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Abstract
The aim of the paper is to study a cancer model based on anti-angiogenic therapy and radiotherapy. A set-valued analysis
is carried out to control the tumor and carrying capacity of the vasculature, so in order to reverse tumor growth and
augment tumor repair. The viability technique is used on an augmented model to solve the control problem. Obtained
control is a selection of set-valued map of regulation and reduces tumor volume to around zero. A numerical simulation
scheme with graphical representations and biological interpretations are given.
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1 Introduction

Mathematical modelling of treatments is essential for diseases controlling. [1] Considers a mathematical model of chemotherapy for
cancer treatment, in fractional order form with Caputo sense, and discusses the local stability of the equilibrium point. [2] Analyses
the bifurcation of a fractional-order SEIR epidemic model of HIV and HBV diseases. [3] Studies the stability of a novel model of
COVID-19 epidemics, by considering the Lyapunov function. [4] Considers a fractional-order HIV epidemic model, and determines
the positivity and boundedness of the solution and the stability conditions of the model, and discusses the global dynamics of the
endemic equilibrium point, by using Lyapunov functional approach. [5] Employs the feedback control on a chaotic system with
fractional-order. [6] Proposes a Caputo HIV-1 model incorporating AIDS-infected cancer cells, and investigates the existence and
uniqueness of its solutions via fixed point theory, and performs the stability analysis of the model. [7] Investigates the bifurcation
of a two-dimensional discrete-time chemical model. [8] Develops a three-dimensional fractional-order cancer model, and details
analysis of the equilibrium points, and investigates the existence and uniqueness of the solution. [9] Models COVID-19 epidemics
with treatment in fractional derivatives using real data from Pakistan, and discusses the stability conditions of the equilibrium
points, and analysis the global dynamics equilibria by using the Lyapunov function. [10] Develops a Hilfer fractional model related
to Parkinson’s disease, and obtains a closed form solution in the terms of Wright function and Mittag-Leffler function, by using
Sumudu transform technique. [11] Uses the Laplace transform and exponential Fourier transform of Atangana-Baleanu-Caputo
(ABC) derivative, to obtain the approximate analytical solutions of a reaction-diffusion model for calcium dynamics in neurons,
in terms of generalized Mittag-Leffler function. [12] Presents a two-dimensional fractional-order reaction-diffusion model to
develop a control mechanism of Calcium in nerve cells, and uses the integral transform technique of arbitrary order to find the
solution of the model. [13] Analyses a mathematical model for cancer chemotherapy which includes anti-angiogenic effects of the
cytotoxic agent, to optimally control the tumor volume by administering the total dose in a single maximum dose session. [14]
Analyses a mathematical model for the combination of chemotherapy with anti-angiogenic treatment as a multi-input optimal
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control problem, and considers the problem to minimize a weighted average of tumor volume and the carrying capacity of the
tumor vasculature. [15] Considers a mathematical model for tumor radiotherapy and chemotherapy as an optimal solution for a
local tumor control.
The combinations of anti-angiogenics with each other or with other cancer therapies increase treatment efficacy [16, 17], notably
with radiotherapy [18, 19, 20, 21, 22] which is unable to completely eradicate some tumors alone [23]. Mathematical modelling
allows to develop methodologies of analysis and control for an appropriate polytherapy. We are interested in this paper to mathe-
matical modelling of anti-angiogenic therapy with radiotherapy. We propose to take advantage of the Set-Valued Analysis (SVA)
methodology applied in [24, 25] for models involving mono immunotherapy and chemotherapy, and in [26, 27] for combined modal-
ities of cancer therapy, including immunotherapy and anti-angiogenic therapy with chemotherapy, to combine anti-angiogenic
therapy and radiotherapy.
The rest of this paper is organized as follows : Section 2 describes a model of anti-angiogenic therapy and radiotherapy combination.
Section 3 formulates the corresponding problem of control, and augments the considered model to translate the control problem
into a viability one. Section 4 solves the viability problem by a single-valued selection of the set-valued map of regulation. Section
5 approaches the problem by the numerical methods of Euler and Uzawa.
2 Model presentation

The following complementary coupled dynamics between the tumor volume p ∈ (0,∞), and the time-varying carrying capacity
q ∈ (0,∞), are considered from [28].

