-(a-4B)A2h, csc2(¢)
\/Z\/4[5?\2+y+w+ﬂ(4k—7\)(k+?\)

a4 (x,t) =

such that

h7 (-1-hy) [(-2 + hy) (1 + hy)] = 0.

5.1f lg = -m?, I, =2m? - 1,1, =1-m?, 0 < m < 1, then P(¢) = nc(¢, m) and we have

4 (ot - \/2hy/-a+ 4B [ f(nc(C,m) ] gi(-keswt+0)

Ve nc(¢,m))* +g

where f and g are given by

f _ —(—1+ 2m? - hz)h4
1-m2+mh - h3

)

. 3m’h,
g_l—m2+m4—h%’

under the constraint condition

hi (—1 +2m? - h2> [(—2 +m? + hz) <1+ m? + hz)} =0.

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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If m — 1, then the singular soliton solution is obtained

\/E\/m)\ cosh(¢) oi(—kx+wt+o)

e —(a-4B)A2 (-3(a—4B))\2-(4B)\2 +y+w+a(k-A)(k+A)) coshz(c)) h,
—(ak2+y+w)2+(a—4[3)2)\4

ds, (x,t) =

such that

h2 (1- hy) [-z+ hy + h%] = o.

If m — o, then the periodic solution is obtained

mesec(é) i(~kx+wt+0)
e )

~(a-4B)A* sec(O)h,
\/E\/4|3?\2+y+w+a(k—)\)(k+)\)

45, (x,t) =

such that

h; (-1-hy) [(-2+hy) (1 + hy)] = 0.

6.1flg=-1,1, =2 -m?, l,=- (1 - m2>, 0 < m < 1, then P(¢) = nd(¢, m) and we have

) \/E\/WA nd(g, m) i(~kerwt+0)
Q6 (Xy t) - ﬁ 2 ¢ ’
f(nd(g,m))” +g

where f and g are given by

f= (—2+m2+h2)h4
1-m2+m4-h2’

g 1-m2+mk-h2’

under the constraint condition

h2 (z—mz—h2> [- (—1+2m2—h2) <1+m2+h2>] = 0.

7.1flg =1, =2-m?,1, =1-m?,0 < m <1P(¢) = sc(¢, m) then we have

) \/ﬂm% sc(Z, m) i(~kx+wt+0)
Q7 (Xr t) - ﬁ 2 ¢ '
f(sc(g,m))” +g

where f and g are given by

f= (—2+m2+h2)h4
T 1-m2+mh-h2’
. —3h,

g_l—m2+m4—h%’

under the constraint condition
hz <2 -m? - hz) [— (—1 +2m? - h2) (1 +m? + hz)] = 0.
If m — 1, then the singular soliton solution is obtained

\/2hyn/—a+ 4BA sinh(¢) Si(-kxrwt+0)

Ve —(a-4B)A2 (3(11—4[3)}\2—(4[5}\2+y+w+a(k—)\)(k+7\)) sinhz(c)) hy
—(ak2+y+w)2+(a-4B )24

4. (xt) =

155

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)
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such that
h2 (1- hy) [-z +hy + hg] = o. (66)
If m — o, then the periodic solution is obtained
+/2h,\/-a + 4BAtan(q) .
q7’2 (X, t) - 4 el(—kX+Wf+9), (67)

Ve (a-4B)A2(-3(a-4B)A2+(ak2+y+w-2(a-4B)A2) tan?(5))hy,
—(ak2+y+w)?+(a-4B)> A4

such that

h; (2 -hy) [(1+hy)*] = 0. (68)

8.Iflg=1,1, =2m? - 1,1, = -m? (1 - mz), 0 < m <1, then P(¢) = sd(¢, m) and we have

