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Abstract
This article deals with a Caputo fractional-order viral model that incorporates the non-cytolytic immune hypothesis and
the mechanism of viral replication inhibition. Firstly, we establish the existence, uniqueness, non-negativity and bound-
edness of the solutions of the proposed viral model. Then, we point out that our model has the following three equilibrium
points: equilibrium point without virus, equilibrium state without immune system, and equilibrium point activated by
immunity with humoral feedback. By presenting two critical quantities, the asymptotic stability of all said steady points
is examined. Finally, we examine the finesse of our results by highlighting the impact of fractional derivatives on the
stability of the corresponding steady points.
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1 Introduction

Mathematical modeling has become necessary to comprise our world and to study phenomena on time and space scales that are
difficult to scope empirically [1]. Mathematics applied in virology seeks to investigate the interactions of viruses with the biological
environment and their powerful influence on living organisms, both plants and animals. Viruses are scrutinized at different scales:
molecular, cellular, in the body and, in the case of an epidemic, in the ecosystem or society as a whole [2]. Virological modeling
also examines and models the spread of viruses at the population level. It starts from when they cross species barriers, until policy
measures are put in place to reduce and treat disease. At this scale, the humanities can be called in as reinforcements. Specifically,
it concentrates on structures, diffusion, dynamics, and immune capabilities of infections [3]. The blending of mathematical tools
with virology pursues to predict the long-run attitude of a virus under certain conditions in order to help eradicate or control the
infection. In terms of scientific research, the description of virus-cell interactions with different types of immune responses is a
rich subject of interest for many researchers [4]. Thus, a number of studies have been devoted to the analysis of viral systems with
a specific immune response combining humoral and cellular immunizations [5]. These two characteristics are types of adaptive
immune reactions that permit the human organism to safeguard itself from threatening agents such as bacterial microorganisms,
viruses and toxins, in a targeted way.
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Recovery from infected cells is an important hypothesis along with the immune response. For this reason, it is appropriate
to propose a viral model including the healing average of damaging cells employing the non-cytolytic immune feedback under
humoral resistance. On the other hand, the host immune response during viral infection can be usually splitted into lytic and non-
lytic elements [6], where the lytic elements kill the damaged cells, while the non-lytic elements prohibit viral replication through
soluble media produced by immune cells. For example, in the case of SARS-CoV-2 infection, some authors have considered target
cell models by proposing a framework with lytic and non-lytic immune responses to understand virus spread within the human
body [7]. The human immune system consists of both innate and adaptive immune responses. While the adaptive immune system
is quick and efficient in targeting invasions by previously encountered pathogens, its role in host defense in the early days of a
new infection is secondary to the innate immune system. Motivated by these facts, Dhar et al. [4] exhibited the following viral
system with non-cytolytic immune assumption:


U′(t) = ϕ – h1U(t) – bU(t)Y(t)
Inhibition rate︷ ︸︸ ︷(1 + qW(t))–1 +ξX(t),

X′(t) = bU(t)Y(t)(1 + qW(t))–1 – h2X(t) – ξX(t),
Y′(t) = kX(t) – h3Y(t) – pY(t)W(t),
W′(t) = cY(t)W(t) – h4W(t),

(1)

with positive started data. Here, U, X, Y and W indicate in that order, susceptible uninfected cells, infected cells, free virus and B
lymphocytes (cells used in the humoral immune process of the adaptive immune system). Regarding the positive parameters of
system (1), ϕ indicates the inflow of U cells, k designates the produce ratio of Y, c is the growth rate of B lymphocytes, h1, h2, h3and h4 are the natural mortality rates of U, X, Y and W cells respectively, p is the neutralizing rate of antibodies produced by B cells,
ξ is the healing rate of infected cell due to the antiviral activity, and b is the contamination rate. The expression (1+qW) designates
the rate at which the non-lytic process prevents viral growth, where q is the non-lytic force. To facilitate the understanding of
the rest of this article, we summarize the transfer mechanisms of the model mentioned above by the diagram shown in Figure 1.
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Figure 1. Compartment diagram of the viral system (1).