ṗ = –ξp ln
(p

q

)
– (α +βr)pw, p(0) = p0 ∈ (0,∞); (1a)

q̇ = κ

(
bq

23 – dq
43
)

+ (1 – κ)
(

bp – dp
23 q
)

– γqu – (η + δr)qw, q(0) = q0 ∈ (0,∞); (1b)

where the third variable r was introduced by the ordinary differential equation
ṙ = –ρr + w, (1c)

and initiated by
r(0) = r0 = 0, (1d)

to model the temporal effects of tumor repair, and simplify the linear-quadratic damages quantification from Wein [29] on the
tumor : –(α+βr)pw, and on the carrying capacity : –(η+δr)qw, caused by the radiation control w, which takes values in [0, wmax].
The control u represents the dose of the anti-angiogenic medicine, and takes values in [0, umax], with carrying capacity elimination
: –γqu. The rest of uncontrolled expressions are summarized in the following table.

Expression Description
bq

23 and bp Carrying capacity stimulations
–dq

43 and –dp
23 q Carrying capacity inhibitions

–ξp ln
( p

q

)
Tumor proliferation

The parameter κ takes values in [0, 1], and for the particular values κ = 0 and κ = 1, the meta-model (1) corresponds to Hahnfeldt
[30, 31, 32] and Ergun [33, 34, 35] models, respectively. The model presentation is completed by describing parameters in table 1.
Numerous studies related to the model (1) have been carried out :
• [31] Employs Pontryagin Minimum Principle (PMP), to minimize tumor volume subject to Hahnfeldt’s sub-model, for an

optimal cancer combination therapy from anti-angiogenic and radiation therapy.
• [32] Uses State-Dependent Riccati Equations (SDRE) as an optimal control methodology framework on Hahnfeldt’s sub-model,

and designs optimal rules to reduce the tumor growth by an appropriate administration of anti-angiogenic and radio-therapeutic
doses.

• [33] Applies (PMP) on Ergun’s sub-model, to determine the temporal scheduling of radiotherapy and angiogenic inhibitors that
maximizes the control of a primary tumor.

• [36] Considers Ergun’s sub-model as as optimal control problem with the objective of minimizing the tumor volume subject
to isoperimetric constraints, that limit the total radiation dose and the overall amount of anti-angiogenic agents to be given.

• [37] Optimally controls Hahnfeldt’s sub-model, by solving nonlinear programming problem via A Mathematical Programming
Language (AMPL) and the Interior Point OPTimizer (IPOPT) method.

• [38] Executes (PMP) on Ergun’s sub-model, to minimize tumor volume while limiting the total amount of administered anti-
angiogenic agents, and also the total damage caused by the radiation treatment to the healthy tissue, so expressed in terms of
its Biologically Equivalent Dose (BED).

• [39] Operates (PMP) to optimally control Hahnfeldt’s sub-model, with the objective function of minimizing the size of cancer.
• [28] Proposes of the model (1), a Sequential Quadratic Hamiltonian (SQH) method to choose the optimisation weights, in order

to obtain treatment functions that successfully reduce the tumor volume to zero.
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• [40] Formulates more generalized model than (1), and adopts optimal control methodology, to minimize multi-functional
objective.

3 Problem statement

We state the problem of control the tumor volume p by a coupled protocol (u, w) from Cartesian product constraint [0, umax] ×
[0, wmax]

∀t ∈ [0,∞), (u(t), w(t)) ∈ [0, umax]× [0, wmax], (2a)
so in order that p strictly decreases on [0,∞)

∀t ∈ [0,∞), ṗ(t) < 0, (2b)
and admits zero as limit at infinity

lim
t→∞ p(t) = 0, (2c)

subject to the model (1).
Before beginning any analysis, we augment the model (1) by the ordinary differential equation

ẇ = –w + v, w(0) = w0 ∈ [0, wmax], (3)
to turn on the control w into a variable state, and control tumor volume dynamics (1b) indirectly via the parameter control v ∈
[0, wmax], subject to the objectives (2b) and (2c), however, we can still have the explicit expression for w

w(t) = e–t
(

w0 +
∫ t

0 eτv(τ) dτ
)

. (4)

The resolution of problem (2), can be done by finding (u, v)
∀t ∈ [0,∞), (u(t), v(t)) ∈ [0, umax]× [0, wmax], (5a)

by which (p, q, r, w) is globally viable in Dθ

∀t ∈ [0,∞), (p(t), q(t), r(t), w(t)) ∈ Dθ, (5b)
where domain

Dθ = {(p, q, r, w) ∈ R∗+ × R∗+ × R+ × [0, wmax] | ψθ(p, q, r, w) ≤ 0}, (5c)
with function

ψθ(p, q, r, w) = –ξp ln
(p

q

)
– (α + βr)pw + θp,

and parameter
θ ∈ R∗+.

