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Abstract
We propose a new epidemic model to study the coinfection dynamics of COVID-19 and bacterial pneumonia, which is the
first model in the literature used to describe mathematically the interaction of these two diseases while considering two
infection ways for pneumonia: community-acquired and hospital-acquired transmission. We show that the existence and
local stability of equilibria depend on three different parameters, which are interpreted as the basic reproduction numbers
of COVID-19, bacterial pneumonia, and bacterial population in the hospital. Numerical simulations are performed to
complement our theoretical analysis, and we show that both diseases can persist if the basic reproduction number of
COVID-19 is greater than one.
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1 Introduction

The virulent nature of Coronavirus Disease 2019 (COVID-19) has continued to be significant as a public health concern since the
WHO declared it a global pandemic in the early part of 2020. Trend analysis has shown that one of the main causes of death re-
sulting from Coronavirus has been attributed to secondary causes due to bacterial and viral infections. As the Coronavirus Disease
continues to attract attention from various stakeholders in health and governance, who work relentlessly to unravel its dynam-
ics and curtail its spread through pharmaceutical and non-pharmaceutical methods, studies have shown that Respiratory Tract
Infections (RTIs) can predispose patients to coinfections [1, 2]. RTIs are infections of body parts involved in breathing, such as
sinuses, throat, airways or lungs, which can be caused by several bacteria and viruses such as influenza [3]. The most significant
of these RTIs, which affect the upper respiratory tract include tonsillitis, pharyngitis, sinusitis and certain types of influenza (such
as H1N1) [4] with symptoms such as cough, sore throat, nasal congestion, headache, among others.
Historically, according to [5], a large part of the death toll recorded in the 1918 influenza pandemic was due to bacterial infection
caused by Streptococcus pneumoniae. Evidence from the study in [6] revealed that poor outcomes in the influenza (H1N1) pandemic
were associated with coinfections. Aside from H1N1, MERS and SARS-CoV have been identified as major respiratory tract infec-
tions in the last decade. These have so far been detected by highly sensitive techniques such as MALDI-TOF and Multiplex PCR.
Therefore, the study of coinfections in a pandemic situation such as COVID-19 has become an essential need due to the clinical,
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diagnostic and therapeutic challenges it raises [7]. To further buttress the aforestated, Lansbury et al. [8] highlighted some im-
portant aspects of bacterial and viral infections in COVID-19 and antimicrobial prescription.
Despite the proven epidemiological significance of coinfections in the severity of respiratory diseases, they are largely understud-
ied during a large outbreak of respiratory infections such as SARS-CoV-2 [9]. According to Zhou et al. [10], it was shown that
50% of the fatalities due to COVID-19 result from secondary bacterial infections. Also, Chen et al. [11] attribute these deaths to
bacterial and fungal infections. Furthermore, in [9], clinical evidence has revealed the complexity in the diagnoses of coinfections
when the causative virus is resident in the host before the viral infection or has been contacted nosocomially. The authors in [12]
reported that patients presenting SARS-CoV-2 infection have a clinical phenotype that is very close to that of bacterial pneumonia.
Mathematical modelling of epidemics has become a crucial tool to forecast the future course of an outbreak, as well as to evaluate
possible strategies to control the spread of diseases. The analysis of these models is useful to decide the best course of action
to eradicate a disease since it is often less costly to perform numerical simulations than experimental studies. Also, it is easier
to determine the different possible outcomes of an epidemic by studying the equilibrium states and the threshold dynamics of a
model than to test it in real life. The history of epidemic modelling has developed in relatively recent times. Although an early
model was created by Bernoulli in 1760 to evaluate the effectiveness of inoculating healthy people against the smallpox virus [13],
deterministic epidemic models became increasingly popular in the early 20th century, starting with Ross’s differential equation
model on the control of malaria [14]. The susceptible-infectious-recovered model was inspired by the papers by Ross [15] in 1916
and Ross and Hudson [16, 17] in 1917, who studied a priori pathometry, followed by Kermack and McKendrick’s integro-differential
age-structured model [18] in 1927. In subsequent decades, a plethora of epidemic models was studied in the literature, many based
on ordinary differential equations (ODEs). Recent works have employed a range of different methods, such as fractional order dif-
ferential equations, partial differential equations, fuzzy logic, network-based and stochastic models, with the aim to describe the
complexities of pathogen transmission. However, the complexity of these methods often precludes an intuitive understanding of
the interactions between its variables and parameters [19], and simple models that can be adequately fitted to some epidemic data
can be more useful than more complex models that also provide an adequate fit to the same data [20]. Deterministic ODE models
