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Abstract
In this paper, we focus on modelling the glucose-insulin system for the purpose of estimating glucagon, insulin, and
glucose in the liver in the internal organs of the human body. A three-compartmental mathematical model is proposed.
The model parameters are estimated using a nonlinear inverse optimization problem and data collected in Chad. In order
to identify insulin and glucose in the liver for type 2 diabetic patients, the Sampling Importance Resampling (SIR) particle
filtering algorithm is used and implemented through discretization of the developed mathematical model. The proposed
mathematical model allows further investigation of the dynamic behavior of hepatic glucose, insulin, and glucagon in
internal organs for type 2 diabetic patients. During periods of hyperglycemia (i.e., after meal ingestion), whereas insulin
secretion is increased, glucagon secretion is reduced. The results are in agreement with empirical and clinical data and
they are clinically consistent with physiological responses.
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1 Introduction

Diabetes is a disease that cannot be cured (chronic) but can be treated. It is due to an abnormal increase in glucose [1]. This disease
has become a major world health problem, particularly in Chad. Like all developing countries, Chad is paying heavy consequences
due to this disease. Chad, the second largest country and the third most overcrowded country in Central Africa, is in the midst of
a transition from this disease [2]. According to the report of the International Diabetes Federation, 425 million people worldwide
were living with the disease in 2015 and this number may increase to an estimated 622 million in 2040 [3]. In 2013, 231290
Chadians had diabetes [4], this number may be significant in the future. All these results make diabetes a real public health
problem. There are two main types of diabetes: type 1 diabetes, which affects 10 percent of the affected population and type 2
diabetes, which affects the remaining percent [5, 6]. Type 2 diabetes is therefore important in terms of severity. Consequently,
many researchers are trying to find methods to diagnose and treat this disease. Generally, disease dynamics is investigated
throughout the application of the mathematical models [7, 8, 9]. One approach is to find a mathematical model that can describe
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the dynamics of the glucose-insulin system in order to analyze, interpret and predict the results. One of the approaches used is
to find a mathematical model capable of describing the dynamics of the glucose-insulin system in order to predict, analyze and
interpret the results. In literature, much effort has been made recently to analyze [10] and to develop mathematical models of type
2 diabetes [11, 12, 13, 14]. The objective of this paper is to propose a mathematical model of the glucose-insulin system suitable
for type 2 diabetic patients in Chad. The glucagon, insulin, and hepatic glucose in internal human organs are estimated using
Sampling Importance Resampling (SIR) algorithm. The mathematical model parameters are estimated using a nonlinear inverse
optimization problem and data collected in Chad.
This paper is structured as follows: Materials and methods are presented in Section 2. It deals with data sources and mathematical
model equations. Section 3 focuses on the estimation of the parameters of the model. The numerical tests are given in Section 4
while concluding remarks are presented in Section 5.
2 Materials and methods

Data set

The data are collected in the laboratory of the hematology department at regional Abéché hospital in Chad for a period of one month
from 23, January 2019 to end 23, February 2019. Moreover, 900 exams should be done, but we faced some challenge including lack
of material such as glucose meter, lower number of enumerators and financial means to organize the transport of participants
who live so far from the hospital to come early morning in a fasting state. Consequently, the data have been collected only for 96
participants and 75 among them have type 2 diabetes.

