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Abstract
In this paper, we present a mathematical model of stem cells and chemotherapy for cancer treatment, in which the model isrepresented by fractional order differential equations. Local stability of equilibrium points is discussed. Then, the existence anduniqueness of the solution are studied. In addition, in order to point out the advantages of the fractional order modeling, thememory trace and hereditary traits are taken into consideration. Numerical simulations have been used to investigate how thefractional order derivative and different parameters affect the population dynamics, the graphs have been illustrated according todifferent values of fractional order α and different parameter values. Moreover, we have examined the effect of chemotherapy ontumor cells and stem cells over time. Furthermore, we concluded that the memory effect occurs as the α decreases from 1 and thechemotherapy drug is quite effective on the populations. We hope that this work will contribute to helping medical scientists takethe necessary measures during the screening process and treatment.
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1 Introduction

Cancer is a general term that includes a wide range of diseases that can affect any part of the body. One of the distinguishing features ofcancer is the rapid generation of abnormal cells that grow outside their normal limits and can then invade neighboring parts of the body andspread to other parts of it. Despite the scientific and technological development, cancer is a major cause of death worldwide, and it claimedthe lives of 10 million people in 2020. According to the World Health Organization (WHO), between 30% and 50% of cancer cases can beprevented by avoiding risk factors for the disease to prevent it. The burden of cancer can also be reduced by detecting the disease early andproviding patients with adequate treatment and care, given that the chances of recovery from many types of cancer increase if they arediagnosed early and treated appropriately. Many researchers have described the interactions between the immune system especially effectorcells and tumor cells, where a mathematical modeling was used to clarify the relationship between them as in [1, 2, 3, 30, 31]. Recently,researches were directed to study the effect of stem cell therapy to reduce the growth of tumor cells due to the importance of stem cells inblood formation, as they grow into different types of blood cells such as red and white blood cells and platelets that contribute to stimulating
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the patient’s immune system and that were destroyed by Chemotherapy, radiotherapy, or both. A fractional-order model of tumor-immunesystem interaction has been proposed in [4], and a Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cellshas been given to understand the mechanism that underlies AIDS-related cancers in [8]. As in [13, 14, 15, 16] the effectiveness of usingstem cells to boost the patient’s immune system has been shown, which may in the future be a treatment for most types of cancer. In thiswork, we extend the study [17]. Taking into account the interaction of stem cells, tumor cells and chemotherapy for the treatment of cancer,we propose a fractional-order instead of integer-order model to show how effective stem cells are in improving the immune system, whichin turn better fights tumor cells [10, 11, 12, 18]. Many real life systems are described better by fractional differential equations, e.g. heatequation, telegraph equation, social systems, medical imaging, pollution control, cancer dynamics, infectious diseases, and a lossy electrictransmission line are all involved with fractional order operators [8, 9, 18, 19]. We propose a model motivated by Manar A. Alqudah’s work[17], Manar presented a study of ordinary differential equations model that describes the stem cells and chemotherapy for treatment ofcancer to show how the stem cells support the effector cells which fighting the tumor cells to improve the immune system of the cancerpatient while the chemotherapy kills the infected cells. The mathematical model of treatment of cancer studied in [17] is presented by:


dS
dt = γ1S – ksMS,

dT
dt = r(1 – bT)T – (p3E + kT M)T,
dE
dt = σ – µE + p1ES

S + 1 – p2(T + M)E,
dM
dt = –γ2M + V(t).

(1)

In the previous model S(t) stem cells, T(t) tumor cells, E(t) effector cells, M(t) chemotherapy concentration drug, and the initial conditionsare: S(0) = S0 , E(0) = E0 , T(0) = T0 , 0 ≤ t ≤ ∞ and M(0) = 0 if V0 = 0.
In our paper, the fractional order form of the model (1) is considered with the Caputo sense [20]. In addition, so that the system (1) isdimensionally consistent: the units of measurement from the left- and right-hand sides of the equations agree. It has been achieved bymodifying the parameters involved in the right-hand side of the equations, e.g. raising them to power α. The new system as follows:



CDαS(t) = γα1 S – kαs MS,
CDαT(t) = rα(1 – bαT)T – (pα3 E + kαT M)T,
CDαE(t) = σα – µαE + pα1 ES

S + 1 – pα2 (T + M)E,
CDαM(t) = –γα2 M + V(t),

(2)

with the same initial conditions in (1) and α is the order of the model 0 < α ≤ 1.
The parameters description are summarized in Table 1. Some values are taken arbitrarily to easy solving the model numerically and theothers are taken from [17] to be compatible with the description of model (2). We assumed that all of the parameters to be non-negativewas γ1 non-positive as stated in [17].

Table 1. Parameter values used for numerical analysis
Parameters Description Values Reference

S0 Stem cells initial concentration 1 [17]
T0 Density of free tumors 1 [17]
E0 Effector cells initial concentration 1 [17]
M0 Chemotherapy concentration drug 1 [17]
V0 The time dependent external influx of chemotherapy drug 0.18 [17]
r Tumor growth rate 0 [17]
γ1 Decay rate of concentration of stem cells –0.02825 [17]
γ2 Decay rate of chemotherapy drug 6.4 [17]
σ The rate of produced effector cells 0.17 [17]
µ The natural death rate of the effector cell 0.03 [17]
p1 Maximum rate of effector cells 0.1245 [17]
p2 Decay rate of effector cells killed by tumor cells and chemotherapy 1 [17]
p3 Decay rate of tumor cells killed by effector cells 0.9 [17]
b Carrying capacity of tumor cells 10–9 [17]
ks Fractional stem cells killed by chemotherapy 1 [17]
kT Fractional tumor cells killed by chemotherapy 0.9 [17]
V(t) The time dependent external influx of chemotherapy drug 1 [17]