In [4], the authors established the steady points of system (1) and studied their asymptotic stability. Specifically, they provided
the critical value between the disappearance and continuation of the infection. The results obtained in [4] are interesting and
help us to understand the long term of the infection under some local characteristics of the classical order derivative. This type
of mathematical formulation has certain limits, and the system (1) can be improved and updated by considering the fractional
framework.

Fractional derivatives is a generalization of the integer order derivative to an arbitrary order, which is originated from the L’Hospital
letter to Leibniz discussing the meaning of the derivative or what does the derivative of order 12 or √2 of a function mean in 1695.
Several definitions of fractional derivatives have been introduced. Among them, the Riemann–Liouville and Caputo’s derivative
are widely used in the literature. The fractional order derivative used in this paper is in the sense of Caputo definition, which is a
modification of the Riemann-Liouville integral definition, and has the advantage that the initial values for fractional differential
equations with Caputo derivatives take the same form as that for integer order differential equations [8, 9, 10]. Also, another
advantage of this definition is that the Caputo derivative of a constant is zero. Memory effect is an essential characteristic of
fractional-order derivatives which made fractional calculus and its applications widely used in many fields of science and engineer-
ing [11, 12, 13, 14, 15, 16, 17]. Obviously, this feature is very relevant for modeling the spread of infections [18, 19, 20, 21, 22, 23, 24].
For this reason, many researchers have adopted this analytical vision [25, 26, 27, 28, 29, 30, 31]. In [32], the authors derived a
non-integer order system for the co-infection mechanisms. They inferred that the fractional formulation matches real data of
certain viral problems. Analytically, they examined the stability property of the proposed viral model. To model the virological
memory effects, the authors in [33], presented a fractional order viral model. They analyzed the long-term dynamics of the con-
structed model. As a real-world application, the authors in [34], proposed a fractional feeding system to illustrate the complexity
of the spread of COVID-19. They presented an advanced analysis by discussing the attitude of viral propagation phenomena. In
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accordance with the above arguments and works, we improve system (1) by using the fractional formulation as follows:

C0FσU(t) = ϕ – h1U(t) – bU(t)Y(t)(1 + qW(t))–1 + ξX(t),
C0FσX(t) = bU(t)Y(t)(1 + qW(t))–1 – h2X(t) – ξX(t),
C0FσY(t) = kX(t) – h3Y(t) – pY(t)W(t),
C0FσW(t) = cY(t)W(t) – h4W(t),

(2)

where C0Fσ is the Caputo fractional derivative and σ ∈ (0, 1] is its related order. The Caputo fractional derivative of order σ ∈ (0, 1]
for a function f ∈ C(R+,R) is expressed as follows [35]:

C0Fσf(t) = 1
Γ(1 – σ)

∫ t

0(t – s)–σf′(s)ds,

where Γ is the Gamma function and Γ(σ) = ∫∞0 tσ–1e–tdt.
Note that, the fractional order formulation (2) is converted to ordinary differential equations system when σ = 1. Therefore, the
model studied in [4] is a special case of system (1) when σ = 1.
The axial problematic of this research is to explore some long-run characteristics of the viral system (2) which adopts the non-
integer order derivative. It is well known that stability analysis is an important property of dynamical systems. It provides a good
overview of the long term of the studied phenomenon. Unlike classical investigations, in this survey, we concentrate on exploring
the influence of fractional derivative on said features; and this is the main part of our contribution.
The remaining of this article is structured as follows: we begin in Section 2 by proving the well-posedness of our enhanced model
in the sense that it has a unique nonnegative and bounded solution, defining the steady points S◦, S?1 , S?2 of system (2) and their
related critical quantities T◦ and T1. These two threshold conditions make it possible to sort the dynamic behavior of our system. In
Section 3, we present our main theoretical findings on the stability of our dynamical system. In Section 4, we belay the exactitude
of our outcomes by discussing the impact of non-integer orders on the stability behavior of system (2).
2 Well-posedness and definition of possible steady points

The first concern in analyzing the dynamical properties of a mathematical population system is to know whether it is well-posed
or not, and we mean by well-posedness here that the system admits a unique, non-negative, and global-in-time solution. In this
section, we will provide a suitable hypothetical framework under which the well-posedness of system (2) is guaranteed. Moreover,
we will show that our model has three equilibrium points.