have the advantage of having an extensive theory for their theoretical and numerical study [21], they have also been successfully
fitted to real-world epidemic data and their prediction accuracy can be improved by methods such as segmentation of epidemic
event sequences [22].
During the course of the COVID-19 pandemic, many different works have emerged to model mathematically the spread of SARS-
CoV-2. Several recent papers have focused on analyzing the effects of vaccination campaigns [23, 24, 25, 26], as well as the
relationship of COVID-19 with conditions such as diabetes [27] and heart attacks [28]. Some authors have incorporated the dy-
namics of new strains of SARS-CoV-2, such as the Omicron variant [28], while others have developed coinfection models. As
a background to our present work, recent studies have established clinical evidence of coinfections of SARS-CoV-2 (COVID-19)
with other diseases such as tuberculosis [7, 29, 30, 31, 32, 33], influenza A (H1N1) [34, 35, 36, 37, 38] and Middle East Respiratory
Syndrome Coronavirus (MERS-CoV) [39], as well as bacterial coinfections [40]. In response to the foregoing, researchers have de-
veloped mathematical models to study the coinfection dynamics of COVID-19. Soni and Singh [41] used a systems biology approach
to study a cellular-level model for SARS-CoV-2–influenza coinfection, they performed simulations with the Matlab SimBiology
toolbox to suggest therapeutic intervention points. Tchoumi et al. [42] proposed a compartmental population model for coinfec-
tion with malaria. They determined conditions for the stability of equilibria, showed that the model may undergo a backward
bifurcation and derived conditions for optimal control to mitigate the spread of both diseases. Tuberculosis–COVID-19 coinfection
has been modelled by Bandedar and Ghosh [43], who considered a model with waning immunity and performed a bifurcation
and stability analysis, as well as simulations using data from India. A different model for tuberculosis coinfection was studied
by Rwezaura et al. [44], who investigated the effects of COVID-19 vaccination and treatment control and performed parameter
fitting with data from Indonesia. Optimal control for a COVID-19–dengue model was studied by Omame et al. [45] using five
controls; furthermore, the authors fitted their model to the cumulative COVID-19 cases and deaths in Brazil. In [46], Omame et al.
analyzed a fractional coinfection model for diabetes and COVID-19 using the Atangana-Baleanu derivative. The authors studied
the Hyers-Ulams stability and global asymptotic stability and fitted the model to COVID-19 data from Indonesia.
Despite the above-mentioned developments in the literature, no model has been proposed to study the coinfection dynamics of
COVID-19 with bacterial pneumonia. Bacterial pneumonia is an inflammation of the lungs caused by infection with certain bacteria.
Depending on the location where a person acquires the infection, it can be classified as either community-acquired pneumonia or
hospital-acquired pneumonia. Community-acquired pneumonia is by far the most common type [47]. On the other hand, hospital-
acquired pneumonia is usually more severe because the infecting organisms tend to be more aggressive, less likely to respond to
antibiotics and harder to treat [48]. In this vein, we see from [49, 50, 51] that clinical studies have shown that critically ill COVID-19
patients admitted to the hospital suffer more frequent bacterial or fungal nosocomial infections, and patients with underlying risk
factors such as advanced age, mechanical ventilation or prolonged hospital stay are more prone to these complications. Moreover,
patients with mild COVID-19 infection are less likely to develop a more severe disease as a result of confection upon admission to
medical facilities compared to those with high-risk factors due to bacterial and fungal infections.
In view of the above evidence, we think that there is a need to mathematically study the coinfection dynamics of COVID-19 with
bacterial pneumonia. However, none of the models mentioned above has the structure necessary to be applied to this disease,
considering that bacterial infections can be acquired both in the community and in the hospital. Hence, we aim to study here a
new ODE model tailored specially to these needs. In contrast to the work by Giannella et al. [40], who developed a predictive
model to stratify the risk of bacterial coinfection based on an observational study of hospitalised COVID-19 patients, we intend
to use a theoretical approach of compartmental ODE models, which allows us to make simulations not only for the hospitalised
subpopulation but in the community at large.
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This paper is structured as follows: in Section 2, we introduce three models: a sub-model for COVID-19 infection, a sub-model for
bacterial pneumonia, and a coinfection model that includes the dynamics of both diseases. In Section 3, we determine some basic
properties for the two sub-models. In Section 4, we provide an analysis of the coinfection model. In Section 5, we perform some
numerical simulations to illustrate the dynamics of the coinfection model. Finally, we provide a summary and discussion of our
results in Section 6 and some concluding remarks in Section 7.
2 Description of the models

COVID-19 infection model

The COVID-19 infection model subdivides the human population into four compartments: susceptible (S), infected but not hospi-
talised (I), hospitalised (H), and recovered (R). This model can be described by the following system of equations:

S′ = Λ + σR – µS – αSI,
I′ = αSI – (γ + η + µ)I,

H′ = ηI – (θ + δ + µ)H,
R′ = γI + θH – µR – σR.