Motivated by the above discussion, the aim of this study is to investigate a fractional-order mathematical model of stem cell- cancercell- immune system interaction. The reason of using fractional order differential equations is that they are naturally related to systemswith memory which exists in cancer cells-immune system interactions. The most essential property of these models is their nonlocalproperty which does not exist in the integer order differential operators. Mathematical models, using ordinary differential equations withinteger order have been proved valuable in understanding the dynamics of diseases. But, they have some limitations when compared withthe fractional order derivatives. Integer order derivatives only describe the instantaneous biological events. Fractional order’s nonlocal
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property says that the next stage of a model depends not only upon its current state but also upon all of its historical states. Therefore,models with fractional order differential equations provide more advantages than integer order mathematical models. In this study, bothfractional modeling has been taken into account and estimated data have been used. Meanwhile, dimensional compatibility has beenconsidered in order to better reveal the effect of fractional-order in the proposed fractional-order stem cell-cancer cell-immune systeminteraction. Additionally, we have aimed to point out the advantages of the fractional order modeling, taking into consideration thememory trace and hereditary traits which are capable of integrating all past activities and taking into account the long-term history ofthe system. In this context, it can be seen that the memory trace dynamics are highly dependent on time. When the fractional-order α isdecreased from the unit, the memory trace nonlinearly increases from 0. Hence, the fractional-order system dynamics are quite differentfrom the integer-order dynamics. It is thought that there is no such study in the literature that deals with the stem cell-cancer relation-ship, and making the fractional order model dimensionally consistent, and taking into account the memory effect/hereditary characteristics.
The remaining part of this paper is prepared as follows. In Sec. (2), some definitions of a fractional order derivative (FOD) and someimportant theorems for FODs are given. In Sec. (3), the existence and uniqueness conditions of the solutions are given. In Sec. (4), stabilitytheorems for the equilibrium points are examined. In Sec. (5), the numerical simulation and data analysis have been given. In Sec. (6), theeffects of the memory trace on the behaviour of the system (2) are examined. In Sec. (7), to investigate the effects of different parametervalues and different values of α on the dynamic behavior of the proposed model, the numerical solutions have been carried out. Finally, theResults and Discussion are given in Sec. (8).
2 Preliminaries

The fractional-order derivation and the fractional-order integration have many definitions such that the Riemann-Liouville definition,Caputo definition, Hadamard fractional integral, Atangana-Baleanu fractional integral, Riesz derivative, and Generalized Functionsapproaches [5, 7, 20, 26]. The most commonly used of these are Riemann-Liouville and Caputo definitions. Caputo reformulated thedefinition of the Riemann–Liouville fractional derivative by switching the order of the ordinary derivative with the fractional integraloperator. By doing so, the Laplace transform of this new derivative depends on integer order initial conditions, differently from the initialconditions when we use the Riemann–Liouville fractional derivative, which involves fractional order conditions, give a well understandingof the properties of many physical phenomena which makes it applicable to the problems of our real world.

Definition 1 [20, 26] The fractional integral of order α > 0, of the function f(t), t > 0 is given by

Iαf(t) = ∫ t

0
(t – s)α–1

Γ(α) f(s)ds.
and the fractional derivative of order α ∈ (n – 1, n) of f(t) , t > 0 is given by

Dαf(t) = In–αDnf(t) (D = d
dt ).

Definition 2 [20] Let f : R+ → R continuous function. The Caputo fractional-order derivative is given by

CDα
t0,tf(t) = 1

Γ(m – α)
∫ t

0(t – τ)m–α–1f(m)(τ)dτ.
where m – 1 < α < m ∈ Z+. For the special case of 0 < α < 1, we have

CDα0,tf(t) = 1
Γ(1 – α)

∫ t

0(t – τ)–αf ′(τ)dτ.
For convenience, we use the notation CDαf(t) instead of CDα0,tf(t) to denote the Caputo fractional-order derivative operator.

Theorem 1 [27, 28] If X∗ is the equilibrium point of system (2), then system (2) is

(1) Asymptotically stable ⇐⇒ all the eigenvalues λi, i = 1, 2, . . . , n of the Jacobian matrix J(X∗) satisfy that |arg(λi)| > απ2 .
(2) Stable ⇐⇒ it is asymptotically stable or the eigenvalues λi, i = 1, 2, . . . , n of J(X∗) that satisfy |arg(λi)| = απ2 have the same geometric and

geometric multiplicity for λi is 1 .
(3) Unstable ⇐⇒ eigenvalues λi for some i = 1, 2, . . . , n of J(X∗) satisfy |arg(λi)| < απ2 .

3 Existence and uniqueness

Consider system (2) with the initial conditions S(0) = S0, E(0) = E0, T(0) = T0, M(0) = 0 if V0 = 0. System (2) can be written in thefollowing form:
{

CDαX(t) = B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + ϑ,
X(t0) = X0, (3)
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where

X(t) =


S(t)
T(t)
E(t)
M(t)

 , X(0) =


S(0)
T(0)
E(0)
M(0)

 , B1 =

γα1 0 0 00 rα 0 00 0 –µα 00 0 0 –γα2

 ,

B2 =


0 0 0 –kαs0 0 0 00 0 0 00 0 0 0

 , B3 =


0 0 0 00 –bα 0 00 0 –pα2 00 0 0 0

 , B4 =


0 0 0 00 –pα3 0 0
pα1
S+1 0 0 00 0 0 0

 ,

B5 =


0 0 0 00 –kαT 0 00 0 –pα2 00 0 0 0

 , ϑ =


00
σα

V(t)

 .