Existence, nonnegativity and boundedness of solutions

Before going the main result of this section, we first give the following useful lemma which will be involved in the sequel.
Lemma 1 [36]. Assume that f and C0Fσf are continuous functions on the interval

[
a, b

]
, and σ ∈ (0, 1], then we have

(i) If C0Fσf(t) ≥ 0 for all t ∈
[
a, b

]
, then f is nondecreasing on

[
a, b

]
,

(ii) If C0Fσf(t) ≤ 0 for all t ∈
[
a, b

]
, then f is nonincreasing on

[
a, b

]
.

Theorem 1 The fractional model (2) with any nonnegative initial condition is well-posed in the sense that it has a unique nonnegative and
bounded solution.

Proof From Theorem 3.1 and Remark 3.2 in [37], we can prove the existence and uniqueness of the solution of system (2).
Now, we show the nonnegativity of this solution. From system (2), one can deduce that

C0FσU
∣∣∣
U=0 = ϕ + ξX > 0 for all X, Y,W ≥ 0,

C0FσX
∣∣∣
X=0 = bUY1+qW ≥ 0 for all U, Y,W ≥ 0,

C0FσY
∣∣∣
Y=0 = kX ≥ 0 for all U, X,W ≥ 0,

C0FσW
∣∣∣
W=0 = 0 ≥ 0 for all U, X,Y ≥ 0.

By utilizing Lemma 1, we deduce that the solution of the fractional order system (2) is nonnegative. Now, we check the boundedness
of the solution. For this purpose, we define the following function

N (t) = U(t) + X(t) + h22k Y(t) + ph22kc W(t).
Thus,

C0FσN (t) = ϕ – h1U(t) – h22 X(t) – h2h32k Y(t) – ph2h42kc W(t) ≤ ϕ – dN (t),
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where d = min{h1, h22 ,h3,h4
}. Then, by Lemma 3 in [38], we obtain that

N (t) ≤ (N (0) – ϕd
)
Mσ

(–dtσ
) + ϕd ,

whereMσ(z) = ∞∑
j=0

zj
Γ(σj+1) is the Mittag-Leffler function of parameter σ [39]. Hence, lim sup

t→∞ N (t) ≤ ϕ
d , Therefore, the solution of

system (2) is bounded. �

The steady states

Definition 1 [40]. O∗ is an equilibrium point of the system C0Fσf(t) = P(t, f(t)), σ ∈ (0, 1], if P(t,O∗) = 0.
The model (2) admits three biological steady points. Effortlessly, one can first deduce that the system (2) always has a virus-clear
steady point

S◦ = (U◦, 0, 0, 0) =
(
ϕ

h1 , 0, 0, 0
)

.

Then, we obtain the following basic reproduction number:

T◦ = bkU◦
h3 (h2 + ξ) .

Biologically, T◦ indicates the mean density of the newly contaminated cells generated from one tainted cell at the beginning of the
infection. If T◦ > 1, system (2) has the following immunity-free steady point:

S?1 = (U?1 , X?1 , Y?1 , 0) =
(
h3 (h2 + ξ)

bk , h1h3 (h2 + ξ)
bh2k (T◦ – 1) , k

h3 X?1 , 0
)

.

Now, we set
T1 = c

h4 Y?1 = ch1 (h2 + ξ)
bh2h4 (T◦ – 1) ,

which is the immune response critical value. Explicitly, T1 refers to the average density of new immune cells provided by an
immune cell over its natural mean lifespan [4]. If T1 > 1, system (2) has an immunity-activated steady point with humoral
response S?2 = (U?2, X?2, Y?2, W?2), where

U?2 = cϕ (h2 + ξ) (1 + qW∗2)
bh2h4 + ch1 (h2 + ξ) (1 + qW?2

) ,
X?2 = bϕh4

bh2h4 + ch1 (h2 + ξ) (1 + qW?2
) ,

Y?2 = h4
c ,

and W?2 is the positive real root of the following equation
Ω1W?22 +Ω2W?2 +Ω3 = 0,

where
Ω1 = cpqh1h4 (h2 + ξ) ,
Ω2 = bph2h24 + ch1h4 (h2 + ξ) (p + h3q

) ,
Ω3 = bh2h3h24 (1 – T1) .