(1)

The interpretation of parameters is as follows:
• Λ: recruitment rate of susceptible population.
• µ: natural death rate.
• α: transmission rate of COVID-19.
• γ: recovery rate of people infected with COVID-19 but not hospitalised.
• θ: recovery rate of hospitalised people.
• η: hospitalisation rate.
• δ: COVID-19-induced death rate of hospitalised people.
• σ: rate of loss of immunity against COVID-19 infection.

For model (1), we assume that COVID-19 is transmitted by contact between susceptible and infected (but not hospitalised) people
at a bilinear rate αSI. A portion of the infected population is admitted to hospitals at a rate η. The average recovery time is
1/γ for non-hospitalised people and 1/θ for hospitalised people. Further, we assume that only hospitalised patients may have a
COVID-19-induced death. Lastly, people recovered from infection lose their natural immunity after an average time 1/σ.

Bacterial pneumonia infection model

The model for bacterial pneumonia subdivides the human population into three compartments: susceptible (S), infected (I), and
recovered (R). We also consider a compartment B representing the population of bacteria in the environment. The model is given
by the following system:

S′ = Λ – µS – bSI – b1SB,
I′ = bSI + b1SB –φI – µI – δI,

R′ = φI – µR,
B′ = pI + rB

(
1 – B
κ

)
– mB.

(2)

The parameters of this model can be interpreted as follows:
• Λ: recruitment rate of susceptible population.
• µ: natural death rate.
• b: transmission rate of community-acquired bacterial pneumonia.
• b1: transmission rate of hospital-acquired bacterial pneumonia.
• δ: disease-induced death rate of infected population.
• φ: recovery rate of people with bacterial infection.
• p: rate of excretion of bacteria in the environment by infected people.
• r: maximal per capita growth rate of bacteria in the environment.
• κ: carrying capacity of bacterial population.
• m: clearance rate of bacterial population.

For model (2), we assume that susceptible people get community-acquired pneumonia at a rate bSI and hospital-acquired pneu-
monia at a rate b1SB. Infected people have a pneumonia-induced death rate δ and may recover at a rate φ. The population of
bacteria in the environment follows a logistic growth rate and may additionally increase at a rate proportional to the number of
infected people.
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Coinfection model

Based on models (1) and (2), we propose a combined COVID-19–bacterial pneumonia coinfection model. We will consider three
stages for COVID-19 infection and four for bacterial infection, which gives twelve mutually exclusive compartments: bacterial
pneumonia susceptible and COVID-19 susceptible (XSS); bacterial pneumonia susceptible and COVID-19 mildly infected (XSI); bac-
terial pneumonia susceptible and COVID-19 hospitalised (XSH); bacterial pneumonia susceptible and COVID-19 recovered (XSR);
bacterial pneumonia infected and COVID-19 susceptible (XIS); bacterial pneumonia infected and COVID-19 mildly infected (XII);bacterial pneumonia infected and COVID-19 hospitalised (XIH); bacterial pneumonia infected and COVID-19 recovered (XIR); bac-
terial pneumonia recovered and COVID-19 susceptible (XRS); bacterial pneumonia recovered and COVID-19 mildly infected (XRI);bacterial pneumonia recovered and COVID-19 hospitalised (XRH); and bacterial pneumonia recovered and COVID-19 recovered
(XRR). Additionally, we consider a compartment B representing concentration of bacteria in the hospital environment. We make
the following assumptions:

i. COVID-19 is transmitted by contact with people in the XSI, XII and XRI compartments.
ii. The population susceptible to COVID-19 are infected by this disease at a rate α1 if they have bacterial pneumonia, and at a
rate α otherwise.

iii. The hospitalisation rate for people coinfected with COVID-19 and community-acquired pneumonia increases by an amount
η1 with respect to people with only COVID-19.
iv. The COVID-19 recovery rate for hospitalised people is θ1 if they are coinfected, and θ otherwise.
v. Non-hospitalised people get community-acquired pneumonia by contact with people in the XIS, XII and XIR compartments.

