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Abstract

For the sake of human health, it is crucial to investigate infectious diseases including HIV/AIDS, hepatitis, and others.
Worldwide, the recently discovered new coronavirus (COVID-19) poses a serious threat. The experimental vaccination
and different COVID-19 strains found around the world make the virus’ spread unavoidable. In the current research,
fractional order is used to study the dynamics of a nonlinear modified COVID-19 SEIR model in the framework of the
Caputo-Fabrizio fractional operator with order b. Fixed point theory has been used to investigate the qualitative analysis
of the solution respectively. The well-known Laplace transform method is used to determine the approximate solution
of the proposed model. Using the COVID-19 data that is currently available, numerical simulations are run to validate
the necessary scheme and examine the dynamic behavior of the various compartments of the model. In order to stop
the pandemic from spreading, our findings highlight the significance of taking preventative steps and changing one’s
lifestyle.
Key words: COVID-19 model; theoretical analysis; Laplace transform; Caputo-Fabrizio fractional operator; numerical
simulations
AMS 2020 Classification: 37N25; 34A25; 44A10

1 Introduction

Since December 2019, the whole globe has been facing the dangerous and contagious new infection COVID-19. The infection has
caused a lot of health, mental, economic, and unemployment problems throughout the globe. According to recent reports, over
fifty million individuals are infected, and nearly four and a half million people have died from the said infection [1]. Pakistan
has also been severely affected by COVID-19, with approximately 23,000 citizens dying and 1.5 million contracting the infection.
Due to these circumstances, each and every country develops its own policy for controlling the pandemic. For this reason, they
ban overcrowding in air transportation services, bus services, and various educational institutions. Different immigration services
among the countries are also banned by the policymakers of each country. The big cause of this infection is the meeting of
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infectious people with an uninfected population. Therefore keeping masks is also the cry of the day for reducing the transmission
of COVID-19. Beyond this, some other precautionary measures are also taken by different countries [2].
The said pandemic is a cause of fear for humanity throughout the world, as most people are aware of past pandemics from
which a considerable number of the population faced death. Technology advances over time, allowing for the cure and treatment
of various epidemics. To overcome an epidemic, vaccines are prepared in the laboratory. Each related field of science plays
a role in the establishment of control strategies, and among them is mathematical modeling. Mathematical modeling gives
a prediction of various diseases by using past and future data. For the first time, a real-world problem had been studied via
mathematical expressions in the eighteenth century. Following that, mathematical modelling has made significant contributions
to the investigation of a wide range of real-world problems [3, 4, 5, 6].
Recently, the pandemic of COVID-19 has attracted the focus of many researchers in various fields as can be seen in [7, 8, 9,
10]. Mathematicians also played a role in the investigation of the said pandemic. The said disease has been transformed into
mathematical expressions, and future predictions have been reported. Useful information about the past and present of the
disease has been reported, which is advantageous in establishing control strategies for its eradication from society. In this regard,
valuable work can be found in [11, 12, 13, 14, 15, 16]. The formation of a mathematical formula consists of conditions regarding
the parameters involved in the problem under consideration. Various mathematical models exist in the literature that are helpful
in understanding the spread of COVID-19 and suggest the adoption of policies necessary to control (optimize) the spread of the
infection in an effective way. One of such remarkable models has been reported by [17]. The authors classified the total population
into six categories. These includes the susceptible class S̃, the latently infected compartment Ẽ, the infected class Ĩ, the class of
recovered population R̃, the demised class D̃ and M̃ is the COVID-19 filthy materials or surfaces in the atmosphere. The model
reported in [17] has been expressed in the form of the following system of autonomous differential equations:

dS̃
dt = Π – (τ + α1 +βq)S̃,
dẼ
dt = βqS̃ – (ϑ + (1 – κ)τ + α1)Ẽ,
dĨ
dt = τS̃ + (1 – κ)τẼ – (ρ + α1 + υ)Ĩ,
dR̃
dt = ϑẼ + υĨ – α1R̃,
dD̃
dt = ρĨ – α2D̃,
dM̃
dt = σẼ + ζĨ –ϕM̃,

(1)

In model (1), the parameter description has been given in Table 1.