Proposition 1 Assume that there exists θ ∈ R∗+ such that (p0, q0, r0, w0) ∈ Dθ, and (u, v) solution to the viability problem (5), then (u, w)
solves the control problem (2).

Proof Let t ≥ 0, and let (p, q, r, w) be the globally viable trajectory in Dθ, leading by the control (u, v).
According to (1a) and (5b) we have the differential inequality

ṗ(t) = –ξp ln
(p

q

)
– (α +βr)pw ≤ –θp(t),

by integrating we get the exponential estimate
0 ≤ p(t) ≤ p0e–θt,

then in the limit ∞, the tumor is deleted lim
t→∞ p(t) = 0, with the average speed of therapy θ. �
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4 Set-valued resolution

On the viability constraint Dθ by (5c), we define the set-valued map of regulation Fθ in the following way

Fθ(p, q, r, w) =
{

(u, v) ∈ [0, umax]× [0, wmax] |
(

–ξp ln
(p

q

)
– (α +βr)pw,

κ

(
bq

23 – dq
43
)

+ (1 – κ)
(

bp – dp
23 q
)

– γqu – (η + δr)qw, –ρr + w, –w + v
)>
∈ TDθ

(p, q, r, w)
 , (6a)

where

TDθ
(p, q, r, w) =

{
(p̂, q̂, r̂, ŵ) ∈ R4 ∣∣∣ lim inf

h↓0
d((p + hp̂, q + hq̂, r + hr̂, w + hŵ), Dθ)

h = 0
}

, (6b)

stands for the tangent cone to Dθ at point (p, q, r, w).
Lemma 1 Let beθ ∈ R∗+ such that (p0, q0, r0, w0) ∈ Dθ. If for all (p, q, r, w) ∈ Dθ, we have Fθ(p, q, r, w) 6= ∅, then any single-valued selection
(u, v) of the set-valued map of regulation Fθ solves (5).

Proof The set-valued map of regulation Fθ admits a selection (u, v) : Dθ → [0, umax]×[0, wmax] by which the system (1)-(3) admits a
locally viable solution (p(·), q(·), r(·), w(·)) in Dθ, defined over a maximal interval [0, tmax). We have to prove that tmax → ∞. Indeed,
assume that tmax is finite.
• The non-negative function p(·) decreases on [0, tmax), then it admits a limit p̄, when t → tmax.
• Thanks to (1b), we have the differential inequality

q̇ ≤ b(q
23 + p0),

and by integrating

3 2√p0
( 3√q

2√p0 – arctan
( 3√q

2√p0
))
≤ bt + 3 2√p0

( 3√q02√p0 – arctan
( 3√q02√p0

))
,

then by maximizing

q ≤
(b

3 tmax + 2√p0
( 3√q02√p0 – arctan

( 3√q02√p0
))

+ 2√p0 π2
)3 ,

which proves that the function q(·) admits an upper limit q̄, when t → tmax.
• According to (1c) the function r(·) admits a limit r̄ = e–ρtmax ∫ tmax

0 eρτw(τ) dτ, when t → tmax.
• By (4) the function w(·) admits a limit w̄ = e–tmax (

w0 +
∫ tmax

0 eτv(τ) dτ
)

, when t → tmax.

Therefore (p(·), q(·), r(·), w(·)) → (p̄, q̄, r̄, w̄) when t → tmax, and (p̄, q̄, r̄, w̄) belongs to Dθ because it is closed. Now, by considering
(p̄, q̄, r̄, w̄) as an initial state it follows that (p(·), q(·), r(·), w(·)) may be prolonged to a viable solution (p̃(·), q̃(·), r̃(·), w̃(·)) in Dθ,
starting at (p̄, q̄, r̄, w̄) on some interval [tmax, tsup) where tsup > tmax, which is in contradiction with the maximality of tmax, then
the solution (p(·), q(·), r(·), w(·)) becomes globally viable in Dθ. �

Motivated by the preceding Lemma 1, we are interested in an explicit expression of the set-valued map of regulation Fθ, so for
that we give the following Lemma from [27], characterizing the tangent directions of the tangent cone TDθ

by (6b).
Lemma 2 ([27]) For each (p, q, r, w) ∈ Dθ the tangent directions (p̂, q̂, r̂, ŵ) of TDθ

(p, q, r, w) are characterized by


r̂ ≥ 0 if r = 0,

ŵ ≥ 0 if w = 0,
ŵ ≤ 0 if w = wmax,

ψ̇θ(p, q, r, w)(p̂, q̂, r̂, ŵ) ≤ 0 if ψθ(p, q, r, w) = 0.
Proof See [27]. �

Lemma 3 ([27]) The set-valued map of regulation Fθ may be expressed explicitly on the viability constraint Dθ as