vi. Non-hospitalised people are infected with pneumonia at a rate b1 if they have COVID-19, and at a rate b otherwise.
vii. People hospitalised due to COVID-19 get hospital-acquired pneumonia at a rate proportional to the concentration of bacteria

in the environment.
viii. The disease-induced death rate for coinfected hospitalised patients is increased by an amount δ2 with respect to those with

only COVID-19.
ix. The pneumonia-induced death rate for non-hospitalised people is δ0 if they have COVID-19, and δ otherwise.
x. The pneumonia recovery rate is φ1 for people in the XII compartment, φ2 for the XIH compartment, and φ for the XIS and
XIR compartments.

The schematic diagram of model (3) can be seen in Figure 1. All parameters are assumed to be positive.
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Figure 1. Schematic diagram of the coinfection model. Solid lines represent the transition between compartments. Dashed lines represent the proliferation of
bacteria. X∗I denotes XSI + XII + XRI and XI∗ denotes XIS + XII + XIR.
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The above assumptions yield a coinfection model given by the following system of 13 differential equations:

X′
SS = Λ + σXSR – µXSS – αXSS (XSI + XII + XRI) – bXSS (XIS + XII + XIR) ,

X′
SI = αXSS (XSI + XII + XRI) – (γ + η + µ)XSI – b1XSI (XIS + XII + XIR) ,

X′
SH = ηXSI – θXSH – (µ + δ1)XSH – b2XSHB,

X′
SR = γXSI + θXSH – µXSR – σXSR – bXSR (XIS + XII + XIR) ,

X′
IS = σXIR + bXSS (XIS + XII + XIR) – α1XIS (XSI + XII + XRI) – (µ + δ)XIS –φXIS,

X′
II = b1XSI (XIS + XII + XIR) + α1XIS (XSI + XII + XRI) – (γ1 + η + η1 + µ + δ0 +φ1) XII,

X′
IH = (η + η1) XII + b2XSHB – θ1XIH – (µ + δ1 + δ2)XIH –φ2XIH,

X′
IR = bXSR (XIS + XII + XIR) + γ1XII + θ1XIH – (µ + δ)XIR –φXIR – σXIR,

X′
RS = σXRR +φXIS – µXRS – αXRS (XSI + XII + XRI) ,

X′
RI = φ1XII + αXRS (XSI + XII + XRI) – (γ + η + µ)XRI,

X′
RH = ηXRI +φ2XIH – θXRH – (µ + δ1)XRH,

X′
RR = φXIR + γXRI + θXRH – µXRR – σXRR,
B′ = pXIH + rB

(
1 – B
κ

)
– mB.

(3)

3 Analysis of sub-models

Before studying the dynamics of the coinfection model (3), we will analyze the two sub-models (COVID-19 only and bacterial
pneumonia only).

Analysis of the COVID-19 infection model

The COVID-19-only model (1) has a disease-free equilibrium (DFE) given by

EC0 = (S, I, H, R) =
(
Λ

µ
, 0, 0, 0

)
.

The stability of EC0 depends on the basic reproduction number of model (1).
Theorem 1 Let

RC = αΛ

µ(γ + η + µ) . (4)

Then, the disease-free equilibrium EC0 of model (1) is locally asymptotically stable ifRC < 1, but unstable ifRC > 1.

Proof 1 Using the notation in [52], we define the matrix of new infections F and the transition matrix V = V– – V+ by

F =
[
αSI
0
]

, V– =
[ (γ + η + µ)I
(θ + δ + µ)H

]
, V+ =

[ 0
ηI

]
.

Then, we compute the matrices F = DF (EC0) and V = DV (EC0), as follows:

F =
[
αΛ
µ 0
0 0

]
, V =

[
γ + η + µ 0

–η θ + δ + µ
]

.

The basic reproduction numberRC of the COVID-19-only model is given by the spectral radius of FV–1. From this, we obtain thatRC is given by
(4).
By an application of [52, Theorem 2], we conclude that EC0 is locally asymptotically stable ifRC < 1 and unstable ifRC > 1.

Analysis of the bacterial pneumonia infection model

The bacterial pneumonia model (2) has a DFE given by

EP0 = (S, I, R, B) =
(
Λ

µ
, 0, 0, 0

)
.

The stability of EP0 will depend on a parameter RP, as detailed in the following result.
Theorem 2 Let

RP = bΛ
µ(φ + µ + δ) . (5)
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Then, the disease-free equilibrium EP0 of model (2) is locally asymptotically stable ifRP < 1, but unstable ifRP > 1.