Parameters values
Π The rate of recruitment of susceptible class
α1 Natural death rate except for dead population
α2 Burning the carcass of dead population
ρ The demise rate due to virus
ϑ The rate of recovery from the infection
κ The rate of average effectiveness of prevailing self-precautionary measures
ϕ The rate of decay of M̃
ζ The transfer rate from Ĩ to environment
τ The rate of force of infection
β The dissemination rate of susceptible class
q The rate of change of behavior function
υ The rate of recovered persons fro exposed class
σ The shedding rate from Ẽ to environment

Table 1. Description of the given parameters

Fractional calculus (FC), which has a wide range of applications in the modelling of physical processes, has grown in popularity
among scholars over the past few decades. The ideas of classical calculus are made more universal by FC. Riemann-Liouville and
Caputo conducted the initial investigation into the generalization of the ordinary integral and differential operators into fractional
derivatives (FD) [18, 19]. After that, the fractional operator has been used by several researchers in a variety of sectors of science,
engineering, and real-world issues [20, 21, 22]. In order to explore real-world issues including viscoelasticity systems, signal
processing, diffusion processes, and control processing, fractional order differential equations provided a suitable framework,
interested readers are directed to [23, 24, 25, 26]. Recently, in 2015 Caputo and Fabrizio introduced a new concept of fractional
order derivative which has a non-singular kernel [27]. Several researchers have published many articles on this new concept of
fractional derivatives; for instance, see [28, 29, 30]. The subject has been handled from a variety of angles, including quantitative
analysis that considers existence, uniqueness, and regularity, as well as a numerical, analytical method, and the Laplace transform
method to evaluate and interpret the data [31, 32, 33].
FC operators have more widespread advantages than the integer order operator since their nonlocal kernels are defined. The
memory and history of any physical process are preserved by the fractional operators (FOs). The convolution of the kernels is a
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topic of interest to many FOs. Numerous research publications have demonstrated the advantages of FOs over traditional operators.
We go over some uses of FOs for the mathematical modelling of actual physical issues. According to the authors in [34], research
was done on the COVID-19 pandemic disease’s fractional-order mathematical model, which was based on actual data. Authors in
[35], based on actual clinical data, examined the human liver in fractional order. The authors in [36], examined three different
fractional operators on the blood ethanol model. For modelling bacterial infections, specifically, researchers also employ FOs.
The authors in [37] assessed the Salmonella bacterial infection using fractional operators. The authors in [38] using nonsingular
fractional operators, the risky bacterial infection (Dengue fever) was studied. A significant amount of work has been done by
researchers in the applications of FC and applied sciences [39, 40, 41, 42].
The motivation and novelty of our work are inspired by the above literature, we study a system of COVID-19 using Caputo-Fabrizio
fractional derivative with the exponential kernel. We develop the theoretical results of the considered system. To observe the
dissimilarity among the results of the fractional-order and classical models, we compare the concerning results. The obtained
results reveal that the analysis obtained from the innovative fractional derivative is more conclusive compared with the analysis
of classical derivatives.
The structure of this manuscript is as follows. In Section 2 we recall basic results and notations from FC. In Section 3, we develop
the qualitative results for the system under investigation. In section 4, using the well-known Laplace transform together with
the integral of Laplace, we find the numerical solution of the model under study. Taking into account the data available in the
literature, we carry out numerical simulations in Section 5 and represent simulations graphically. At the end, we conclude our
findings in Section 6.

2 Preliminaries

Here, we present some basic definitions from the literature.