The results of this subsection can be summarized in the following theorem.
Theorem 2 The fractional system (2) has three steady points. That is,

i. if T◦ ≤ 1, then model (2) has a unique virus-clear steady point S◦,
ii. if T1 ≤ 1 < T◦, then model (2) has a unique immunity-free steady point S?1 besides S◦,

iii. if T1 > 1, then model (2) has a unique immunity-activated steady point with humoral response S?2 besides S◦ and S?1 .

3 Stability characterization

This section is dedicated to examining the stability of S◦, S?1 and S?2. To analyze the local stability of the equilibria, we need the
following lemma.
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Lemma 2 [41]. Consider the fractional order system

C0Fσx(t) = h(x(t)), x (0) = x0,
where σ ∈ (0, 1], x (t) ∈ Rn and h ∈ C1 (Rn,Rn). An equilibrium point is locally asymptotically stable if all the eigenvalues ηj (j = 1, 2, . . . , n)
of the Jacobian matrix MJ = ∂h

∂x evaluated at the equilibrium satisfy
∣∣∣arg(ηj)

∣∣∣ > σπ2 , and unstable if there exist an eigenvalue ηj such that∣∣∣arg(ηj)
∣∣∣ < σπ2 .

It should be noted that the Jacobian matrix of (2) at any steady point S = (U, X, Y, W) is given as follows:

MJ =


–h1 – bY1+qW ξ – bU1+qW

bqUY
(1+qW)2

bY1+qW –h2 – ξ bU1+qW – bqUY
(1+qW)2

0 k –h3 – pW –pY
0 0 cW –h4 + cY

 . (3)

In order to prove the global stability, we need the two following lemmas.

Lemma 3 [42]. Let o(t) ∈ R+ be a continuous and differentiable function. Then, for any t ≥ 0, σ ∈ (0, 1], and o∗ > 0, we have

C0Fσ
(

o(t) – o∗ – o∗ ln o(t)
o∗
)
≤
(

1 – o∗
o(t)

)
C0Fσo(t).

Lemma 4 [43]. Let o(t) ∈ R+ be a continuous and differentiable function. Then, for any t ≥ 0 and σ ∈ (0, 1], we have

1
2 C0Fσo2(t) ≤ o(t) C0Fσo(t).

We will also need the following fractional version of the well-known LaSalle’s invariance principle.

Lemma 5 [44]. Suppose E is a bounded closed set. Every solution of system C0Fσx(t) = f(x(t)) starts from a point in E and remains in E for all
time. If ∃ L ∈ C1(E,R) such that C0FσL

(
x(t)) ≤ 0. Let D = {x ∈ E : C0FσL = 0} andM be the largest invariant set of D. Then every solution

x(t) originating in E tends toM as t → ∞. In particular, ifM = {0}, x(t) → 0 as t → ∞.

Stability of the virus-clear steady point S◦

Theorem 3 If T◦ < 1, then S◦ is locally asymptotically stable for all σ ∈ (0, 1]. S◦ is unstable if T◦ > 1.

Proof The characteristic equation of the Jacobian matrix (3) at S◦ is given by
(η + h1) (η + h4) [η2 + (h2 + h3 + ξ)η + h3 (h2 + ξ) – bkU◦

] = 0. (4)
Plainly, equation (4) has two negative real roots η1 = –h1 and η2 = –h4, then ∣∣arg(η1,2)∣∣ = π > σπ2 for any σ ∈ (0, 1]. The other two
roots of (4) are governed by the following equation:

η2 + (h2 + h3 + ξ)η + h3 (h2 + ξ) (1 – T◦) = 0, (5)
which has, by the Routh-Hurwitz criterion, two roots ηi (i = 3, 4) with negative real parts if T◦ < 1. Thus, ∣∣arg(η3,4)∣∣ > π2 ≥ σπ2for any σ ∈ (0, 1] when T◦ < 1. If T◦ > 1, then equation (5) admits a positive real root η∗, then ∣∣arg(η∗)∣∣ = 0 < σπ2 for all σ ∈ (0, 1].
Consequently, by Lemma 2, S◦ is unstable if T◦ > 1 and locally asymptotically stable if T◦ < 1. �

Theorem 4 If T◦ ≤ 1, then S◦ is globally asymptotically stable for all σ ∈ (0, 1].