Fθ(p, q, r, w) =
{ [0, umax]× [0, wmax] if ψθ(p, q, r, w) < 0,

Cθ(p, q, r, w) if ψθ(p, q, r, w) = 0, (7a)

where

Cθ(p, q, r, w) = {(u, v) ∈ [0, umax]× [0, wmax] | `θ(p, q, r, w) + 〈h(p, q, r, w), (u, v)〉 ≤ 0} , (7b)
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with

`θ(p, q, r, w) =
〈
∇ψθ(p, q, r, w),

(
–ξp ln

(p
q

)
– (α + βr)pw,

κ

(
bq

23 – dq
43
)

+ (1 – κ)
(

bp – dp
23 q
)

– (η + δr)qw, –ρr + w, –w
)>〉

, (8a)

and

h(p, q, r, w) =
(

–γq∂ψθ
∂q (p, q, r, w), ∂ψθ

∂w (p, q, r, w)
)> . (8b)

Proof Thanks to Eqs. (1c) and (3)
• If r = 0, then

–ρr + w = w ≥ 0.
• If w = 0, then

–w + v = v ≥ 0.
• If w = wmax

i , then
–w + v = –wmax + v ≤ –wmax + wmax ≤ 0.

• For all (p, q, r, w) ∈ Dθ, we have

ψ̇θ(p, q, r, w)
(

–ξp ln
(p

q

)
– (α +βr)pw,κ

(
bq

23 – dq
43
)

+ (1 – κ)
(

bp – dp
23 q
)

– γqu – (η + δr)qw, –ρr + w, –w + v
)>

=

〈
∇ψθ(p, q, r, w),

(
–ξp ln

(p
q

)
– (α +βr)pw,κ

(
bq

23 – dq
43
)

+

(1 – κ)
(

bp – dp
23 q
)

– γqu – (η + δr)qw, –ρr + w, –w + v
)>〉 =

〈
∇ψθ(p, q, r, w),

(
–ξp ln

(p
q

)
– (α +βr)pw,κ

(
bq

23 – dq
43
)

+

(1 – κ)
(

bp – dp
23 q
)

– (η + δr)qw, –ρr + w, –w
)>〉 + 〈∇(q,w)ψθ(p, q, r, w), (–γqu, v)>〉 .

�

Lemma 4 A single-valued selection of the set-valued map of regulation Fθ may be given on the viability constraint Dθ by the expression

cθ(p, q, r, w) = πCθ(p,q,r,w)(0), (9)
where πCθ(p,q,r,w)(0) denotes the projection of 0R2 onto the closed convex set Cθ(p, q, r, w).

Proof See [27]. �

5 Numerical resolution

This section is devoted to numerically analysis the following model by combining the numerical methods of Euler by step h̄ and
Uzawa of parameter λ.

ṗ = –ξp ln
(p

q

)
– (α +βr)pw, (10a)

q̇ = κ

(
bq

23 – dq
43
)

+ (1 – κ)
(

bp – dp
23 q
)

– γqu – (η + δr)qw, (10b)
ṙ = –ρr + w, (10c)

ẇ = –w + v, (10d)
u = c1

θ(p, q, r, w), (10e)
v = c2

θ(p, q, r, w). (10f)
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The used algorithm is as follows
i. Initialization
a) t0 ∈ R+,
b) (p0, q0, r0, w0) ∈ Dθ,
c) λ0 ∈ R5+,

ii. Iteration
a) tn+1 = tn + h̄,
b)



pn+1 = pn + h̄
(–ξpn ln( pn

qn

) – (α +βrn)pnwn
) ,

qn+1 = qn + h̄
(
κ

(
bq

23
n – dq

43
n

)
+ (1 – κ)

(
bpn – dp

23 qn
)

– γqnun – (η + δrn)qnwn

)
,

rn+1 = rn + h̄(–ρrn + wn),
wn+1 = wn + h̄(–wn + vn),

(11)

c) {
un = –λn5h(pn, qn, rn, wn) + λn3 – λn1 ,
vn = –λn5h(pn, qn, rn, wn) + λn4 – λn2,

d)


λn+11 = max(λn1 + σ(un – umax), 0),
λn+12 = max(λn2 + σ(vn – vmax), 0),
λn+13 = max(λn3 – σun, 0),
λn+14 = max(λn4 – σvn, 0),
λn+15 = max(λn5 + σ(h1(pn, qn, rn, wn)un + h2(pn, qn, rn, wn)vn + `θ(pn, qn, rn, wn), 0), with 0 < σ < 2∥∥h(p, q, r, w)∥∥ .