In view of [4, 25, 26] desired definitions for the existence and uniqueness are defined as follows:
Definition 3 Let C∗[0,τ] be the class of continuous column vector X(t) whose components S, T, E, M ∈ C∗[0,τ] are the class of continuous
functions on the interval [0,τ]. The norm of X ∈ C∗[0,τ] is given by

∥X∥ = sup
t

| e–NtS(t) | + sup
t

| e–NtT(t) | + sup
t

| e–NtE(t) | + sup
t

| e–NtM(t) |,
where N is a natural number and when t > δ ≥ m, we write C∗

δ[0,τ] and Cδ[0,τ].
Definition 4 X ∈ C∗[0,τ] is a solution of IVP (3) if

(1) (t, X(t)) ∈ D, t ∈ [0,τ] where D = [0,τ] × K, K = {(S, T, E, M) ∈ R4+ : |S| ≤ p, |T| ≤ r, |E| ≤ w, |M| ≤ q }; p, r, w, q ∈ R+ are
constants.

(2) X(t) satisfies (3).

Theorem 2 The solution X of IVP (3) is unique and X ∈ C∗[0,τ].

Proof From the properties of fractional calculus, Eq. (3) can be written as
I1–α d

dt X(t) = B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + ϑ.
Operating by Iα, we obtain

X(t) = X(0) + Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + ϑ). (4)
Now let F : C∗[0,τ] → C∗[0,τ] defined by

FX(t) = X(0) + Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + ϑ). (5)
Then

e–Nt(FX – FY) = e–NtIα(B1(X(t) – Y(t)) + S(t)B2(X(t) – Y(t)) + T(t)B3(X(t) – Y(t)) + E(t)B4(X(t) – Y(t)) + M(t)B5(X(t) – Y(t)))
≤ | 1

Γ(α)
∫ t

0(t – s)α–1e–N(t–s)(X(s) – Y(s)) e–Nsds| (B1 + pB2 + rB3 + wB4 + qB5)
≤

(B1 + pB2 + rB3 + wB4 + qB5)|γ(α, u)|
Nα

∥X – Y∥,
where γ(α, u) is the lower incomplete gamma function and u = t – s. If we choose N such that Nα ≥ |γ(α, u)| B1 + pB2 + rB3 + wB4 + qB5,then we obtain ∥FX – FY∥ ≤ ∥X – Y∥. Operator F in (5) has a fixed point. Thus, (4) has a unique solution X ∈ C∗[0,τ]. From (4) we have

X(t) = X(0) + tα
Γ(α + 1)

(
B1X(0) + S(0)B2X(0) + T(0)B3X(0) + E(0)B4X(0) + M(0)B5X(0) + ϑ

) + Iα+1(B1X
′ (t) + S

′ (t)B2X(t)
+ S(t)B2X

′ (t) + T
′ (t)B3X(t) + T(t)B3X

′ (t) + E
′ (t)B4X(t) + E(t)B4X

′ (t) + M
′ (t)B5X(t) + M(t)B5X

′ (t).
e–NtX

′ = e–Nt[ tα–1
Γ(α) (B1X(0) + S(0)B2X(0) + T(0)B3X(0) + E(0)B4X(0) + M(0)B5X(0) + ϑ) + Iα(B1X

′ (t) + S
′ (t)B2X(t)

+ S(t)B2X
′ (t) + T

′ (t)B3X(t) + T(t)B3X
′ (t) + E

′ (t)B4X(t) + E(t)B4X
′ (t) + M

′ (t)B5X(t) + M(t)B5X
′ (t)].
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from which we can deduce that X′
∈ C∗

σ[0,τ]. From (4) we get
dX
dt = d

dt Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + ϑ).
Operating by I1–α we get

I1–α dX
dt = I1–α d

dt Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + V(t)C + ϑ).
CDαX(t) = B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + ϑ),

and
X(0) = X0 + Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) + M(t)B5X(t) + ϑ).

Therefore, Eq. (4) is equivalent to IVP (3). ■

4 Equilibrium points and stability analysis

To calculate the equilibrium points of system (2) let [29]


CDαS(t) = 0,
CDαT(t) = 0,
CDαE(t) = 0,
CDαM(t) = 0.

Thus,


γα1 S – kαs MS = 0,
rα(1 – bαT)T – (pα3 E + kαT M)T = 0,
σα – µαE + pα1 ES

S + 1 – pα2 (T + M)E = 0,
– γα2 M + V(t) = 0.