Definition 1 [27] Let a function be g ∈ H1[0, T], where T > 0, and b ∈ (0, 1), then the fractional Caputo-Fabrizio CF derivative is given by

CFDb
t [g(ß)] = N (b)

1 – b

∫ t

0 g′(ß) exp
[

– b t – ρ
1 – b

]
dß,

whereN (0) = N (1) = 1 is known as normalization function. Also for g ∈ H1[0, T], the the CF can be described by

CFDb
t [g(ß)] = N (b)

1 – b

∫ t

0
(

g(ß) – g(ρ)
)

exp
[

– b t – ρ
1 – b

]
dρ,

Definition 2 Let g be a function, then the fractional integral of CF with order b ∈ (0, 1) is given as

CFIb
t [g(ß)] = 1 – b

N (b) + b
N (b)

∫ t

0 g(ß)dß, t ≥ 0.

Definition 3 [43] The Laplace transform for the CF derivative can be defined as

[CFDb
t g(ß)] = σ[g(ß)] – g(0)

σ + b(1 – σ) , σ ≥ 0.

3 Theoretical results

In this part, we will convert the considered model (1) into fractional form. By using the fractional operator in the framework of
CF by including order b such that 0 < b ≤ 1 is given as:



CFDb
t S̃(t) = Π + α1 – (τ +βq)S̃,

CFDb
t Ẽ(t) = βqS̃ – (α1 + ϑ + (1 – κ)τ)Ẽ,

CFDb
t Ĩ(t) = τS̃ + τ(1 – κ)Ẽ – (υ + α1 + ρ)Ĩ,

CFDb
t R̃(t) = ϑẼ – α1R̃ + υĨ,

CFDb
t D̃(t) = ρĨ – α2D̃,

CFDb
t M̃(t) = σẼ + ζĨ –ϕM̃,

(2)

with initial conditions
S̃0 = S̃(0), Ẽ0 = Ẽ(0), Ĩ0 = Ĩ(0), R̃0 = R̃(0), D̃0 = D̃(0), M̃0 = M̃(0).

In this part of the manuscript, we first determine whether the solution to the problem under investigation really exists or not.
We exploit the approach of fixed point theory to determine the existence along with the uniqueness of the model. To develop the
existence theory we will apply Picard’s operator technique. In order to make mathematical analysis more efficient, we assume
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that α1 = α2 = α. To do this, we re-write the suggested model as
CFDb

t S̃(t) = V1(t, S̃) = Π – (τ + α + βq)S̃,
CFDb

t Ẽ(t) = V2(t, Ẽ) = βqS̃ – (ϑ + (1 – κ)τ + α)Ẽ,
CFDb

t Ĩ(t) = V3(t, Ĩ) = τS̃ + τ(1 – κ)Ẽ – (α + υ + ρ)Ĩ,
CFDb

t R̃(t) = V4(t, R̃) = ϑẼ – αR̃ + υĨ,
CFDb

t D̃(t) = V5(t, D̃) = ρĨ – αD̃,
CFDb

t M̃(t) = V6(t, M̃) = σẼ + ζĨ –ϕM̃.

(3)

In the following we set
Fi = sup

C[d,bi]
‖V1(t, S̃)‖, for 1 ≤ j ≤ 6, (4)

where
C[w, hi] = [t – w, t + w]× [u – ci, u + ci] = W ×Wi, for j = 1, 2, ..., 6. (5)

Further, to demonstrate the existence as well as uniqueness of the concerned solution we define the norm on C[w, hi] where
1 ≤ j ≤ 6 as follows

‖f‖∞ = sup
t∈[t–w,t+h]

|Φ(t)|. (6)

The Picard operator is described by the expression
A : C(W , W1, W2, W3, W4, W5, W6) → C(W , W1, W2, W3, W4, W5, W6). (7)

Applying CFIb to all Eqns. of the considered system (2) and using (3), we obtain


S̃(t) = S̃(0) +CF Ib[V1(t, S̃)],
Ẽ(t) = Ẽ(0) +CF Ib[V2(t, Ẽ)],
Ĩ(t) = Ĩ(0) +CF Ib[V3(t, Ĩ)],
R̃(t) = R̃(0) +CF Ib[V4(t, R̃)],
D̃(t) = D̃(0) +CF Ib[V5(t, D̃)],
M̃(t) = M̃(0) +CF Ib[V6(t, M̃)].