Model equations

More multiple pancreatic hormones are involved in glucose homeostasis [15], but the potent hormone regulators of both glucose
appearance and disappearance in the circulation are insulin and glucagon. Indeed, insulin is the key regulatory hormone of glucose
disappearance, and glucagon is a major regulator of glucose appearance. Consequently, the deficiency of these hormones is the
main cause of type 2 diabetes. During the fed state, the rate of gastric emptying is the major determinant source of circulating
glucose and other sources of how glucose appears in the circulation are derived from hepatic processes. Glucagon plays a major
role in sustaining plasma glucose during fasting conditions by stimulating hepatic glucose production. During the first 8-12 hours
of fasting, glucagon facilitates this process and thus promotes glucose appearance in the circulation throughout the glycogenolysis
mechanism [16]. Over longer periods of fasting, glucose, produced by gluconeogenesis, glucose is released from the liver which
is the sole source of endogenous glucose production. Most tissues have the ability to hydrolyze glycogen and glucose removal
into skeletal muscle and adipose tissue is driven mainly by insulin in the immediate post-feeding state [16]. In addition, insulin
contributes to augmenting glucose uptake in peripheral tissues and in the liver by affecting the activity of different enzymes.
The peripheral insulin resistance and relative insulin deficiency in type 2 diabetic patients have resulted in low glucose uptake
rates by muscle cells and adipose tissue cells [17]. The studies show that insulin-induced stimulation effects on hepatic glucose
uptake and hepatic glucose production rate are impaired in type 2 diabetic patients. This leads to reduced hepatic glucose uptake
[18]. A type 2 diabetic patient is experienced with postprandial β-cell action that becomes abnormal due to the loss of immediate
insulin response to a meal [19]. Therefore, hyperglycemia in type 2 diabetic patients is caused by the resistance of peripheral
insulin resistance coupled with progressive β-cell failure and decreased availability of insulin and other hormones that is amylin
(a neuroendocrine hormone coexpressed and consecrated with insulin by pancreatic β-cells in response to nutrient stimuli, and
GLP-1 (more potent incretin hormone secreted in greater concentrations and is more physiologically relevant in humans) [20].
Due to high glucose level that can induce vascular endothelial cell dysfunction and affect blood viscosity and arterial wall tension,
type 2 diabetes patients are at higher risk for the development of vascular complications than non-diabetic persons [21].
Due to such a high demand for understanding the blood flow characteristics in type 2 diabetic patients, in this study, we develop
the mathematical model of type 2 diabetes patients.
We propose a three-compartmental mathematical model where the compartments are the vascular and tissues compartment, liver
compartment and pancreas compartment. The state variables are are glucagon (Γ), insulin (Ip), hepatic glucose (GL), glucose (G).
Taking into consideration the diagram model illustrated in Figure 1.
The model equations are as follows: 

VΓ dΓ(t)
dt = nΓGαIp – p1Γ ,

VIp dIp(t)
dt = nIp Gδ – p2Ip,

VGL
dGL(t)

dt = nGL
Γβ – p3GL + p4G + RPGL,

VG dG(t)
dt = p3GL + nGIγp – p5G + Rmeal ,

(1)

where ni denotes the rate of blood coming indirectly in compartment i (i = Γ , Ip, GL G) from vascular circulation. α, β, γ and δ
are the constants to be estimated and refer to the non-linearity of the corresponding determinant variable. The parameters and
variables are described in Table 1.
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Figure 1. Diagram of the mathematical model. The dash lines notify that a certain quantity of mass flows non-linearly from one compartment/sub-compartment
to another. The dashed dot line between the heart-tissues compartment means that a small quantity of glucose is transmitted to the liver compartment.

Parameter/Variable Description Unit
Variables

Γ Number of glucagon secreted by the α-cells pg/ml
to release glucose stored in the liver

IP Concentration of the insulin secreted by the beta (β)-cells
and poured into blood to make penetrate and store in µU/dl
the liver the surplus of the glucose level found in the blood

G Glucose concentration in the heart and tissues mg/dl
GL Glucose concentration in the liver mg/dl

Parameter to be estimated (Rate)
nΓ Rate of blood coming to glucagon sub-compartment in the pancreas (dl)2 /µU.min
nIp Rate of blood coming to insulin sub-compartment in the pancreas dl.µU/mg.min
nGL Rate of blood coming to in the liver dl/min
nG Rate of blood in heart and tissues µU.mg/dl.min
p1 Rate of glucagon from the pancreas to the blood dl/min
p2 Rate of insulin from the pancreas to the blood dl/min
p3 Rate of glucose from the liver to the heart and tissues dl/min
p4 Rate of glucose from the blood to liver (Few quantity) dl/min
p5 Rate of glucose from the blood to pancreas dl/min
Rmeal Rate of glucose in human body after meal mg/min
RPGL Rate of insulin from pancreas to the blood through the liver mg/min

Parameter from literature
VΓ Volume of glucagon in glucagon sub-compartment dl
VIp Volume of insulin in insulin sub-compartment dl
VGL Volume of glucose in the liver compartment dl
VG Volume of glucose in the heart and tissues dl

Table 1. Description of variables and parameters of the mathematical model

3 Estimation of parameters

We consider that the volumes are obtained from literature and they are presented in Table 2 [14].