Proof Let L?? be the Lyapunov functional defined as

L??(t) = U◦H
(U(t)

U◦
)

+ X(t) + bU◦
h3 Y(t) + bpU◦

ch3 W(t) + ξ

2(h1 + h2)U◦
(
U(t) – U◦ + X(t))2 ,
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where H (x) = x – 1 – ln x, x > 0. According to Lemma 3 and Lemma 4, we obtain
C0FσL?? ≤

(
1 – U◦

U

)
C0FσU +C0 FσX + bU◦

h3
C0FσY + bpU◦

ch3
C0FσW

+ ξ

(h1 + h2)U◦
(
U – U◦ + X

) (C0FσU +C0 FσX
)

=
(

1 – U◦
U

)(
ϕ – h1U – bUY

1 + qW + ξX
)

+ bUY
1 + qW – (h2 + ξ) X

+bU◦
h3

(
kX – h3Y – pYW

) + bpU◦
ch3

(
cYW – h4W

) + ξ

(h1 + h2)U◦ (U – U◦ + X) (ϕ – h1U – h2X)
= –h1 (U – U◦)2

U + ξX
(

1 – U◦
U

)
+ bU◦Y

1 + qW – (h2 + ξ) X – bU◦Y + bkU◦
h3 X – bph4U◦

ch3 W

– ξ

(h1 + h2)U◦ (U – U◦ + X) (h1 (U – U◦
) + h2X

)
= –

(
h1U◦ + ξX + ξh1U

h1 + h2
) (U – U◦)2

UU◦ – h2ξX2
(h1 + h2)U◦ – bqU◦YW

1 + qW – bph4U◦W
ch3 + (h2 + ξ) (T◦ – 1) X.

Therefore, T◦ ≤ 1 ensures that C0FσL?? ≤ 0. Furthermore, it is easy to verify that the singleton {S◦} is the largest compact invariant
set in {(U, X, Y, W) ∈ R4+ : C0FσL?? = 0}. By Lemma 5, we infer that S◦ is globally asymptotically stable if T◦ ≤ 1 for all σ ∈ (0, 1].
�

Stability of the immune-free steady point S?1
This subsection aims to analyze the stability of the immune-free steady point S?1 of the system (2). Obviously, we presume that
T◦ > 1.
Theorem 5 If T1 < 1 < T◦, then S?1 is locally asymptotically stable for all σ ∈ (0, 1]. S?1 is unstable if T1 > 1.
Proof At S?1 , the characteristic equation of the Jacobian matrix (3) is given by

(
η + h4 – cY?1 ) (η3 +Π2η2 +Π1η +Π0

) = 0, (6)
where

Π2 = h1 + h2 + h3 + ξ + bY?1 ,
Π1 = h1 (h2 + h3 + ξ) + bY?1 (h2 + h3) ,
Π0 = h2h3bY?1 .

One of the roots of equation (6) is η1 = cY?1 –h4 = h4 (T1 – 1). Hence, ∣∣arg(η1)∣∣ = π > σπ2 for all σ ∈ (0, 1] if T1 < 1 and ∣∣arg(η1)∣∣ = 0 <
σπ2 for all σ ∈ (0, 1] if T1 > 1. While the remaining roots are given by the solution to the following equation:

η3 +Π2η2 +Π1η +Π0 = 0. (7)
It is easy to remark that Π2 > 0, Π1 > 0 and Π0 > 0. Therefore,

Π2Π1 –Π0 = (h1 + h2 + ξ + bY?1 )Π1 + h1h3 (h2 + h3 + ξ) + h23bY?1 > 0.
Thus, by the Routh-Hurwitz criterion, all roots ηi (i = 2, 3, 4) of (7) have negative real part, so that ∣∣arg(η2,3,4)∣∣ > π2 ≥ σπ2 for all
σ ∈ (0, 1] if T◦ > 1. In accordance with Lemma 1, S?1 is unstable if T1 > 1 and locally asymptotically stable if T1 < 1 < T◦. �

Next, we analyze the global stability of S?1 by assuming the following hypothesis
Y?1
Y – 1

1 + qW ≤ 0. (H)

Theorem 6 If T1 ≤ 1 < T◦ ≤ 1 + h2
ξ

and (H) holds, then S?1 is globally asymptotically stable for any σ ∈ (0, 1].