• For the absence of therapy we choose (p0, q0, r0, w0) = (15000, 12000, 0, 0) as an initial state, the tumor volume p stimulates
the carrying capacity q to increase by the dynamics (10b), and to proliferate by the dynamics (10a), as we see in Figure 1.

• In the presence of therapy we choose (p0, q0, r0, w0) = (15000, 12000, 0, 2) as an initial state, with the parameter θ = ξ ln( p0
q0 ) +

αw0 ' 1.4, in order that (p0, q0, r0, w0) ∈ Dθ, the protocols u(t) = c1
θ(f(t)) and w(t) = e–t(w0 + ∫t0 eτc2

θ(f(τ)) dτ), where
f(.) = (p(.), q(.), r(.), w(.)) limits the stimulation of the tumor volume p on the carrying capacity q in the dynamics (10b), and
reverses the proliferation of p in the dynamics (10a), as we see in Figure 2.

As in (1d) we have r0 = 0 for the initial value of the tumor repair r, and we consider v0 = 0 as the initial value of the parameter
control v, for the parameter κ of the dynamics (10b) we propose κ = 0.5, as in [28] to combine Hahnfeldt and Ergun dynamics,
while the following table 1 gives the numerical values of the model (10) parameters.

Table 1. Parameters description.
Parameter Description Value Unit

ξ Parameter for tumor growth 0.084 [day–1]
b Tumor-induced stimulation

parameter
5.85 [day–1]

d Tumor-induced inhibition
parameter

0.00873 [mm–2 · day–1]
γ Anti-angiogenic elimination

parameter
0.15

[ kg
mg(doses)

]
· day–1

α Radiosensitive parameter for
tumor

0.7 [Gy–1]
β Radiosensitive parameter for

tumor
0.14 [Gy–2]

η Radiosensitive parameter for
healthy tissue

0.136 [Gy–1]
δ Radiosensitive parameter for

healthy tissue
0.086 [Gy–2]

ρ Tumor repair rate ln 2
0.02

[day–1]
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Figure 1. Tumor volume p begins to decrease from the initial value p0 = 15000, but p stimulates the carrying capacity q to increase from the initial value
q0 = 12000, until they have approximate values p = 14957 and q = 14912 (p ' q) , then p starts to increase.
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Figure 2. Tumor volume p begins from the same initial value p0 = 15000 as in Figure 1, but kept on decreasing state all over time therapy in accordance with (2b)
and (2c), caused by growth limitation of the carrying capacity q due to combined anti-angiogenic therapy and radiotherapy (u, w), and by direct effect of the

radiotherapy w(p, q) on the tumor volume p, while the tumor repair r is augmented.
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6 Conclusion

The problem control (2) to the class of mathematical models (1) is achieved by combining anti-angiogenic therapy with ra-
diotherapy. The set-valued analysis gives the feedback protocols u(t) = c1

θ(f(t)), and w(t) = e–t(w0 + ∫t0 eτc2
θ(f(τ)) dτ), where

f(.) = (p(.), q(.), r(.), w(.)) to administrate the temporal doses of anti-angiogenic medicine and radiation, in order to dynamically
limit the stimulation of the tumor volume p(u,w)(t) on the time carrying capacity q(u,w)(t), and force p(u,w)(t) to decrease : ∀t ∈
[0,∞), ṗ(u,w)(t) < 0, under the exponential estimate : 0 ≤ p(u,w)(t) ≤ p0e–θt, and converge to the null limit : limt→∞ p(u,w)(t) = 0.
The obtained protocols u and w, provide from the single-valued selection cθ by (9) to the set-valued map of regulation Fθ by (6a),
which should be strict on the subset Dθ by (5c) : ∀(p, q, r, w) ∈ Dθ, Fθ(p, q, r, w) 6= ∅, and they rend the model (1) globally viable
on the subset Dθ, as it is demonstrated in the Proof 4 of the Lemma 1. The linear dynamics (1c) and (3) of the tumor repair r
and the radiation control w respectively, allow to get the useful expression (7a) of the set-valued map of regulation Fθ, as it is
proved in the Proof 4 of the Lemma 3, and the single-valued selection cθ is a solution to the following problem of minimization :
min ||(u, v)|| such that (u, v) ∈ [0, umax]× [0, wmax] by (5a), and `θ(p, q, r, w) + 〈h(p, q, r, w), (u, v)〉 ≤ 0 by (8), which is numerically
approached by the method of Uzawa in the last Section 5, and implemented into the discretized model (11) by the method of Euler,
to get the numerical simulations of Figure 2, which are in perfect conformity with the theoretical results of the preceding Section
4.
Declarations