Parameter Value Parameter Value
VG 11.6 VΓ 113.1
VGL 25.1 VIp 67.4

Table 2. Parameters used from the literature [14]

To estimate other parameters, let
µ = (nΓ , nIp , nGL

, nG, p1, p2, p3, p4, p5, Rmeal,α,β,γ,δ, RPGL
)′

be a vector of parameters to be estimated. We fix a positive parameter and we consider the following discretisation of the interval
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[0, Tmax] ,

tk = kTmax
N ,

where Tmax denotes a positive time parameter. For a positive integer parameter N and Gσ(tk) corresponding data measurement of
real values G(tk) at time tk we take

Gσ = (Gσ(t1), ..., Gσ(tN))′. (2)
The superscript σ is the perturbation parameter due to some imprecision on measured data [22]. The identification of parameters
can be done by formulating nonlinear inverse problem which is solved using regularization techniques [23]. Let G be vector
solutions in RN at time grid points of the system (1) depending of the parameter vector u. We want to solve the coefficient
identification problem

J(µ) = ∥∥G – Gσ
∥∥2 ,

where Gσ is given by (2).
This inverse problem can be formulated as follows. Find µ∗ = (n∗Γ , n∗Ip

, n∗GL
, n∗G, p∗1 , p∗2, p∗3 , p∗4, p∗5, R∗meal,α∗,β∗,γ∗,δ∗, R∗PGL

)′ such
that

µ∗ = arg min
µ

J(µ), (3)

subject to (1). We should notify that the (3) is not linear inverse problem and it is ill-posed. This means that little perturbation on
data produces a solution that is very different of the original ones. Furthermore, the solution µ does not depend continuously on
the data. To find the regularization of the problem (3), we use Tikhonov techniques (See [23] for details). Therefore, this problem
becomes Taking ω = (nΓ , nIp , nGL

, nG, p1, p2, p3, p4, p5, Rmeal,α,β,γ,δ, RPGL
)′ , find µ̄θ solution of

J(µ̄θ) = min
ω

Jθ(ω), (4)
subject to (1) where we have set

Jθ(ω) = ∥∥G – Gσ
∥∥2 + θ ‖Lω‖2 , (5)

for good θ such that µθ converges to the solution µ as θ→ 0. Here L is an operator used for stabilization (i.e., L is the identity, a
differentiation operator, etc.). The solution of (4) subject to (1) is obtained using the Least square method and the data collected
in Chad. The numerical simulations are carried out using Matlab built-in function fmincon which allows solving constrained
optimization problems. The parameters estimated are shown in Table 3.

Estimated parameter Value
nΓ 0.6005
nIp 1.1938
nGL 1.3845
nG 0.5479
p1 1.0343
p2 1.5477
p3 1.3693
p4 0.7866
p5 1.9521
Rmeal 101.4078
α 0.0506
β 0.5151
γ 0.0545
δ 0.0505
RPGL 0.5539

Table 3. Estimated model parameters

4 Numerical tests

The measurement of glucose and insulin from different parts of the body needs to take blood samples to determine their concen-
tration. However, to take blood samples from many internal body organs for instance heart and the liver is clinically impossible.
We solve this problem, we can estimate concentrations of these parameters using measurements from peripheral tissues along
with a mathematical model and a filtering algorithm. Sampling Importance Resampling (SIR) algorithm is one of the methods
that can give the estimated solution. For more details about the SIR algorithm, we refer the readers to [24, 25]. The data collected
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in Chad is the glucose measured in the tissues of patients. In our simulation we estimate glucose in the liver, insulin and glucagon
in the pancreas by taking this measured glucose as measurements. We assume that noisy measurements of glucose in tissues and
the heart are available measured data. To apply the SIR algorithm, we consider a fixed-step backward difference approximation
by

dX
dt ≈

Xk – Xk–1
∆t , 0 ≤ t ≤ Tmax, (6)

where
Xk = (Γk, Ip,k, GL,k, Gk

)t , (7)
and

Xk = X(tk).
If M denotes the total number of discretization intervals we have

Xk = Xk–1 +∆t,

where ∆t = Tmax
M is step.