Then the equilibrium points are:
Eq1 = (S1, T1, E1, M1) =(0, 0, σαγα2

pα2 V + γα2 µα
, V
γα2 ),

Eq2 = (S2, T2, E2, M2) =(0, pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 γα2 rαbα ,

pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 pα3 γα2 , V

γα2 ),

Eq3 = (S3, T3, E3, M3) =(0, pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 γα2 rαbα ,

pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 pα3 γα2 , V

γα2 ),
where a = ((kαT –rαbα)pα2 V–γα2 rα(pα2 +bαµα), and equilibrium points must verify Eq1, Eq2, Eq3 > 0. Hence, pα2 , pα3 ,µα ,γα2 ,σα , rα , bα , V, kαT ∈
D1, where D1 = {(pα2 , pα3 ,µα,γα2 ,σα, rα, bα, V, kαT ) ∈ R9+ : VkαT – rα(bα + γα2 ) + σαγα2 > 0} ∩ {(pα2 , pα3 ,µα,γα2 ,σα, rα, bα, V, kαT ) ∈ R9+ :(Vpα2 (kαT – rαbα) – rαγα2 (pα2 + bαµα))2 ≥ 4σαbαpα2 pα3 γ2α2 }.
Theorem 3 Let Eq1 ∈ D1 be the equilibrium point of system (2) and the following conditions are valid:
γα1 γα2 < kαs V , (pα2 V + γα2 µα)(γα2 rα + kαT V) < pα3 σαγ2α2 and pα2 V + γα2 µα > 0.
Then Eq1 is locally asymptotically stable.

Proof The Jacobian matrix of the model (2) at Eq1 is

J(Eq1) =


γα1 – kαs V
γα2 0 0 0

0 rα – pα3 σαγα2
pα2 V+γα2 µα + kαT

V
γα2 0 0

pα1 σαγα2
pα2 V+γα2 µα –pα2 σαγα2

pα2 V+γα2 µα –µα – pα2 V
γα2 –pα2 σαγα2

pα2 V+γα2 µα

0 0 0 –γα2

 .

The characteristic equation is |J(Eq1) –λI| = 0. Hence, (γα1 – kαs V
γα2 –λ)(rα – pα3 σαγα2

pα2 V+γα2 µα + kαT
V
γα2 –λ)(–γα2 –λ)(–µα – pα2 V

γα2 –λ) = 0.
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Eigenvalues of J(Eq1) are λ1 = γα1 – kαs V
γα2 , λ2 = rα – pα3 σαγα2

pα2 V+γα2 µα – kαT
V
γα2 , λ3 = –µα – pα2 V

γα2 , λ4 = –γα2 . From the conditions we
have λi < 0 for i = 1, 2, 3, 4. Therefore, |arg(λi)| > απ2 . By Theorem (1), Eq1 is locally asymptotically stable. ■

Theorem 4 Let Eq2 ∈ D1 be the equilibrium point of system (2) and (pα2 , pα3 ,µα ,γα2 ,σα , rα , bα , V, kαT ) ∈ D1 ∩ (Q∗ ∪ P∗) , where
Q∗ = {(pα2 , pα3 ,µα ,γα2 ,σα , rα , bα , V, kαT ) ∈ R9+ : d2, d1 ≥ 0 ,γα1 γα2 < kαs V and ((2bα + pα2 )(d + kαT pα2 V)rαγα2 – bαr3αγα2 (bαpα2 V – pα2 γα2 +
bαγα2 µα)+r2αγα2 (–p2α2 γα2 +2b2α(pα2 V+γα2 µα)–bα(d+pα2 ((kαT +pα2 )V+γα2 (2+µα))))–d1) < 0}. P∗ = {(pα2 , pα3 ,µα ,γα2 ,σα , rα , bα , V, kαT ) ∈
R9+ : d2 or d1 < 0 ,γα1 γα2 < kαs V and
Re( ((2bα + pα2 )(d + kαT pα2 V)rαγα2 – bαr3αγα2 (bαpα2 V – pα2 γα2 + bαγα2 µα) + r2αγ2(–p2α2 γα2 + 2b2α(pα2 V + γα2 µα) – bα(d + pα2 ((kαT + pα2 )V +
γα2 (2 + µα)))) – d1)) < 0},
where d = √–4σαbαpα2 pα3 rαγ2α2 + (kαT pα2 V – bαpα2 rαV – pα2 rαγα2 – bαrαγα2 µα)2 and d1 = (r2αγ2α2 ((–pα2 (d+kαT pα2 V–pα2 rαγα2 )+b2α(–2+
rα)rα(pα2 V + γα2 µα) + bα(d(–2 + rα) – 2kαT pα2 V + pα2 rα((kαT + pα2 )V + γα2 (2 – rα + µα))))2 – 8bαpα2(–k2α

T p2α2 (–2+rα)V2–2kαT pα2 rαV(–pα2 (–2+rα)γα2 +bα(pα2 V +γα2 µα))+rα(–p2α2 (–2+rα)rαγ2α2 +b2αr2α(pα2 V +γα2 µα)2+2bαpα2 γα2 (pα2 rαV –2σαpα3 γα2 + rαγα2 µα)) + d(–kαT pα2 (–2 + rα)V + rα(pα2 (–2 + rα)γα2 + bαrα(pα2 V + γα2 µα)))))).
Then Eq2 is locally asymptotically stable.