Proof 2 Using the notation in [52], we define the matrix of new infections F and the transition matrix V = V– – V+ by

F = [bSI + b1SB
] , V– = [(φ + µ + δ)I

] , V+ = [0] .

To apply the next-generation matrix method, we compute F = DF (EC0) and V = DV (EC0), which are given by

F = [ bΛ
µ

] , V = [φ + µ + δ] .

Using the same method as before, we obtain the basic reproduction numberRP of the bacterial pneumonia-only model as the spectral radius of
FV–1, which gives the expression (5).
Finally, by [52, Theorem 2], we conclude that EP0 is locally asymptotically stable ifRP < 1 and unstable ifRP > 1.

4 Analysis of the COVID-19–bacterial pneumonia coinfection model

Next, we consider the dynamics of the coinfection model (3). The existence and stability of equilibria for model (3) will depend on
three parameters, which are defined as follows:

RC := αΛ

µ(γ + η + µ) , RP := bΛ
µ(φ + µ + δ) , RB := r

m .

As we saw in the previous section, the parameters RC and RP represent the basic reproduction numbers of COVID-19 and bacterial
pneumonia, respectively. On the other hand, RB can be interpreted as the reproduction number of bacterial population in the
hospital.

Equilibria of the model

By direct computation, we obtain the following result about the equilibria of model (3).

Theorem 3 The coinfection model (3) has the following steady states:

i. The disease-free, bacterial population-free equilibrium:

E0 = (X(0)
SS , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

where

X(0)
SS = Λ

µ
.

ii. The disease-free, bacterial population-present equilibrium:

E1 = (X(1)
SS , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, B(1)) ,

where

X(1)
SS = Λ

µ
, B(1) = κr (r – m).

This equilibrium exists if and only ifRB > 1.
iii. The COVID-19-free, pneumonia-present, bacterial population-free equilibrium:

E2 = (X(2)
SS , 0, 0, 0, X(2)

IS , 0, 0, 0, X(2)
RS , 0, 0, 0, 0) ,

where

X(2)
SS = µ + δ +φ

b , X(2)
IS = Λ

µ + δ +φ – µb , X(2)
RS = φ

µ
X(2)

IS .

This equilibrium exists if and only ifRP > 1.
iv. The COVID-19-free, pneumonia-present, bacterial population-present equilibrium:

E3 = (X(3)
SS , 0, 0, 0, X(3)

IS , 0, 0, 0, X(3)
RS , 0, 0, 0, B(3)) ,
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where

X(3)
SS = µ + δ +φ

b , X(3)
IS = Λ

µ + δ +φ – µb , X(3)
RS = φ

µ
X(3)

IS ,
B(3) = κr (r – m).

This equilibrium exists if and only if

RB > 1 and RP > 1.
v. The COVID-19-present, pneumonia-free, bacterial population-free equilibrium:

E4 = (X(4)
SS , X(4)

SI , X(4)
SH , X(4)

SR , 0, 0, 0, 0, 0, 0, 0, 0, 0) ,
where

X(4)
SS = γ + η + µ

α
, X(4)

SI = (µ + σ)(θ + µ + δ1)[αΛ – µ(γ + η + µ)]
α
[
µ(θ + µ + δ1)(γ + η + µ + σ) + ησ(µ + δ1)] ,

X(4)
SH = η

θ + µ + δ1 X(4)
SI , X(4)

SR =
(

γ

µ + σ + ηθ

(µ + σ)(θ + µ + δ1)
)

X(4)
SI .

This equilibrium exists if and only if

RC > 1.
Proof 3 Equilibria E0, E1, E2 and E3 are obtained by assuming that XSI = 0 in the system at equilibrium and solving the resulting algebraic
equations. This yields four different cases: one for each equilibrium.
On the other hand, assuming XSI > 0 and XIS = 0 results in only one case, corresponding to the equilibrium E4.
The case when XSI > 0 and XIS > 0 will be discussed below.

Theorem 3 shows that, under certain conditions, the coinfection model has five different steady states. Moreover, we conjecture
that a sixth equilibrium, with positive values for all variables, may exist. We will denote this interior equilibrium by E5. Since the
theoretical analysis becomes too cumbersome in this case, we will resort to numerical simulations to investigate the dynamics of
equilibrium E5 (see Section 5).