List of abbreviations

• Atangana–Baleanu–Caputo (ABC) derivative
• A Mathematical Programming Language (AMPL)
• Biologically Equivalent Dose (BED)
• Interior Point OPTimizer (IPOPT)
• Pontryagin Minimum Principle (PMP)
• State-Dependent Riccati Equations (SDRE)
• Sequential Quadratic Hamiltonian (SQH)
• Set-Valued Analysis (SVA)

Consent for publication

Not applicable.

Conflicts of interest

The author declares that she has no conflict of interests.

Funding

The author declares that there is no funding source for the reported research.

Author’s contributions

The research was carried out by the author and she accepts that the contributions and responsibilities belong to the author.

Acknowledgements

Not applicable.
References

[1] Özköse, F., Şenel, M.T., & Habbireeh, R. Fractional-order mathematical modelling of cancer cells-cancer stem cells-immune
system interaction with chemotherapy. Mathematical Modelling and Numerical Simulation with Applications, 1(2), 67-83, (2021).
[CrossRef]

[2] Ghori, M.B., Naik, P.A., Zu, J., Eskandari, Z., & Naik, M.U.D. Global dynamics and bifurcation analysis of a fractional-order
SEIR epidemic model with saturation incidence rate. Mathematical Methods in the Applied Sciences, 45(7), 3665-3688, (2022).
[CrossRef]

[3] Sinan, M., Leng, J., Anjum, M., & Fiaz, M. Asymptotic behavior and semi-analytic solution of a novel compartmental biolog-
ical model. Mathematical Modelling and Numerical Simulation with Applications, 2(2), 88-107, (2022). [CrossRef]

[4] Naik, P.A., Yavuz, M. & Zu, J. The role of prostitution on HIV transmission with memory: A modeling approach. Alexandria
Engineering Journal, 59(4), 2513-2531, (2020). [CrossRef]

[5] Gholami, M., Ghaziani, R.K., & Eskandari, Z. Three-dimensional fractional system with the stability condition and chaos
control. Mathematical Modelling and Numerical Simulation with Applications, 2(1), 41-47, (2022). [CrossRef]

https://doi.org/10.53391/mmnsa.2021.01.007
https://doi.org/10.1002/mma.8010
https://doi.org/10.53391/mmnsa.2022.008
https://doi.org/10.1016/j.aej.2020.04.016
https://doi.org/10.53391/mmnsa.2022.01.004


Moustafid | 195

[6] Naik, P.A., Owolabi, K.M., Yavuz, M., & Zu, J. Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related
cancer cells. Chaos, Solitons & Fractals, 140, 110272, (2020). [CrossRef]

[7] Naik, P.A., Eskandari, Z., & Shahraki, H.E. Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical
model. Mathematical Modelling and Numerical Simulation with Applications, 1(2), 95-101, (2021). [CrossRef]

[8] Naik, P.A., Zu, J., & Naik, M.U.D. Stability analysis of a fractional-order cancer model with chaotic dynamics. International
Journal of Biomathematics, 14(06), 2150046, (2021). [CrossRef]

[9] Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., & Townley, S. Modeling and analysis of COVID-19 epidemics with treatment in
fractional derivatives using real data from Pakistan. The European Physical Journal Plus, 135(10), 1-42, (2020). [CrossRef]

[10] Joshi, H., & Jha, B.K. Chaos of calcium diffusion in Parkinson’s infectious disease model and treatment mechanism via Hilfer
fractional derivative. Mathematical Modelling and Numerical Simulation with Applications, 1(2), 84-94, (2021). [CrossRef]

[11] Joshi, H., & Jha, B.K. On a reaction–diffusion model for calcium dynamics in neurons with Mittag–Leffler memory. The
European Physical Journal Plus, 136(6), 1-15, (2021). [CrossRef]

[12] Joshi, H., & Jha, B.K. Generalized Diffusion Characteristics of Calcium Model with Concentration and Memory of Cells: A
Spatiotemporal Approach. Iranian Journal of Science And Technology, Transactions A: Science, 46(1), 309-322, (2022). [CrossRef]

[13] Ledzewicz, U., & Schättler, H. The structure of optimal protocols for a mathematical model of chemotherapy with antiangio-
genic effects. SIAM Journal on Control and Optimization, 60(2), 1092-1116, (2022). [CrossRef]