V2hev/=a+ 4BA sd(g, m) oi(-kxswt+0)

qg (x,1) = (69)
Ve ¥ (sd(c,m)*+g
where f and g are given by
_ (—l +2m? - hz)h4
f——l_m2+m4_h%, (70)
_ -3h,
9= 1-m2+mb - h2’
under the constraint condition
hi (—1 +2m? - h2> [(—2 +m?+ hz) (1 +m?+ hz)} = 0. (71)
9.1flg=1-m? 1, =2-m?, 1, =1,0 <m < 1, then P(¢) = ¢s(¢, m) and we have
V2hav/-a+4pA cs(c, m) i(~kxswt+0)
g (%, £) = 7 = e ) (72)
f(es(e,m))® +g
where f and g are given by
(24 m? + hy)h,
f'—1-m2+m4-hg’ (73)
_ 3(-1+m?)h,
9= 1-m2+mh-h2’
under the constraint condition
hZ (2 -m?- h2> [— (—1 +2m? - h2) (1 +m? + hz)] = 0. (74)
If m — 1, then the singular soliton solution is obtained
Ay/2h, \/-a + LBcsch(C) .
[49, (61 =~V = el(hocrwtso)) (75)

~hy(a-4B)A%csch?(¢)
ve \ akZeyrw+(a-4p)A2
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such that

h2 (1- hy) [—z +hy + hg] = o. (76)
If m — o, then the periodic solution is obtained
+/2h, \/=a + LB cot(C) .
do, (X, 1) = - el hewtr0), (77)

e —(a-4B)A2(3(a-4B)A2-(ak2-+y +w—-2(a-4B)A2) cot>(0))hy,
—(ak2+y+w)®+(a-4B )2 A4

such that

h7 (2 - ha) [(1+ h2)?] = 0. (78)

10. If Iy = -m? <1 - m2>, I, =2m? -1,1;, =1,0 < m < 1, then P(¢) = ds(¢, m) and we have

_ V2havmar hBA ds(¢,m) i(~kcswt+0)
Gy (X,1) = /e > e ) (79)
f(ds(¢,m))” +g
where f and g are given by
_ —(—1 +2m? - hz)h4
f= 1-m2+m4-h2 "’ (80)
_ —3m*(-1+ m?)h,
T 1-m2+mh-h2’
under the constraint condition
hz (—1 +2m? - hz) [(—2 +m?+ h2> (1 +m? + hz)} =0. (81)
1. If Iy = 1‘212, I, = 1*5"2, l, = 1‘212, 0 < m <1, then P(¢) = nc(¢, m) + sc(g, m) or P(¢) = % and we have
a0ty = Y 2h,\/-a+ 4BA nc(¢, m) + sc(¢, m) pi(—locwt+0) (82)
1,1 M H) = )
Ve \/f (nc(g,m) +sc(g,m))> +g
or
cn(g,m)
_ V2havmar 4BA LEsn(c,m) i(~locrwt+0)
Ay, (X,1) = € ) (83)
Ve f( cn(g,m) )2 +g
14sn(¢,m)
where f and g are given by
-8(1+m?% - 2hy)h
f 2 (84)

T 1+14m2 + mh - 16h2’
_ 12(-1+ m?)h,
T 1+14m2 + mh - 16h2’

under the constraint condition

hz (% (1 +m? - ZhZ)) {% 1+ (-6 +m)m+4hy)(1+m(6+m)+4hy)| =0. (85)
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If m — 1, then the combined singular soliton solution

\/2h4v/=a+ 4BA (sinh(¢) + cosh(c)) i(-kxewt+0)

\f\/ (a-4B)A2(sinh(c)+cosh(¢))*h,
ak2+y+w+(a-4PB)A2

A3 (x,t) =

or dark-bright optical soliton solition is obtained

/ /~a+ 4P sech(¢)
A 2h a+4p (1+tanh(C)> pl(-kx+wt+0)
d h2 (i) @-4p)

ak2+y+w+(a-4p)N2

Qu,4 (X, ) =

such that

hZ (1~ hy) [-2+h2+h§] =0

If m — o, then the combined periodic solution is obtained

Re[g11,4(x,1)],Im[g414(x,0]