Stability analysis

We will now analyze the local stability for the equilibria of system (3) by means of the linearisation method and the Hartman–
Grobman theorem. Our results will focus only on the disease-free equilibria E0 and E1.
Theorem 4

(i) The disease-free, bacterial population-free equilibrium E0 is locally asymptotically stable if

RC < 1, RP < 1 and RB < 1, (6)
and it is unstable if one ofRC > 1,RP > 1 orRB > 1 holds.

(ii) The disease-free, bacterial population-present equilibrium E1 is locally asymptotically stable if

RC < 1, RP < 1 and RB > 1, (7)
and it is unstable if one ofRC > 1,RP > 1 orRB < 1 holds.

Proof 4 The Jacobian of system (3) evaluated at E0 is given by

J0 =



–µ –αΛµ 0 σ – bΛ
µ – (α+b)Λ

µ 0 – bΛ
µ 0 –αΛµ 0 0 0

0 αΛ
µ – k1 0 0 0 αΛ

µ 0 0 0 αΛ
µ 0 0 0

0 η –k2 0 0 0 0 0 0 0 0 0 0
0 γ θ –k3 0 0 0 0 0 0 0 0 0
0 0 0 0 bΛ

µ – k4 bΛ
µ 0 bΛ

µ + σ 0 0 0 0 0
0 0 0 0 0 –k5 0 0 0 0 0 0 0
0 0 0 0 0 η + η1 –θ1 – k6 0 0 0 0 0 0
0 0 0 0 0 γ1 θ1 –k7 0 0 0 0 0
0 0 0 0 φ 0 0 0 –µ 0 0 σ 0
0 0 0 0 0 φ1 0 0 0 –k1 0 0 0
0 0 0 0 0 0 φ2 0 0 η –k2 0 0
0 0 0 0 0 0 0 φ 0 γ θ –k3 0
0 0 0 0 0 0 p 0 0 0 0 0 r – m



,
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where

k1 = γ + η + µ, k2 = θ + µ + δ1, k3 = µ + σ, k4 = µ + δ +φ,
k5 = γ1 + η + η1 + µ + δ0 +φ1, k6 = µ + δ1 + δ2 +φ2, k7 = µ + δ +φ + σ.

From this, we obtain the characteristic polynomial

(λ + µ)2 (λ + k1) (λ + k2)2 (λ + k3)2 (λ + k5) (λ + θ1 + k6
) (
λ + k7)

×
(
λ + k1 – αΛ

µ

)(
λ + k4 – bΛ

µ

)
(λ + m – r) = 0.

By the Hartman–Grobman theorem [53, p. 311], we know that the solutions of (3) and its linearisation are qualitatively equivalent near E0
provided that E0 is a hyperbolic equilibrium. Due to positivity of parameters, it is clear that all eigenvalues have negative real part if and only if

γ + η + µ – αΛ
µ

> 0, µ + δ +φ – bΛ
µ

> 0 and m – r > 0,

which is equivalent to the condition (6). On the other hand, the opposite inequalities guarantee that there is at least one eigenvalue with positive
real part and no eigenvalues with zero real part. Hence, we can conclude part (i) of the theorem.
Next, we compute the Jacobian at E1, which is given by

J1 =



–µ –αΛµ 0 σ – bΛ
µ – (α+b)Λ

µ 0 – bΛ
µ 0 –αΛµ 0 0 0

0 αΛ
µ – k1 0 0 0 αΛ

µ 0 0 0 αΛ
µ 0 0 0

0 η –k0 – k2 0 0 0 0 0 0 0 0 0 0
0 γ θ –k3 0 0 0 0 0 0 0 0 0
0 0 0 0 bΛ

µ – k4 bΛ
µ 0 bΛ

µ + σ 0 0 0 0 0
0 0 0 0 0 –k5 0 0 0 0 0 0 0
0 0 k0 0 0 η + η1 –θ1 – k6 0 0 0 0 0 0
0 0 0 0 0 γ1 θ1 –k7 0 0 0 0 0
0 0 0 0 φ 0 0 0 –µ 0 0 σ 0
0 0 0 0 0 φ1 0 0 0 –k1 0 0 0
0 0 0 0 0 0 φ2 0 0 η –k2 0 0
0 0 0 0 0 0 0 φ 0 γ θ –k3 0
0 0 0 0 0 0 p 0 0 0 0 0 m – r



,

where k0 = b2κ (1 – m
r
)

, and k1, . . . , k7 are as defined above. Notice that k0 > 0 if and only ifRB > 1.
The characteristic polynomial at E1 is

(λ + µ)2 (λ + k1) (λ + k2) (λ + k3)2 (λ + k5) (λ + θ1 + k6
) (
λ + k7)

× (λ + k0 + k2)
(
λ + k1 – αΛ

µ

)(
λ + k4 – bΛ

µ

)
(λ + r – m) = 0.