Proof The Jacobian matrix of the model (2) at Eq2 is

J(Eq2) =

γα1 – kαs V

γα2 0 0 0
0 j22 j23 j24

j31 j32 j33 j340 0 0 –γα2

 ,

where

j22 =rα –
(pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2

pα2 γα2 rα

)

–
(pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 – kαT
V
γα2
)

.

j23 = – pα3
pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 rαbα

j24 = – kαT
pα2 Vα(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 rαbα .

j31 =pα1
pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 pα3 γα2 .

j32 =j34 = – pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα3 γα2 .

j33 = – µα – p2
(pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 rαbα + V
γα2
)

. (6)

The characteristic equation is |J(Eq2) – λI| = 0. Hence,

(
γα1 –kαs

V
γα2 – λ

)( – γα2 – λ
)((

rα – pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2
pα2 γα2 rα

– (pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 γα2

) – kαT
V
γα2 – λ

)
(( – µα – pα2 ( pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 rαbα + V
γα2 – λ

))

– pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2
2γα2 rαbα

(pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 γα2

)) = 0.
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Eigenvalues of J(Eq2) are λ1 = γα1 – kαs V
γα2 , λ2 = –γα2 ,

λ3 = 1(4bαpα2 r2αγ2α2 ) ((2bα + pα2 )rα(d + kαT pα2 V)γα2 – bαr3αγα2 (bαpα2 V – pα2 γα2 + bαγα2 µα)+
r2αγα2 (–p2α2 γα2 + 2b2α(pα2 V + γα2 µα) – bα(d + pα2 ((kαT + pα2 )V + γα2 (2 + µα))))
– √(r2αγ2α2 ((–pα2 (d + kαT pα2 V – pα2 rαγα2 ) + b2α(–2 + rα)rα(pα2 V + γα2 µα) + bα(d(–2 + rα)
– 2kαT pα2 V + pα2 rα((kαT + pα2 )V + γα2 (2 – rα + µα))))2 – 8bαpα2 (–k2α

T p2α2 (–2 + rα)V2
– 2kαT pα2 rαV(–pα2 (–2 + rα)γα2 + bα(pα2 V + γα2 µα))
+ rα(–p2α2 (–2 + rα)rαγ2α2 + b2αr2α(pα2 V + γα2 µα)2 + 2bαpα2 γα2 (pα2 rαV – 2σαpα3 γα2 + rαγα2 µα))
+ d(–kαT pα2 (–2 + rα)V + rα(pα2 (–2 + rα)γα2 + bαrα(pα2 V + γα2 µα))))))).

λ4 = 1(4bαpα2 r2αγ2α2 ) ((2bα + pα2 )rα(d + kαT pα2 V)γα2 – bαr3αγα2 (bαpα2 V – pα2 γα2 + bαγα2 µα)
+ r2αγα2 (–p2α2 γα2 + 2b2α(pα2 V + γα2 µα) – bα(d + pα2 ((kαT + pα2 )V + γα2 (2 + µα))))
+ √(r2αγ2α2 ((–pα2 (d + kαT pα2 V – pα2 rαγα2 ) + b2α(–2 + rα)rα(pα2 V + γα2 µα)
+ bα(d(–2 + rα) – 2kαT pα2 V + pα2 rα((kαT + pα2 )V + γα2 (2 – rα + µα))))2
– 8bαpα2 (–k2α

T p2α2 (–2 + rα)V2 – 2kαT pα2 rαVα(–pα2 (–2 + rα)γα2 + bα(pα2 V + γα2 µα)) + rα

(–p2α2 (–2 + rα)rαγ2α2 + b2αr2α(pα2 V + γα2 µα)2 + 2bαpα2 γα2 (pα2 rαV – 2σαpα3 γα2 + rαγα2 µα))
+ d(–kαT pα2 (–2 + rα)V + rα(pα2 (–2 + rα)γα2 + bαrα(pα2 V + γα2 µα))))))).

From the conditions we have λi < 0 for i = 1, 2, 3, 4. Therefore, |arg(λi)| > απ2 by Theorem (1) and Eq2 is locally asymptotically stable. ■

Theorem 5 Let Eq3 ∈ D1 be the equilibrium point of system (2) and (pα2 , pα3 ,µα ,γα2 ,σα , rα , bα , V, kαT ) ∈ D1 ∩ (Q∗ ∪ P∗) , where Q∗ =
{(pα2 , pα3 ,µα ,γα2 ,σα , rα , bα , V, kαT ) ∈ R9+ : d2, d1 ≥ 0 ,γα1 γα2 < kαs V and ((2bα + pα2 )(–d + kαT pα2 V)rαγα2 – bαr3αγα2 (bαpα2 V – pα2 γα2 +
bαγα2 µα) + r2αγα2 (–p2α2 γα2 + 2b2α(pα2 V + γα2 µα) – bα(–d + pα2 ((kαT + pα2 )V + γα2 (2 + µα)))) –√d1) < 0}.
P∗ = {(pα2 , pα3 ,µα ,γα2 ,σα , rα , bα , V, kαT ) ∈ R9+ : d2 or d1 < 0 ,γα1 γα2 < kαs V and Re( ((2bα + pα2 )(–d + kαT pα2 V)rαγα2 – bαr3αγα2 (bαpα2 V –
pα2 γα2 + bαγα2 µα) + r2αγα2 (–p2α2 γα2 + 2b2α(pα2 V + γα2 µα) – bα(–d + pα2 ((kαT + pα2 )V + γα2 (2 + µα)))) +√d1)) < 0},
where d = √–4σαbαpα2 pα3 rαγ2α2 + (kαT pα2 V – bαpα2 rαV – pα2 rαγα2 – bαrαγα2 µα)2 and d1 = (r2αγ2α2 ((–pα2 (d + kαT pα2 V – pα2 rαγα2 ) +
b2α(–2 + rα)rα(pα2 V + γα2 µα) + bα(d(–2 + rα) – 2kαT pα2 V + pα2 rα((kαT + pα2 )V + γα2 (2 – rα + µα))))2 – 8bαpα2(–k2α

T p2α2 (–2+rα)V2 –2kαT pα2 rαV(–pα2 (–2+rα)γα2 +bα(pα2 V +γα2 µα))+rα(–p2α2 (–2+rα)rαγ2α2 +b2αr2α(pα2 V +γα2 µα)2 +2bαpα2 γα2 (pα2 rV –2σαpα3 γα2 + rαγα2 µα)) + d(–kαT pα2 (–2 + rα)V + rα(pα2 (–2 + rα)γα2 + bαrα(pα2 V + γα2 µα)))))).
Then Eq3 is locally asymptotically stable .