(86)

(87)

(88)

/ —— Im(q)
X

——Re(@

Figure 5. The numerical simulations corresponding to |qy; 4| given by Eq. (87), for m = 1; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

\/E\/—a + 4B (sec(Q) + tan(()) el -kxrwt+0)

NG (a-4B)A2(4(ak2+y+w)-5(a-4B)A2+(4(ak2+y+w)+(a-4B)A2) sin(Z))h, '
(16(ak2+y+w)2—(0—4[3)27\4)(—1+sin(c))

A5 (x,t) =

or

haV/=ar5BA
V2¢(1+sin(¢))

\/(a—4[5))\2(—4(ak2+y+w)+5(a—4[3))\2+(4(ak2+y+w)+(a—4l3)?\2) sin(¢))hy, '

cos( C)ei(—kx+wt+6)

Qo (6 1) =

(16(ak2+y+w)*-(a-4pB)>A4)(1+sin(C))

such that

h; ( - hz) [% 1+ 4hz)2} =

(89)

(90)

(91)
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Re[%w(x,t)],Im[q“,g(x,tj]

Figure 6. The numerical simulations corresponding to |qu,5| given by Eq. (89), for m = 0; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

~(1-m2)?
12. If Iy = w, I, = 1“2“2, I = ‘71, 0 < m < 1, then P(¢) = men(¢, m) + dn(¢, m) and we have

2hev/-a+ 4pA men(¢, m) + dn(c, m) pi(-kcswt+0)

qy, (X, 1) = (92)
Ve \/f (men(c, m) + dn(c,m))* + g
where f and g are given by
_ —8(1 + m2 - 2h2)h4
f= 1+14m2 + mk - 16h2’ (93)
_ 12(-1+m?)’hy
" 1+14m2 + m4 - 16h2’
under the constraint condition
hz (% (1 +m? - 2h2)> [% 1+ (-6+m)m+4hy)(1+m(6+m)+4hy)| =0. (94)
13.1flo= 7,1 = 1‘22'"2, I, =%,0<m<1,then P(¢) = % and we have
— sn(¢,m)
Qo (%, ) = V 2y v/ -a+ 4BA 1£en(e,m) el(-kcrwt+0) (95)
13 ) \/E 5 ]
f( sn(¢,m) ) +g
1+cn(¢,m)
where f and g are given by
_ 8(-1+2m?+2hy)h,
S = 6w + 16mi - 16h3’ (96)
-12h,
g-= )
1-16m2 +16m4 - 16h3
under the constraint condition
h; (% —mz—hz) [% +2m? - 2m% + (% —mz) h2+h§} = o. 97)
If m — 1, then the combined soliton solution is obtained
L V-arhBA tanh(g)el(-kx+wt+0)
3,1 (1) = 2/ (98)

(a-4p)A2cosh?( % )sech(C)(-4(ak2+y+w)+(a-4B)A2+(4(ak2+y+w)+5(a-4B)A2)sech())h, '
(16(ak2 +y+w)?=(a-4B)2A4)
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such that

h2 (7 - h2> {% (- 4h2)2} -o. (99)