(8)

Simplifying the RHS of the above equation we have

Ω(t) =Ω0(t) + [Υ(t,Ω(t)) –Υ0(t)] 1 – b
N (b) + b

N (b)
∫ t

0Υ(x,Ω(x))dx, (9)

where 
Ω(t) = (S̃, Ẽ, Ĩ, R̃, D̃, M̃, )T,
Ω0(t) = (S̃0, Ẽ0, Ĩ0, R̃0, D̃0M̃0)T,
Υ(t,Ω(t)) = (Vi(t, S̃, Ẽ, Ĩ, R̃, D̃, M̃)T, 1 ≤ i ≤ 6.

(10)

Using Eq. (9) and Eq. (10), the operator defined in (7) can be expressed in the form

AΩ(t) =Ω0(t) + [Υ(t,Ω(t)) –Υ0(t)] 1 – b
N (b) + b

N (b)
∫ t

0Υ(ß,Ω(ß))dß. (11)

In the next step, we will assume that the considered system satisfies the following
‖Ω‖ ≤ max{w1, w2, w3, w4, w5, w6}. (12)
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In this scenario, one may write

‖AΩ –Ω0(t)‖ = sup
t∈D

∣∣∣∣Υ(t,Ω(t)) 1 – b
N (b) + b

N (b)
∫ t

0Υ(ß,Ω(ß))dß
∣∣∣∣,

≤
1 – b
N (b) sup

t∈D
|Υ(t,Ω(t))| + b

N (b) sup
t∈D

∫ t

0 |Υ(ß,Ω(ß))|dß,
≤

1 + t0
N (b)K, K = max{Kj} for i = 1, 2, ..., 6

< Kw ≤ max{w1, w2, w3, w4, w5, w6} = w, t0 = sup{|t| : t ∈ W}. (13)
In the above Eq. (13), let us define w = 1+t0

N (b) , we obtain

w < w
K

.
Next, the given equality can be evaluated as

‖AΩ1 – AΩ2‖ = sup
t∈W

|Ω1 –Ω2|, (14)

we make the use of (9) and write
‖AΩ1 – AΩ2‖ = sup

t∈W

∣∣∣∣ 1 – b
N (b) (Υ(t,Ω1(t))) –Υ(t,Ω2(t))

+ b
N (b)

∫ t

0(Υ(ß,Ω1(ß))) –Υ(ß,Ω2(ß))dß
∣∣∣∣

≤
1 – b
N (b) k sup

t∈W
|Ω1(t) –Ω2(t)| + bk

N (b) sup
t∈W

∫ t

0 |Ω1(ß) –Ω2(ß)|dß, where k < 1

≤
[ 1 + t0
N (b)

]
k‖Ω1 –Ω2‖

≤ wk‖Ω1 –Ω2‖. (15)
Since Υ is a contraction, it follows that wk < 1. This reflects that the operator A is a contraction as well. Consequently one may
conclude the uniqueness of the solution of the system under study.

4 Analytical algorithm for the proposed model

In the following, we focus our attention on finding the general series solution of the model. With the help of Laplace transform,
the given system may be transformed into the form

[S̃(t)] = S̃(0)
σ

+ σ + b(1 – σ)
σ

[Π + α – (τ + βq)S̃],
[Ẽ(t)] = Ẽ(0)

σ
+ σ + b(1 – σ)

σ
[βqS̃ – (ϑ + (1 – κ)τ + α)Ẽ],

[Ĩ(t)] = Ĩ(0)
σ

+ σ + b(1 – σ)
σ

[τS̃ + τ(1 – κ)Ẽ – (α + υ + ρ)Ĩ],
[R̃(t)] = R̃(0)

σ
+ σ + b(1 – σ)

σ
[ϑẼ – αR̃ + υĨ],

[D̃(t)] = D̃(0)
σ

+ σ + b(1 – σ)
σ

[ρĨ – αD̃],
[M̃(t)] = M̃(0)

σ
+ σ + b(1 – σ)

σ
[σẼ + ζI –ϕM̃].