Proof The Jacobian matrix of the model (2) at Eq3 is

J(Eq3) =


γα1 – kαs V
γα2 0 0 0

0 j∗22 j∗23 j24
j∗31 j∗32 j∗33 j∗340 0 0 –γα2

 ,

where

j∗22 =rα –
(pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2

pα2 γα2 rα

)

–
(pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 – kαT
V
γα2
)

.

j∗23 = – pα3
pα2 V(rbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 rαbα .

j∗24 = – kαT
pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 rαbα .

j∗31 =pα1
pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) –√–4σαbαpα2 pα3 rαγ22 + a2

2pα2 pα3 γα2 .

j∗32 =j∗34 = – pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα3 γα2 .

j∗33 = – µα – pα2
(pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2

2pα2 γα2 rαbα + V
γα2
)

.
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The characteristic equation is |J(Eq3) – λI| = 0. Hence,

(γα1 –kαs
V
γα2 – λ)(–γα2 – λ)((rα – pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2

pα2 γα2 rα

– ( pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 γα2 ) – kαT

V
γα2 – λ)

((–µα – ( pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2
2γα2 rαbα + V

γα2 – λ))

– pα2 V(rαbα – kαT ) + rαγα2 (pα2 – bαµα) +√–4σαbαpα2 pα3 rαγ2α2 + a2
2γα2 rαbα

( pα2 V(rαbα – kαT ) + rαγα2 (pα2 + bαµα) –√–4σαbαpα2 pα3 rαγ2α2 + a2
2pα2 γα2 )) = 0.

Eigenvalues of J(Eq3) are λ1 = γα1 – kαs V
γα2 , λ2 = –γα2 ,

λ3 = 1(4bαpα2 r2αγ2α2 ) ((2bα + pα2 )rα(–d + kαT pα2 V)γα2 – bαr3αγα2 (bαpα2 V – pα2 γα2 + bαγα2 µα)
+ r2αγα2 (–p2α2 γα2 + 2b2α(pα2 V + γα2 µα) – bα(d + pα2 ((kαT + pα2 )V + γα2 (2 + µα))))
– (r2αγ2α2 ((–pα2 (–d + kαT pα2 V – pα2 rαγα2 ) + b2α(–2 + rα)rα(pα2 V + γα2 µα)
+ bα(–d(–2 + rα) – 2kαT pα2 V + pα2 rα((kαT + pα2 )V + γα2 (2 – rα + µα))))2
– 8bαpα2 (–k2α

T p2α2 (–2 + rα)V2 – 2kαT pα2 rαV(–pα2 (–2 + rα)γα2 + bα(pα2 V + γα2 µα)) + rα(–p2α2 (–2 + rα)rαγ2α2 + b2αr2α(pα2 V

+ γα2 µα)2 + 2bαpα2 γα2 (pα2 rαV – 2σαpα3 γα2 + rαγα2 µα)) – d(–kαT pα2 (–2 + rα)V + rα(pα2 (–2 + rα)γα2 + bαrα(pα2 V + γα2 µα))))))1/2),
λ4 = 1(4bαpα2 r2αγ2α2 ) ((2bα + pα2 )rα(–d + kαT pα2 V)γα2 – bαr3αγα2 (bαpα2 V – pα2 γα2 + bαγα2 µα)

+ r2αγα2 (–p2α2 γα2 + 2b2α(pα2 V + γα2 µα) – bα(–d + pα2 ((kαT + pα2 )V + γα2 (2 + µα))))
+ (r2αγ2α2 ((–pα2 (d + kαT pα2 V – pα2 rαγα2 ) + b2α(–2 + rα)rα(pα2 V + γα2 µα) + bα(dα(–2 + rα) – 2kαT pα2 V + pα2 rα((kαT + pα2 )V+
γα2 (2 – rα + µα))))2 – 8bαpα2 (–k2α

T p2α2 (–2 + rα)V2 – 2kαT pα2 rαVα(–pα2 (–2 + rα)γα2 + bα(pα2 V + γα2 µα))
+ rα(–p2α2 (–2 + rα)rαγ2α2 + b2αr2α(pα2 V + γα2 µα)2 + 2bαpα2 γα2 (pα2 rαV – 2σαpα3 γα2
+ rαγα2 µα)) – d(–kαT pα2 (–2 + rα)V + rα(pα2 (–2 + rα)γα2 + bαrα(pα2 V + γα2 µα))))))1/2).