[14] Ledzewicz, U., & Schättler, H. Combination of antiangiogenic treatment with chemotherapy as a multi-input optimal control
problem. Mathematical Methods in the Applied Sciences, 45(5), 3058-3082, (2022). [CrossRef]

[15] Ghita, M., Ghita, M., Copot, D., Birs, I.R., Muresan, C., & Ionescu, C.M. Optimizing radiotherapy with chemotherapy using
PKPD modeling for lung cancer. 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI),
000299-000304, (2022). [CrossRef]

[16] O’Reilly, M.S. The combination of antiangiogenic therapy with other modalities. Cancer Journal (Sudbury, Mass.), 8, S89-99,
(2002). [CrossRef]

[17] Gasparini, G., Longo, R., Fanelli, M., & Teicher, B.A. Combination of antiangiogenic therapy with other anticancer therapies:
results, challenges, and open questions. Journal Of Clinical Oncology, 23(6), 1295-1311, (2005). [CrossRef]

[18] Shannon, A.M., & Williams, K.J. Antiangiogenics and radiotherapy. Journal of Pharmacy and Pharmacology, 60(8), 1029-1036,
(2008). [CrossRef]

[19] Senan, S., & Smit, E.F. Design of clinical trials of radiation combined with antiangiogenic therapy. The Oncologist, 12(4),
465-477, (2007). [CrossRef]

[20] O’Reilly, M.S. The interaction of radiation therapy and antiangiogenic therapy. The Cancer Journal, 14(4), 207-213, (2008).
[CrossRef]

[21] O’Reilly, M.S. Radiation combined with antiangiogenic and antivascular agents. Seminars In Radiation Oncology, 16(1), 45-50,
(2006). [CrossRef]

[22] Mazeron, R., Azria, D., & Deutsch, E. Angiogenesis inhibitors and radiation therapy: from biology to clinical practice. Cancer
Radiotherapie: Journal de la Societe Francaise de Radiotherapie Oncologique, 13(6-7), 568-573, (2009). [CrossRef]

[23] Mortezaee, K., Parwaie, W., Motevaseli, E., Mirtavoos-Mahyari, H., Musa, A., Shabeeb, D., Esmaely, F., Najafi, M., & Farhood,
B. Targets for improving tumor response to radiotherapy. International Immunopharmacology, 76, 105847, (2019). [CrossRef]

[24] Moustafid, A. General chemotherapy protocols. Journal of Applied Dynamic Systems and Control, 4(2), 18-25, (2021). [CrossRef]
[25] Kassara, K., & Moustafid, A. Feedback protocol laws for immunotherapy. PAMM: Proceedings in Applied Mathematics and Me-

chanics, 7(1), 2120033-2120034, (2007). [CrossRef]
[26] Moustafid, A. General anti-angiogenic therapy protocols with chemotherapy. International Journal of Mathematical Modelling

& Computations, 11(3), (2021). [CrossRef]
[27] Kassara, K., & Moustafid, A. Angiogenesis inhibition and tumor-immune interactions with chemotherapy by a control set-

valued method. Mathematical Biosciences, 231(2), 135-143, (2011). [CrossRef]
[28] Kienle-Garrido, M.L., Breitenbach, T., Chudej, K., & Borzì, A. Modeling and numerical solution of a cancer therapy optimal

control problem. Applied Mathematics, 9(8), (2018). [CrossRef]
[29] Wein, L.M., Cohen, J.E., & Wu, J.T. Dynamic optimization of a linear–quadratic model with incomplete repair and volume-

dependent sensitivity and repopulation. International Journal of Radiation Oncology, Biology, Physics, 47(4), 1073-1083, (2000).
[CrossRef]

[30] Ledzewicz, U., D’Onofrio, A., & Schättler, H. Tumor development under combination treatments with anti-angiogenic ther-
apies. In Mathematical Methods and Models in Biomedicine, Springer, 311-337, (2013). [CrossRef]

[31] Chudej, K., Huebner, D., & Pesch, H.J. Numerische Lösung eines mathematischen Modells für eine optimale Krebskombina-
tionstherapie aus Anti-Angiogenese und Strahlentherapie. Tagungsband ASIM 2016-23 Symposium Simulationstechnik, Dresden,
52, 169-176, (2016).