Let set
Fk–1(Xk–1) = (F1(Xk–1), F2(Xk–1), F3(Xk–1), F4(Xk–1))t ,

which refers to the dynamic equations with
F1(Xk–1) =

(
1 – ∆t

VΓ
p1
)
Γk–1 + ∆t

VΓ
nΓGαk–1Ip,k–1,

F2(Xk–1) =
(

1 – ∆t
VIp

p1
)

Ip,k–1 + ∆t
VIp

nIp Gδk–1,
F3(Xk–1 =

(
1 – ∆t

VGL
p3
)

GL,k–1 + ∆t
VGL

(
nGL
Γβk–1 + p4Gk–1 + RPGL

) ,
F4(Xk–1 =

(
1 – ∆t

VG p5
)

Gk–1 + ∆t
VG

(
p3GL,k–1 +nGIγp,k–1 + Rmeal

) .

(8)

Using (8) our state dynamic model (1) is estimated recursively by the following compact form{
Xk = Fk–1(Xk–1) + vk–1,
Yk = PXk + ek–1, (9)

where we set Yk = Gk that is measurement of glucose in tissues, vk–1 and ek–1 are the stochastic process and measurement noise,
respectively and they are independent and identically distributed (i.i.d.). P denotes the matrix from the equations modelling the
sensors referred to as the measurement model given as

P = (0, 0, 0, 1)t.
In numerical simulation, we consider M = 100, Tmax = 300 minutes, N = 1000 particles and we assume that the state X0 and state
measurement noises have a Gaussian probability density function that is X0 ∼ N (0, 5), vk ∼ N (0, 20) and ek ∼ N (0, 1) where N
means normal distribution. The numerical results are illustrated in the Figure 2, 3 and 4.
Figure 2 shows the concentration of glucagon in the pancreas using SIR implemented on the mathematical model. There is not a
significant variation of this parameter that plays a crucial role in the regulation of blood glucose. This means that blood glucose
is not regulated for a type 2 diabetic patient. The pancreatic insulin decreases as shown in the Figure 3. Therefore, there is no
role of both insulin and glucagon as regulators of blood glucose. During periods of hyperglycemia (i.e., after meal ingestion),
whereas insulin secretion is increased, glucagon secretion is reduced. All those results are justified by the increase of glucose in
the liver (See Figure 4). Hence, the liver affects insulin concentrations, since about 50% of insulin is extracted at first passage, and
this fraction may be reduced in the insulin-resistant liver, leading to hyperinsulinemia [26]. The elevated rate of hepatic glucose
production (HGP) is a major cause of fasting hyperglycemia and a lack of suppression of HGP may contribute to postprandial
hyperglycemia. Through an increased secretion of triglyceride, the liver may also contribute to peripheral insulin resistance and
thereby further increase postprandial hyperglycemia [26].
5 Concluding remarks

The mechanical behaviour of the glucose-insulin system depends on the type of mathematical model that describes its dynamics.
The simple mathematical model should describe accurately this system vis-a-vis the diseases that affect it. In this work, we
have proposed a three-compartmental mathematical model for type 2 diabetic patients that describes the variation of glucose and
insulin in Chad context based on data collected at Abéché hospital. To estimate the dynamics of glucagon, insulin and hepatic
glucose in internal organs of the human body, the Sampling Importance Resampling (SIR) particle filtering algorithm is used
and implemented using the developed mathematical model. Numerical results show that the new glucose-insulin system model
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Figure 2. Variation of glucagon in the pancreas

Figure 3. Variation of insulin in the pancreas

Figure 4. Variation of glucose in the liver

introduced fits with the clinical data and they are clinically consistent with physiological responses. Indeed, insulin secretion
increases while glucagon secretion reduces due to periods of hyperglycemia. The proposed mathematical model can also be used
by physiologists and other experts in medicine for monitoring the glucose-insulin system.
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