From the conditions we have λi < 0 for i = 1, 2, 3, 4. Therefore, |arg(λi)| > απ2 , and by Theorem (1), Eq3 is locally asymptotically stable. ■
5 A numerical technique for the proposed fractional-order model

In this section, numerical solution of system (3) is carried out using the Predictor-Corrector method of Adams-Bashforth-Moulton [32, 33]for different α ∈ (0, 1]. We implement the Caputo fractional operator to provide the numerical simulation of a nonlinear fractional ordersystem. The following Cauchy-type ODE is taken into account with respect to the Caputo operator of order α:
CDα

t Dα
t Φ (t) = f (t,Φ (t)) , Φ(k) (0) = Φk0, 0 < α ≤ 1, 0 < t ≤ τ, (7)

where k = 0, 1, ..., n – 1, and n = ⌈α⌉ . Equation (7) is equivalent to the following Volterra equation:
Φ (t) = n–1∑

k=0
Φ

(k)0 tk

k! + 1
Γ (α)

∫ t

0 (t – s)α–1 f (s,Φ (s)) ds. (8)

By considering this proposed predictor-corrector scheme associated with the Adam-Bashforth-Moulton algorithm [4, 6] to have thenumerical solutions of the proposed model, we can take h = τ/N, tz = zh, and z = 0, 1, ..., N ∈ Z+, by letting Φz ≈ Φ (tz) , it can bediscretized as follows, i.e., the corresponding corrector formula [6]

Sq+1 = q–1∑
z=0

S(z)0
tz

q+1
z! + hα

Γ (α + 2)
q∑

z=0
(

pz,q+1) (γα1 Sz – kαs MzSz
) + hα

Γ (α + 2)
q∑

z=0
(

pq+1,q+1) (γα1 SPF
q+1 – kαs MPF

q+1SPF
q+1
) ,

Tq+1 = q–1∑
z=0

T(z)0
tz

q+1
z! + hα

Γ (α + 2)
q∑

z=0
(

pz,q+1) (rα(1 – bαTz)Tz – (pα3 Ez + kαt Mz)Tz
)

+ hα

Γ (α + 2)
q∑

z=0
(

pq+1,q+1) (rα(1 – bαTPF
q+1)TPF

q+1 – (pα3 EPF
q+1 + kαt MPF

q+1)TPF
q+1
) ,
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Eq+1 = q–1∑
z=0

E(z)0
tz

q+1
z! + hα

Γ (α + 2)
q∑

z=0
(

pz,q+1)(aα – µαEz + pα1 EzSz
Sz + 1 – pα2 (Tz + Mz)Ez

)

+ hα

Γ (α + 2)
q∑

z=0
(

pq+1,q+1)
aα – µαEPF

q+1 + pα1 EPF
q+1SPF

q+1
SPF

q+1 + 1 – pα2 (TPF
q+1 + MPF

q+1)EPF
q+1
 ,

Mq+1 = q–1∑
z=0

M(z)0
tz

q+1
z! + hα

Γ (α + 2)
q∑

z=0
(

pz,q+1) (–γα2 Mz + V(t)) + hα

Γ (α + 2)
q∑

z=0
(

pq+1,q+1) (–γα2 MPF
q+1 + V(t)) ,

where

pz,q+1 =


qα+1 – (q – α) (q + 1)α , if z = 0,(q – z + 2)α+1 + (q – z)α+1 – 2 (q – z + 1)α+1 , if 1 ≤ z ≤ q,1, if z = q + 1. (9)

Subsequently, the following step is to construct the coincident predictor formula ΦPF
q+1. One can compute the proposed predictor formula as

SPF
q+1 = q–1∑

z=0
S(z)0

tz
q+1
z! + hα

Γ (α + 1)
q∑

z=0
(

jz,αq+1
) (

γα1 Sz – kαs MzSz
) ,

TPF
q+1 = q–1∑

z=0
T(z)0

tz
q+1
z! + hα

Γ (α + 1)
q∑

z=0
(

jz,q+1) (rα(1 – bαTz)Tz – (pα3 Ez + kαt Mz)Tz
) ,

EPF
q+1 = q–1∑

z=0
E(z)0

tz
q+1
z! + hα

Γ (α + 1)
q∑

z=0
(

jz,q+1)(aα – µαEz + pα1 EzSz
Sz + 1 – pα2 (Tz + Mz)Ez

) ,

MPF
q+1 = q–1∑

z=0
M(z)0

tz
q+1
z! + hα

Γ (α + 1)
q∑

z=0
(

jz,q+1) (–γα2 Mz + V(t)) ,
where

jz,q+1 = (q + 1 – z)α – (q – z)α .
6 Memory trace and hereditary traits

To examine the behaviour of the proposed model (2), we use the Caputo operator defined in (2). For α ∈ (0, 1] derivative, let the fractionalderivative of variable Φ (t) be
CDα

t Φ (t) = ϕ (Φ (t) , t) . (10)
Utilizing the one of most common numerical methods, the L1 scheme [22, 23, 24, 21], the numerical approximation of the FOD of Φ (t) is

CDα
t Φ (t) ≈

(
dt
)–α

Γ (2 – α)
T–1∑
ρ=0

[
Φ
(

tρ+1) – Φ (tρ)] [(T – ρ)1–α – (T – 1 – ρ)1–α
] . (11)

One of the most powerful numerical methods for discretizing the Caputo-FOD in time is L1 scheme. The purpose of implementing the L1scheme in this research study is its memory term and convergence rate. Memory term is also explicitly present in other numerical methods,but this memory integration term is more clearly defined in the L1 scheme. Considering (10) and (11) together, the numerical solution ofEq. (10) is as follows:

Φ (tT) ≈ CDα
t Γ (2 – α) H (Φ (t) , t) + Φ (tT–1) –

T–2∑
ρ=0

[
Φ
(

tρ+1) – Φ (tρ)] [(T – ρ)1–α – (T – 1 – ρ)1–α
] .