It follows that all eigenvalues have negative real part if and only if

k0 + k2 > 0, γ + η + µ – αΛ
µ

> 0, µ + δ +φ – bΛ
µ

> 0 and r – m > 0.

The first of these inequalities holds automatically whenRB > 1. Hence, we can see that all eigenvalues have negative real part if and only if the
last three inequalities hold, and this is equivalent to condition (7). Otherwise, ifRC > 1,RP > 1 orRB < 1, there will be at least one eigenvalue
with positive real part and no eigenvalues with zero real part. Applying the Hartman–Grobman theorem as before, the proof of (ii) is complete.

5 Numerical analysis

In this section, we perform some simulations for system (3) to illustrate the dynamics of the coinfection model in some cases that
are not covered by the analysis in Section 4. We will consider the initial conditions

XSS(0) = 8.33× 107, XSI(0) = 105, XSH(0) = 103, XSR(0) = 105, XIS(0) = 103,
B(0) = 0.8, XII(0) = XIH(0) = XIR(0) = XRS(0) = XRI(0) = XRH(0) = XRR(0) = 0,

which represent a case when a fraction of the population is infected with either COVID-19 or bacterial pneumonia, but there are
initially no people coinfected with both diseases.
Throughout this section, we will use the parameter values shown in Table 1. The parameters related to demography (Λ and µ) and
COVID-19 dynamics (σ, α and α1) are based on the values used in [54]. Since the literature regarding the modelling of bacterial
pneumonia dynamics is scarce, the rest of the parameter values are not based on specific models or real data sets. Instead, we use
generic values to show the different dynamics of our model.
Thus, we obtain a fixed value for RC, which is greater than one (RC = 1.2294), while RP and RB will vary as the parameters b and
r take different values.
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Table 1. Parameter values used for the coinfection model.
Parameter Value Unit

Λ 2000 people/day
µ 2.4× 10–5 (people · day)–1
σ 1/100 day–1
γ 1/12 day–1
γ1 1/20 day–1
θ 1/14 day–1
θ1 1/24 day–1
b1 2× 10–9 (people · day)–1
b2 0.1 day–1
δ 0.001 day–1
δ0 0.005 day–1
δ1 0.01 day–1
δ2 0.2 day–1
η 0.12 day–1
η1 0.1 day–1
φ 1/14 day–1
φ1 1/30 day–1
φ2 1/40 day–1
p 10–5 (people · day)–1
κ 1
m 0.01 day–1
α 3× 10–9 (people · day)–1
α1 10–8 (people · day)–1
b variable (people · day)–1
r variable day–1

Case 1. When b = 10–10 and r = 0.004, we have RP = 0.1150 < 1 and RB = 0.4 < 1. The time plots of the solutions for this case are
shown in Figure 2. The solutions converge to a positive equilibrium

E5 ≈ (6.3418× 107, 5684, 3153, 69716, 191.8, 0.0735, 1537, 776.8, 4.368× 106, 391.5, 1048, 16263, 1.3487).
As we can see in Figure 2, the population infected with pneumonia presents a peak during the first 200 days, after which it oscillates
until settling down to the equilibrium value. The majority of the coinfected population consists of hospitalised individuals (XIH),
which reach a peak of 760 000, while the coinfected non-hospitalised population (XII) grows to less than 10 000 individuals. For
people recovered from bacterial pneumonia, a similar relationship is seen: there are more hospitalised than non-hospitalised
individuals; however, for individuals susceptible to pneumonia, the opposite occurs.
Case 2. When b = 9 × 10–10 and r = 0.004, we have RP = 1.0352 > 1 and RB = 0.4 < 1. The time plots of the solutions are depicted
in Figure 3; we can see that they converge to a positive equilibrium

E5 ≈ (5.711× 107, 5602, 3130, 6.89× 104, 2229, 0.59, 1509, 765, 1.066× 107, 1046, 2005, 2.85× 104, 1.33).
As seen in Figure 3, the dynamics, in this case, are mostly similar to those of Case 1. The largest difference is the increase in
the population infected with pneumonia only (XIS), which reaches a peak about 10 times larger than in Case 1. Also notable is
the increase in the population recovered from pneumonia and infected by COVID-19 (XRI), whose peak and equilibrium values are
about 3 times larger than in Case 1.
Case 3. When b = 10–10 and r = 0.08, we have RP = 0.1150 < 1 and RB = 8 > 1. The time plots of the solutions are depicted in Figure
4. We can see that they converge to the positive equilibrium