Proof Let L† be the Lyapunov functional defined as

L†(t) = U?1 H
(U(t)

U?1
)

+ X?1 H
(X(t)

X?1
)

+ bU?1 Y?1
kX?1

Y?1 H
(Y(t)

Y?1
)

+ bpU?1 Y?1
ckX?1

W(t)
+ ξ

2(h1 + h2)U?1
(
U(t) – U?1 + X(t) – X?1 )2 .
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Applying the Caputo fractional derivative on system (2), we obtain
C0FσL† ≤

(
1 – U?1

U

)
C0FσU +

(
1 – X?1

X

)
C0FσX + bU?1 Y?1

kX?1
(

1 – Y?1
Y

)
C0FσY + bpU?1 Y?1

ckX?1
C0FσW

+ ξ

(h1 + h2)U?1
(
U – U?1 + X – X?1 ) (C0FσU +C0 FσX

)
=
(

1 – U?1
U

)(
ϕ – h1U – bUY

1 + qW + ξX
)

+
(

1 – X?1
X

)(
bUY

1 + qW – (h2 + ξ) X
)

+ bU?1 Y?1
kX?1

(
1 – Y?1

Y

)(
kX – h3Y – pYW

) + bpU?1 Y?1
ckX?1

(
cYW – h4W

)
+ ξ

(h1 + h2)U?1
(U – U?1 + X – X?1 ) (ϕ – h1U – h2X) .

Note that ϕ = h1U?1 + bU?1 Y?1 – ξX?1 , h2 + ξ = bU?1 Y?1
X?1 and h3 = kX?1

Y?1 . Therefore,

C0FσL† ≤ h1
(

1 – U?1
U

)(
U?1 – U

) + ξ (X – X?1 )(1 – U?1
U

)
+ bU?1 Y?1

(
3 – U?1

U + Y
Y?1

1
1 + qW – UX?1 Y

U?1 XY?1
1

1 + qW – Y
Y?1

– XY?1
X?1 Y

)

+ bpU?1 Y?1
kX?1

(
Y?1 – h4

c

)
W – ξ

(h1 + h2)U?1
(U – U?1 + X – X?1 ) (h1 (U – U?1 ) + h2 (X – X?1 ))

= –
(
h1U?1 + ξX – ξX?1 + ξh1U

h1 + h2
) (U – U?1 )2

UU?1 – ξh2(h1 + h2) U?1
(
X – X?1 )2

+ bU?1 Y?1
(

4 – U?1
U – (1 + qW) – UX?1 Y

U?1 XY?1
1

1 + qW – XY?1
X?1 Y

)

+ bqU?1 Y?1
(

1 – Y
Y?1

1
1 + qW

)
W + h4bpU?1 Y?1

ckX?1 (T1 – 1) W.

Employing the arithmetic-geometric means inequality, we obtain

4 – U?1
U – (1 + qW) – UX?1 Y

U?1 XY?1
1

1 + qW – XY?1
X?1 Y ≤ 0.

From (H), we have

1 – Y
Y?1

1
1 + qW = Y

Y?1
(Y?1

Y – 1
1 + qW

)
≤ 0.

Further, we have

h1U?1 – ξX?1 = h1h3 (h2 + ξ)
bk

(
1 – ξ

h2 (T◦ – 1)
)

.