Therefore, the solution of the FOD (fractional-order derivative) can be defined as the difference between the Markov term and the memorytrace. The Markov term weighted by the Gamma function is as follows:
Markov term = CDα

t Γ (2 – α) H (Φ (t) , t) + Φ (tT–1) . (12)
The memory trace (Φ-memory trace since it is related to variable Φ (t)) is

Memory trace = T–2∑
ρ=0

[
Φ
(

tρ+1) – Φ (tρ)] [(T – ρ)1–α – (T – 1 – ρ)1–α
] . (13)

The memory trace is capable of integrating all past activities and takes into account the long-term history of the system. For α = 1, thememory trace is 0 for any time t. Memory trace dynamics is highly dependent on time. When the fractional-order α is decreased from the
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Figure 1. Change of the cancer stem cells over time for the varying fractional-order derivative

unit, the memory trace nonlinearly increases from 0. Hence, the fractional-order system dynamics quite different from the integer orderdynamics.
7 Numerical simulations and data analysis

In this section, for the system (2), the numerical solutions are achieved using the Adams-Bashforth-Moulton Predictor-Correctormethod [34] for the parameters in Table 1. With the help of numerical simulations, we have investigated the effects of changes inparameters on the system (2) and how different values of the fractional derivative α affect the behavior of the system. The parametervalues that have been used for numerical simulations are given in Table 1. In Fig. 1, the variation of cancer stem cells with time for differentfractional derivatives have been observed. As the α decreases from 1, that is, in the case of the Caputo fractional derivative, it takes a longertime for the stem cells to reach the equilibrium point. In Fig. 2, the change of tumor cells with time for different fractional derivativeshave been observed. It has been seen that tumor cells disappear in a short time for the integer order case. In addition, since the fractionalderivative decreases from 1 to zero (does not equal to zero) , the amount of decrease in tumor cells per unit time also decreases. In Fig. 3,it has been seen that the concentration of effector cells decreases in a short time, then their concentration suddenly increases and thenreaches the equilibrium point. In addition, as α decreases from 1, it takes a longer time for effector cells to reach the equilibrium point. InFig. 4, the variation of chemotherapy concentration drug with time for different fractional derivatives has been illustrated. It is understoodfrom Fig. 4 that, the fractional order predicts more chemotherapy concentration drugs. Moreover, in Figs. 5,6,7, the changes of tumor cellsand cancer stem cells with time have been investigated for different values of parameters. It is understood from Fig. 5 that as the γ2 (decayrate of chemotherapy drug) increases, there is a significant increase in the number of tumor stem cells. In addition, we vary the parameter
ks and keep other parameters fixed in order to explore the effects of this parameter in Fig. 6. From Fig. 6, it has been shown that as ksdecreases, the number of stem cells also increases. In addition, it is clear from Fig. 7 that as kT decreases, the number of tumor cells alsoincreases. We also explore the effect of the memory trace in Figs. 8,9,10, 11. One can conclude that when α = 1, the memory effect in thesystem is zero and as the α increases to 1 the memory effect of the system also emerges.
8 Results and discussion

In this paper, we have considered the Caputo fractional order cancer-immune system model that is given as a system of fractional differentialequations (2) which have Caputo fractional derivative. We explore the local asymptotic stability of the tumor-free and tumor-infectionfixed points of the system and we show that the equilibrium points of the model (2) is asymptotically stable under some certain conditions.Then, we have examined the existence and uniqueness of the solution. Moreover, we have achieved the numerical simulations to verifythe theoretical results. In order to explore the effects of variation of the fractional order derivative and to examine the behavior of thesystem, we have obtained the figures for different α values. It is seen that as α decreases from 1, the cells reach the equilibrium pointsfaster. In addition, we have investigated the effect of the memory trace, which is very important for biological models. When examiningthe effects of the memory trace, it is seen that there is no memory effect for α = 1. However, as α decreases from 1, the memory effect ofthe system emerges. From the figures, we have concluded that the Caputo fractional derivative gives more realistic results than integerorder derivatives. Although, there have been many studies that discuss the tumor-immune interaction in the literature, our model differsfrom them in terms of exploring the interaction between stem cells, tumor cells, effector cells and chemotherapy concentration drugs. Inaddition, also, it differs from other models in terms of the mathematical studies presented above.
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Figure 2. Change of the Tumor Cells over time for the varying fractional-order derivative
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Figure 3. Change of the effector cells over time for the varying fractional-order derivative
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Figure 4. Change of the Chemotherapy drug concentration over time for the varying fractional-order derivative
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Figure 5. Change of the stem cells over time for the different γ2 values, α = 0.9
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Figure 6. Change of the stem cells over time for the varying ks values, α = 0.9

0 5 10 15 20 25 30 35 40 45 50

Time (Days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
u
m

o
r 

C
e
lls

k
t
 = 0.9

k
t
 = 0.4

k
t
 = 0.1

15 20 25

0.01

0.02

0.03

0.04

Figure 7. Change of the tumor cells over time for the varying kt values, α = 0.9
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Figure 8. Change of the stem cells over time for the varying fractional-order derivative
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Figure 9. Change of the effector cells over time for the varying fractional-order derivative
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Figure 10. Change of the tumor cells over time for the varying fractional-order derivative
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Figure 11. Change of the chemotherapy drug concentration over time for the varying fractional-order derivative
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Chemotherapy concentration drug plays an important role in the prevention of tumor growth. According to the results, if the chemotherapyconcentration drugs are high, then the tumor cells undergo a considerable loss. When the simulation results have been examined, it hasbeen observed that as α changes, the stem cells, the number of tumor cells, number of effector cells and chemotherapy concentration drugalso change significantly. We hope that this study will make very high contributions to academics both dealing with mathematics andworking in the field of medicine.
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