If m — o, then the combined periodic solution is obtained

\/EV \_fa”*ﬁ)\ Sin(c)ei(—kx+wt+9)
Qi3 (X, 1) = 2VE , (100)
(a-4P)A2 c0s2( 5 )(~4(ak2 +y+w)+5(a-4B)A2+(4(ak2+y +w)+(a-4B)A2) cos(c))hy,
(16(ak2+y+w)*-(a-4B)>Ak)
such that
B 1 2| _
h4 h, % 1+ 4hy)*| = 0. (101)
2 1-m?)” (&,m)
14.Iflg = 3, 1= B [, = ~——— 0<m<1, then P(¢) = m and we have
/ /ey sn(¢,m)
a4, (6, t) = 2h4 a+4BA cn(g,m)+dn(g,m) pl(-kx+wt+0) (102)
14 ) \/E > )
f sn(¢,m) ) +g
cn(C m)+dn(g,m)
where f and g are given by
—8(1 +m? - 2h2)h4
f= 1+14m2 + mh - 16h2’ (103)
-12h,
g= )
1+14m2 + m4 - 16h2
under the constraint condition
h4 ( (1 +m? - 2h2)> {% 1+ (-6 +m)m+4hy)(1+m(6+m)+4hy)| =0. (104)
If m — 1, then the singular soliton solution is obtained
\/2hu/~a+4BA
Y sinh(¢) .
Ay, (X, 1) = /C el(—kX+Wt+9), (105)
' —(a-4B)A2 (3(0—4{5))\7-—(4[3)\2+y+w+a(k—7\)(k+)\)) sir1h2(c))h4
-(ak2+y+w)?+(a-4p)> A4
such that
h (1 - hy) [-z +hy + hg] = 0. (106)

If m — o, then the combined periodic solution is obtained

\/a\/wx sin(¢) el(—kx+wt+0)

Qy, (1) = 2/ , (107)
(a—4B)A2 cos2( 5 )(~4(ak2+y+w)+5(a—4B)A2+(4(ak2+y+w)+(a-4B)A2) cos(C))h,
(16(ak2 +y+w)?=(a-4B)2A4)

such that

h2 (% . hz) [% 1+ 4h2)2] - o. (108)
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5 Result and discussion

This study used the newly created ¢°—model expansion method to get dark, bright, singular, periodic and combined soliton
solutions to the complex Ginzburg-Landau equation (CGLE) with Kerr law in nonlinear optics. The Kerr law of nonlinearity is
a result of the nonlinear reactions that an external electric field-induced nonharmonic motion of trapped electrons in molecules
induces in a light wave in an optical fiber. The constraint conditions ensure the existence of these solutions.

The graphics in Figures 1, 3 and 5 show the behavior of dark, bright and dark-bright solitons together with periodic and com-
bined periodic wave solutions at any given time, which is important in the transmission of energy from one location to another.
Furthermore, to examine the physical implications of the parameters in the transformation, which is known as the classical wave
transformation represented by Egs. (1) and (2). The physical meanings of the parameters in the solution of Egs. (26), (28), (33),
(35), (87) and (89) traveling waves, which contain numerous mathematical constants. It is the internal dynamics of the traveling
wave for various parameter values. We may conclude that the traveling wave behavior alters for different values of each. The
simulation is performed for several values of the wave frequency in order to examine the changes in the dark and bright solitons
more clearly. Similarly, a similar discussion can be made for other physical parameters as well as various traveling wave solutions.

6 Conclcusion

This work investigates the complex Ginzburg-Landau equation (CGLE) with Kerr law in nonlinear optics, which represents soliton
propagation in the presence of a detuning factor. The scheme’s benefit is that the solutions are first recovered in terms of Jacobi’s
elliptic function. When a result, as the limiting values of the modulus of ellipticity approach 0 or unity, solitons or singular-periodic
solutions are produced. The ¢®-model expansion approach is used to find dark, bright, dark-bright or combined, singular and
combined singular optical soliton solutions to the CGL model with Kerr law. The ¢°-model expansion approach is found to be
efficient for constructing optical soliton solutions for most nonlinear physical phenomena. The results presented in this study are
intended to improve the CGLE’s nonlinear dynamical characteristics. The findings of this study might assist in comprehending
some of the physical implications of various nonlinear physics models. The hyperbolic sine, for example, appears in the calculation
of the Roche limit and gravitational potential of a cylinder, while the hyperbolic cotangent appears in the Langevin function for
magnetic polarization. In order to take into account slow-light pulses, the model will also be examined using fractional temporal
evolution.
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