Thus, C0FσL† ≤ 0 if T1 ≤ 1 < T◦ ≤ 1 + h2
ξ

. Furthermore, the largest compact invariant set in {(U, X, Y, W) ∈ R4+ : C0FσL† = 0} is
singleton {S?1 }. By Lemma 5, S?1 is globally asymptotically stable if T1 ≤ 1 < T◦ ≤ 1 + h2

ξ
. �

Stability of immunity-activated steady point with humoral response S?2

In this subsection, we deal with the local stability of the steady point S?2. We begin our analysis by computing the characteristic
equation of the Jacobian matrix (3) at S?2, we find

η4 +O3η3 +O2η2 +O1η +O0 = 0, (8)
where

O3 = h1 + h2 + h3 + ξ + pW?2 + bY?21 + qW?2
> 0,

O2 = h4pW?2 + h1 (h2 + h3 + ξ + pW?2) + bY?21 + qW?2
(
h2 + h3 + pW?2) > 0,

O1 = h4pW?2 (h1 + h2 + ξ) + bY?21 + qW?2
(
h4pW?2 + h2 (h3 + pW?2)) + kcqbU?2Y?2W?2(1 + qW?2

)2 > 0,

O0 = h1h4pW?2 (h2 + ξ) + h2h4pW?2 bY?21 + qW?2
+ h1kcbqU?2Y?2W?2(1 + qW?2

)2 > 0.
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Thus, by the Routh-Hurwitz criterion, all roots ηj (j = 1, 2, 3, 4) of (8) have negative real part if
O3O2 –O1 > 0 and O1 (O3O2 –O1) –O23O0 > 0, (9)

so that ∣∣∣arg(ηj)
∣∣∣ > π2 ≥ σπ2 for all σ ∈ (0, 1] if T1 > 1. Hence, according to Lemma 1, we have the following theorem.

Theorem 7 Assume that T1 > 1 and the condition (9) holds, then S?2 is locally asymptotically stable for all σ ∈ (0, 1].
Remark 1 Theorems 3, 4, 5, 6 and 7 indicate theoretically that the Caputo derivatives have no influence on the stability of the equilibria S◦, S?1
and S?2 .

4 Numerical results and discussions

In this section, and by utilizing the parameter values of the data listed in Table 1, we discuss the different results established
previously in this article. The pivotal purpose is to examine the influence of fractional derivatives on the long-run behavior of our
enhanced model (2). We will theoretically choose the parameters used in the simulations according to two criteria:
1. To verify and check appropriately the obtained analytical results in all cases.
2. To show numerically the sharpness of the obtained stability conditions. During the forthcoming numerical tests, the solution
of our viral system (2) is supposed to be starting from the initial condition U(0) = 300, X(0) = 7, Y(0) = 4, W(0) = 80. Also, we
deem from now on that the unity of time is one day.

Parameter Example 1 Example 2 Example 3 Source

ϕ 2 2 6 Assumed
h1 0.01 0.01 0.01 [4]
b 0.01 0.02 0.02 [4]
q 0.5 0.5 0.5 [4]
ξ 0.01 0.01 0.01 [4]
h2 1.001 1.001 1.001 Assumed
h3 2.0003 2.0003 2.0003 Assumed
h4 0.3 0.3 0.3 [4]
k 0.9 2.9 2.9 Assumed
p 0.006 0.006 0.006 Assumed
c 0.1 0.1 0.1 [4]

Table 1. Some numerical values of the deterministic parameters used in the simulations

Remark 2 In this section, we aim to numerically examine the impact of fractional derivatives on the long-term characteristics of the virus. For
this reason, we simulate its progression using the parameters listed in Table 1. We mention that the parameters ϕ, b and k are very sensitive
and a slight variation in their values results in a significant dynamical bifurcation. Thus, we present some simulated scenarios in order to cover
all cases of equilibrium stability.