(16)

Using the following series solution as

S̃(t) = ∞∑
z=0

S̃z(t), Ẽ(t) = ∞∑
z=0

Ẽz(t), Ĩ(t) = ∞∑
z=0

Ĩz(t), R̃(t) = ∞∑
z=0

R̃z(t),

D̃(t) = ∞∑
z=0

D̃z(t), M̃(t) = ∞∑
z=0

M̃z(t). (17)
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Using equations (17), the system (16) has the following form:
[ ∞∑

z=0
S̃z(t)

]
= S̃(0)
σ

+ σ + b(1 – σ)
σ

[
Π – (τ +βq + α) ∞∑

z=0
S̃z
]
,

[ ∞∑
z=0

Ẽz(t)
]

= Ẽ(0)
σ

+ σ + b(1 – σ)
σ

[
βq

∞∑
z=0

S̃z – (ϑ + α + (1 – κ)τ) ∞∑
z=0

Ẽz
]
,

[ ∞∑
z=0

Ĩz(t)
]

= Ĩ(0)
σ

+ s + b(1 – σ)
σ

[
τ

∞∑
z=0

S̃z + (1 – κ)τ ∞∑
z=0

Ẽz – (α + ρ + υ) ∞∑
z=0

Ĩz
]
,

[ ∞∑
z=0

R̃z(t)
]

= R̃(0)
σ

+ σ + b(1 – σ)
σ

[
ϑ

∞∑
z=0

Ẽz + υ ∞∑
z=0

Ĩz – α ∞∑
z=0

R̃z
]
,

[ ∞∑
z=0

D̃z(t)
]

= D̃(0)
σ

+ σ + b(1 – σ)
σ

[
ρ

∞∑
z=0

Ĩz – α ∞∑
z=0

D̃z
]
,

[ ∞∑
z=0

M̃z(t)
]

= M̃(0)
σ

+ σ + b(1 – σ)
σ

[
σ

∞∑
z=0

Ẽz + ζ ∞∑
z=0

Ĩz –ϕ ∞∑
z=0

M̃z
]
.

(18)

Comparing similar terms on both sides of (18), we may arrive at

[S̃0(t)] = S̃0
σ

, [Ẽ0(t)] = Ẽ0
σ

, [Ĩ0(t)] = Ĩ0
σ

, [R̃0(t)] = R̃0
σ

,
[D̃0(t)] = D̃0

σ
, [M̃0(t)] = M̃0

σ
,

[S̃1(t)] = σ + b(1 – σ)
σ

[
Π – (τ +βq + α)S̃0

]
,

[Ẽ1(t)] = σ + b(1 – σ)
σ

[
βqS̃0 – (ϑ + α + (1 – κ)τ)Ẽ0

]
,

[Ĩ1(t)] = σ + b(1 – σ)
σ

[
τS̃0 + (1 – κ)τẼ0 – (α + ρ + υ)Ĩ0

]
,

[R̃1(t)] = σ + b(1 – σ)
σ

[
ϑẼ0 + υĨ0 – αR̃0

]
,

[D̃1(t)] = σ + b(1 – σ)
σ

[
ρĨ0 – αD̃0

]
,

[M̃1(t)] = σ + b(1 – σ)
σ

[
σẼ0 + ζĨ0 –ϕM̃0

]
,

[S̃2(t)] = σ + b(1 – σ)
σ

[
Π – (τ +βq + α)S̃1

]
,

[Ẽ2(t)] = σ + b(1 – σ)
σ

[
βqS̃1 – (ϑ + α + (1 – κ)τ)Ẽ1

]
,

[Ĩ2(t)] = σ + b(1 – σ)
σ

[
τS̃1 + (1 – κ)τẼ1 – (α + ρ + υ)Ĩ1

]
,

[R̃2(t)] = σ + b(1 – σ)
σ

[
ϑẼ1 + υĨ1 – αR̃1

]
,

[D̃2(t)] = σ + b(1 – σ)
σ

[
ρĨ1 – αD̃1

]
,

[M̃2(t)] = σ + b(1 – σ)
σ

[
σẼ1 + ζĨ1 –ϕM̃1

]
,

...
[S̃q+1(t)] = σ + b(1 – σ)