E5 ≈ (6.353× 107, 6206, 3984, 8.0× 104, 189.8, 0.0793, 1519, 768, 4.251× 106, 415.3, 1078, 16605, 1.055).
If we compare these simulations with the case when bothRP andRB are less than one, we can see that there is a slight increment in
all the pneumonia-susceptible compartments and a slight decrease in the pneumonia-infected compartments. The concentration
of bacteria also reaches a lower value at the peak and at equilibrium.
Case 4. When b = 9 × 10–10 and r = 0.08, we have RP = 1.0352 > 1 and RB = 8 > 1. The time plots of the solutions are shown in
Figure 5. We can see that the solutions converge to the positive equilibrium

E5 ≈ (5.728× 107, 6007, 3867, 7.747× 104, 2186, 0.618, 1467, 744.4, 1.050× 107, 1102, 2074, 2.92× 104, 1.0497).
In this case, the number of hospitalised coinfected people becomes lower than in all other cases, while the non-hospitalised
coinfected population reaches its highest value (although it still remains less than one individual at equilibrium). The concentration
of bacteria in environment approaches a lower value at equilibrium in comparison to Cases 1–3.
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Figure 2. Dynamics of the coinfection model when RC > 1, RP < 1 and RB < 1.
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Figure 3. Dynamics of the coinfection model when RC > 1, RP > 1 and RB < 1.
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Figure 4. Dynamics of the coinfection model when RC > 1, RP < 1 and RB > 1.
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Figure 5. Dynamics of the coinfection model when RC > 1, RP > 1 and RB > 1.
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6 Results and discussion

In this work, we proposed a novel mathematical model to study the coinfection dynamics of COVID-19 and bacterial pneumonia.
We established some basic properties of the sub-models (COVID-19 only and bacterial pneumonia only) and computed their basic
reproduction numbers. We obtained some analytical results for the coinfection model and showed that its dynamics depend on
three parameters: RC, RP and RB.
We established in Theorem 4 that a necessary and sufficient condition to ensure that both diseases are eradicated from the popu-
lation is to decrease RC and RP below unity. Biologically, this can be achieved by encouraging social distancing and wearing face
masks. Moreover, part (ii) of Theorem 4 shows that a high reproduction number for the bacterial population in hospitals (RB) is
not enough for bacterial pneumonia to persist in the population.
Furthermore, we determined the conditions for the existence of five equilibrium points. By means of numerical simulations, we
showed that a sixth equilibrium may exist. Based on the simulations in Section 5, we conjecture that the COVID-19-present,
pneumonia-present, bacterial population-present equilibrium E5 exists and is locally stable whenever RC > 1. This implies that
both diseases can coexist in the population even if reproduction numbers of bacterial pneumonia (RP) and bacterial population
(RB) are reduced below unity. Hence, epidemic policies should focus on reducing the basic reproduction number of COVID-19 in
order to control the pandemic.
The simulations obtained in Section 5 show qualitatively similar dynamics for all four cases depicted in Figures 2–5: all subpopu-
lations converge to a positive value. However, we must remark that the number of coinfected, non-hospitalised individuals (XII)remains very low (less than one individual at equilibrium) in all cases; in contrast, most of the coinfection cases occur in the
hospitalised compartment (XIH). This is in line with the increased susceptibility of hospitalised COVID-19 patients to bacterial or
fungal infections that has been observed in clinical trials [49, 50, 51].
Although many models have been proposed recently to study the coinfection dynamics of COVID-19 and other diseases [41, 42, 43,
44, 45, 46], our work is the first that takes into account the distinctive features of bacterial pneumonia, in particular, the inclusion
of two infection ways (community and hospital transmission).
7 Conclusions

We proposed and analyzed an ODE model which, to the best of our knowledge, is the first epidemic model used to describe the
coinfection of bacterial pneumonia and COVID-19. The highlights of our work include determining the stability conditions for the
disease-free equilibria, as well as the existence conditions for five different equilibria. Due to the complexity of our model, we did
not include a stability analysis for all equilibrium points. This is an area of research that could be elaborated on in future works.
Other approaches that could be tackled in further research include expanding our coinfection model using vaccination against
COVID-19 or multiple SARS-CoV-2 variants, as well as performing parameter fitting using real data.
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