Example 1: Virus-clear steady point S◦

To numerically probe the effect of fractional derivatives on the infection stability, we firstly assign to our system parameters
the numerical values appearing in Table 1 - Example 1. A simple calculation gives T◦ = 0.8911 which is strictly less than one.
From Theorem 2, there exists a virus-clear steady point S◦ = (200, 0, 0, 0) of system (2). By choosing some arbitrary values of σ:
0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76, we present the long-run behavior of the solutions in Figure 2. Specifically, in the case
of σ = 0.98, we remark that the density of susceptible cells U, after an initial slope, progressively rises and reaches the steady
value ϕ

h1 = 200. After a significant decrease followed by a gradual increase, the densities of X(t) and Y(t) return to decrease and
end up being disappeared over time, while the density of W(t) decreases and converges to zero.
Now, by decreasing the value of σ to 0.94, we show that the solution suddenly changes its behavior shape, but finally converges to
S◦. To further exhibit this phenomenon, we choose various values between σ = 0.94 and σ = 0.76. We conclude that as the value
of σ decreases, the solution slowly reaches the equilibrium S◦. That is, the rate of convergence increases as the integer-order σ is
closer to one. But, in all cases, solutions with different differentiation values reach the virus-clear state which actually confirms
the result of Theorem 3. Consequently, the infection will be eradicated from the host body.

Example 2: Immune-free steady point S?1
In this example, we select the parameter values from Table 1 - Example 2. Then, we obtain T◦ = 5.7426 > 1 and T1 = 0.7983 < 1. In
accordance with Theorem 2, the immune-free steady point S?1 exists since T1 < 1 < T◦. To depict the effect of fractional derivatives
on S?1 , we arbitrarily select certain values of σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76. In Figure 3, we see that after some
pseudo periodic fluctuations, the densities of U(t), X(t) and Y(t) reach the stable level U?1 = 34.8276, X?1 = 1.6517 and Y?1 = 2.3950,
while the density of W(t) ultimately extinct. Since T1 < 1 < T◦, the numerical outcome of this example confirms the stability result
of Theorem 5. Hence, the infection becomes chronic one in the absence of persistent humoral immune response.
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Figure 2. Stability of the virus-clear steady point S◦ = (200, 0, 0, 0) for different values of σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76.
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Figure 3. Stability of the immune-free steady point S?1 = (34.8276, 1.6517, 2.3950, 0) for different values of σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76.
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Example 3: Immunity-activated steady point with the humoral response S?2
Now, we choose the parameter values from Table 1 - Example 3. Then, we obtain T1 = 2.7317 > 1. In accordance with Theorem 2,
there is an immunity-activated steady point with the humoral response S?2. Furthermore, we get

O3O2 –O1 = 0.3648 > 0,
O1 (O3O2 –O1) –O23O0 = 0.2903 > 0,

then S?2 is asymptotically stable for different values of σ due to Theorem 7. From Figure 4, we remark that all classes fluctuate
during a time phase then converge towards the steady values U?2 = 381.4716, X?2 = 2.1853, Y?2 = 3.0000 and W?2 = 18.7403. By
selecting certain values of σ, we observe that the solutions always reach the steady point S?2 = (U?2, X?2, Y?2, W?2). Thus, the viral
infection becomes chronic with persistent humoral immune response.
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Figure 4. Stability of the immunity-activated steady point with the humoral response S?2 = (381.4716, 2.1853, 3.0000, 18.7403) for different values of
σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76.

5 Conclusion

This article investigated an improved four-compartment viral system that takes into consideration the effects of fractional deriva-
tives. The central goal was to probe the long-term characteristics of the virus. For this reason, we have started by proved the
well-posedness of the model, including existence, uniqueness, nonnegativity and boundedness of solutions. We have defined the
steady points of the system and determining the associated critical thresholds, namely the basic reproduction number, T◦, and the
humoral immune response reproduction number, T1. Specifically, we have proved that our viral model admits three steady points,
and under certain conditions on the thresholds, the asymptotic stability of all these points was examined. The obtained results of
stability indicate that the infection level gets reduced to zero for T◦ ≤ 1 , whereas the infection persists in the host body for T1 > 1.
From the theoretical and numerical point of view, we concluded that Caputo derivatives have no influence on the stability of the
equilibria.
As a future study, we seek to extend our proposed model to the case of the fractal-fractional system with the use of Adams-
Bashforth numerical scheme [45, 46]. This special derivative is widely introduced in physics to explain various phenomena and
laws. Also, the proposed model in this study can be enhanced by considering the effect of randomness. By using the approaches
presented in [47, 48, 49, 50], we can simultaneously probe the effect of both memory and stochasticity on the viral dynamics. We
will deal with it in our next work.
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