σ

[
Π – (τ +βq + α)S̃z

]
,

[Ẽq+1(t)] = σ + b(1 – σ)
σ

[
βqS̃z – (ϑ + α + (1 – κ)τ)Ẽz

]
,

[Ĩq+1(t)] = σ + b(1 – σ)
σ

[
τS̃z + (1 – κ)τẼz – (α + ρ + υ)Ĩz

]
,

[R̃q+1(t)] = σ + b(1 – σ)
σ

[
ϑẼz + υĨz – αR̃z

]
,

[D̃q+1(t)] = σ + b(1 – σ)
σ

[
ρĨz – αD̃z

]
,

[M̃q+1(t)] = σ + b(1 – σ)
σ

[
σẼz + ζĨz –ϕM̃z

]
.

(19)
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On computing the Laplace transform of Eq. (19), we have

S̃0(t) = N1, Ẽ0(t) = N2, Ĩ0(t) = N3, R̃0(t) = N4, D̃0(t) = N5, M̃0(t) = N6,
S̃1(t) =

[
Π – (τ +βq + α)N1

]
(1 + b(t – 1)),

Ẽ1(t) =
[
βqN1 – (α + ϑ + (1 – κ)τ)N2

]
(1 + b(t – 1)),

Ĩ1(t) =
[
τN1 + τ(1 – κ)N2 – (ρ + α + υ)N3

]
(1 + b(t – 1)),

R̃1(t) =
[
ϑN2 + υN3 – αN4

]
(1 + b(t – 1)),

D̃1(t) =
[
ρN3 – αN5

](1 + b(t – 1)),
M̃1(t) =

[
σN2 + ζN3 –ϕN6

](1 + b(t – 1)),
S̃2(t) = Π(1 + b(t – 1))[ – (τ +βq + α)s11

]( 1
2 b2t2 – 2b2t + 2bt + (b – 1)2),

Ẽ2(t) =
[
βqs11 – (ϑ + α + (1 – κ)τ)e11

]( 1
2 b2t2 – 2b2t + 2bt + (b – 1)2),

Ĩ2(t) =
[
τs11 + τ(1 – κ)e11 – (ρ + α + υ)u11

]( 1
2 b2t2 – 2b2t + 2bt + (b – 1)2),

R̃2(t) =
[
ϑe11 + υu11 – αr11

]( 1
2 b2t2 – 2b2t + 2bt + (b – 1)2),

D̃2(t) =
[
ρu11 – αd11

]( 1
2 b2t2 – 2b2t + 2bt + (b – 1)2),

M̃2(t) =
[
σe11 + ζu11 –ϕm11

]( 1
2 b2t2 – 2b2t + 2bt + (b – 1)2).

(20)

Correspondingly, the series solution for the next terms may be computed. Further, the unknown terms in the above equation (20)
are as

s11 = Π – (τ +βq + α)N1,
e11 = βqN1 – (α + ϑ + τ(1 – κ))N2,
u11 = τN1 + τ(1 – κ)N2 – (ρ + α + υ)N3,
r11 = ϑN2 + υN3 – αN4,
d11 = ρN3 – αN5,

m11 = σN2 + ζN3 –ϕN6.

(21)

5 Results and discussion

This particular section of the manuscript is devoted to the numerical simulations of the proposed model. Parameters of the model
are assigned values given in Table 2 which are taken from [17]. The description of initial population of the compartments for the
proposed model is S̃ = 220.89857, Ẽ = 220.812, Ĩ = 0.0008555, R̃ = 0.00003208, D̃ = 0.0007777, M̃ = 80.000706 million.