[32] Mellal, L., Folio, D., Belharet, K., & Ferreira, A. Modeling of optimal targeted therapies using drug-loaded magnetic nanopar-
ticles for liver cancer. IEEE Transactions On Nanobioscience, 15(3), 265-274, (2016). [CrossRef]

[33] Ergun, A., Camphausen, K., & Wein, L.M. Optimal scheduling of radiotherapy and angiogenic inhibitors. Bulletin Of Mathe-
matical Biology, 65(3), 407-424, (2003). [CrossRef]

[34] Ledzewicz, U., & Schättler, H. Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy
treatments. Journal of Optimization Theory And Applications, 153, 195-224, (2012). [CrossRef]

[35] Jarrett, A.M., Faghihi, D., Hormuth, D.A., Lima, E.A., Virostko, J., Biros, G., Patt, D., & Yankeelov, T. Optimal control theory
for personalized therapeutic regimens in oncology: Background, history, challenges, and opportunities. Journal of Clinical
Medicine, 9(5), 1314, (2020). [CrossRef]

[36] Ledzewicz, U., Maurer, H., & Schättler, H. Optimal combined radio-and anti-angiogenic cancer therapy. Journal of Optimiza-
tion Theory And Applications, 180(1), 321-340, (2019). [CrossRef]

[37] Chudej, K., Wagner, L., & Pesch, H. Numerical solution of an optimal control problem in cancer treatment: Combined radio
and anti-angiogenic therapy. IFAC-PapersOnLine, 48(1), 665-666, (2015). [CrossRef]

[38] Schättler, H., & Ledzewicz, U. Optimal control for mathematical models of cancer therapies: An application of geometric

https://doi.org/10.1016/j.chaos.2020.110272
https://doi.org/10.53391/mmnsa.2021.01.009
https://doi.org/10.1142/S1793524521500467
https://doi.org/10.1140/epjp/s13360-020-00819-5
https://doi.org/10.53391/mmnsa.2021.01.008
https://doi.org/10.1140/epjp/s13360-021-01610-w
https://doi.org/10.1007/s40995-021-01247-5
https://doi.org/10.1137/21M1395326
https://doi.org/10.1002/mma.7977
https://doi.org/10.1109/SAMI54271.2022.9780850
https://doi.org/10.1109/SAMI54271.2022.9780850
https://doi.org/10.1200/JCO.2005.10.022
https://doi.org/10.1211/jpp.60.8.0009
https://doi.org/10.1634/theoncologist.12-4-465
https://doi.org/10.1097/PPO.0b013e3181836af3
https://doi.org/10.1016/j.semradonc.2005.08.006
https://doi.org/10.1016/j.canrad.2009.06.015
https://doi.org/10.1016/j.intimp.2019.105847
https://jadsc.aliabad.iau.ir/article_689178.html
https://doi.org/10.1002/pamm.200701092
https://ijm2c.ctb.iau.ir/article_684821.html
https://doi.org/10.1016/j.mbs.2011.02.010
https://doi.org/10.4236/am.2018.98067
https://doi.org/10.1016/S0360-3016(00)00534-4
https://doi.org/10.1007/978-1-4614-4178-6_11
https://doi.org/10.1109/TNB.2016.2535380
https://doi.org/10.1016/S0092-8240(03)00006-5
https://doi.org/10.1007/s10957-011-9954-8
https://doi.org/10.3390/jcm9051314
https://doi.org/10.1007/s10957-018-1426-y
https://doi.org/10.1016/j.ifacol.2015.05.082


196 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 3, 187–196

methods. New York: Springer, Vol. 42, (2015).
[39] Nastitie, N., & Arif, D.K. Analysis and optimal control in the cancer treatment model with combining radio and anti-

angiogenic therapy. IJCSAM (International Journal Of Computing Science And Applied Mathematics), 3(2), 55-60, (2017). [CrossRef]
[40] Ledzewicz, U., & Schättler, H. On the role of the objective in the optimization of compartmental models for biomedical

therapies. Journal Of Optimization Theory And Applications, 187(2), 305-335, (2020). [CrossRef]

Mathematical Modelling and Numerical Simulation with Applications (MMNSA) (https://www.mmnsa.org)

Copyright: © 2022 by the authors. This work is licensed under a Creative Commons Attribution 4.0 (CC BY) International License.
The authors retain ownership of the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute,
and/or copy articles in MMNSA, so long as the original authors and source are credited. To see the complete license contents, please
visit (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.12962/j24775401.v3i2.2288
https://doi.org/10.1007/s10957-020-01754-2
https://www.mmnsa.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model presentation
	Problem statement
	Set-valued resolution
	Numerical resolution
	Conclusion
	List of abbreviations
	Consent for publication
	Conflicts of interest
	Funding
	Author's contributions
	Acknowledgements