Parameters values Parameters values
Π 0.80 β 0.000761
α 0.0080 τ 0.00073
ρ 0.00039 q 1
ϑ 0.00064 σ 0.0075
κ 0.5998 ζ 0.0023
ϕ 0.07862 υ 0.000236

Table 2. Parameter values used in numerical simulation

We simulate the six classes of the model under consideration for available data described in Table 2 using the series solution
technique of Laplace transform. Figure 1 is the representation of the susceptible class showing sudden decay with the passing of
time. This is due to the fact that various contaminated constituents of COVID-19 are absorbed by the said class and jump to the
other classes of the system. At the early stage, they decrease and afterward the class becomes stable for distinct fractional-order
b. Fractional order behavior is compared with integer order. In Figure 2 one can see the representation of exposed cases for
different fractional-order b along with a comparison with integer-order. Like susceptible the exposed population also decreases
as they transfer to other compartments. Figure 3 shows that the infection class reaches the maximum value. This class then slowly
and gradually decreases and attains stability at various fractional orders. Due to the robust immunity and self-defense, there are
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Figure 1. Dynamical behavior of S̃ at various order b.
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Figure 2. Dynamical behavior of Ẽ at various order b.

reductions and stability in the infection. Once more, we have provided an integer-order comparison. The recovery rate increases
over time as the infection class increases. The maximum attained value for the recovered class is 1.5. After that, the recovery class
also becomes stable as shown in Figure 4. We have observed in all the graphical representations that by increasing the values of
fractional order, the dynamics will converge to the integer-order value 1. The stability was attained rapidly at low fractional-order
and vice versa. Figure 5 represents the dynamics of demised class caused due to COVID-19. We note that the maximum value of
this compartment is attained at 0.01. The class then declines and approaches the stability in distinct fractional orders. The decline
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Figure 3. Dynamical behavior of Ĩ at various order b.
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Figure 4. Dynamical behavior of Ĩ at various order b.

and stability gained in the demised class are due to the decrease in infection and the adoption of some precautionary measures for
cleaning society. This obviously decreases the contaminated constituents M̃(t) as depicted in Figure 6. In Figures 7-12, we take
another set of initial data as S̃ = 220, Ẽ = 150.892, Ĩ = 0.4555, R̃ = 0.013208, D̃ = 0.7777, M̃ = 80.000706 million. The behavior of
all six compartments is slightly changed and converging on different fractional orders. In this case, we also compare the dynamics
of fractional orders with integer orders.
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Figure 5. Dynamical behavior of D̃ at various order b.
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Figure 6. Dynamical behavior of M̃ at various order b.
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Figure 7. Dynamical behavior of S̃ at various order b.
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Figure 8. Dynamical behavior of Ẽ at various order b.
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Figure 9. Dynamical behavior of Ĩ at various order b.
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Figure 10. Dynamical behavior of R̃ at various order b.
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Figure 11. Dynamical behavior of D̃ at various order b.
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Figure 12. Dynamical behavior of M̃ at various order b.
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6 Conclusion

In this paper, we have examined the dynamics of a fractionally-order modified non-linear SEIR type system using the Caputo-
Fabrizio derivative operator of the non-singular kernel. Our study suggested a strategy to overcome the spread of COVID-19 and
how to stabilize it. We have carried out the qualitative analysis with the help of the findings from the nonlinear functional analysis.
The numerical solutions have been obtained with the aid of the Laplace transform of series solutions. All the small quantities are
then added together to obtain an approximate solution for each quantity. The said technique has been simulated for the first few
terms on different fractional orders along with a comparison with integer orders to validate the required scheme. This dynamic
is caused by viruses or microorganisms present in the human body and throat, therefore, the nano-technical dynamics of the
pandemic model are very effective in the sense of fractional derivative. Therefore, our study has strongly recommended that an
individual strictly follow the SOPs of the WHO in order to control the spread of the infection. It is also essential to raise awareness
and disseminate information in society in order to keep the populace safe from the virus and possibly prevent the infection from
spreading to a pandemic level. Our research predicts the future spread and controls of the COVID-19 dynamics in the form of a
fractional Caputo-Fabrizio derivative for dynamics ranging from 0 to 1.
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