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Abstract
In this paper, we use an effective method which is the rational sine-Gordon expansion method to present new wave
simulations of a governing model. We consider the (1+1)-dimensional conformable Fisher equation which is used to
describe the interactive relation between diffusion and reaction. Various types of solutions such as multi-soliton, kink,
and anti-kink wave soliton solutions are obtained. Finally, the physical behaviours of the obtained solutions are shown
by 3D, 2D, and contour surfaces.
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1 Introduction

Mathematical modelling of physical systems leads to linear and nonlinear differential equations in physics, engineering, and
other fields. Understanding physical processes described by nonlinear equations necessitates finding exact solutions. Aside from
that, exact solutions can be used to calculate specific critical physical quantities analytically and for simulation [1]. There are
some methods to calculate analytically including the Hirotas’ direct method [2], the tanh method [3], the extended tanh-function
method [4], the multiple exp-function method [5], the transformed rational function method [6], the first integral method [7],
the modified simplest equation method [8], the improved Bernoulli sub-ODE method [9], the Sine-Gordon expansion method
[10, 11, 12], the modified exponential method [13]. Besides these analytical methods, there are many efficient numerical techniques
have been submitted to the literature by mathematicians. For example, the q-homotopy analysis transform technique [14], the
trapezoidal base homotopy perturbation method [15], and others [16, 17, 18]. The paper aims to find exact soliton solutions of the
conformable (1+1)-dimensional Fisher equation [19] by using the rational sine-Gordon expansion method. The (1+1)-dimensional
Fisher equation

ut = α2uxx + pu –βu3, (1)
describes the process of diffusion and reaction interacting. Fisher presented this equation as a model for mutant gene propagation,
with u(x, t) denoting the density of favourable mutations, α2 as diffusion factor [20]. This equation is used in chemical kinetics
and population dynamics and is also used to solve problems like the nonlinear evolution of a population in one-dimensional ha-
bitual space or the neutron population in a nuclear reaction [21]. Zhou et al. have applied the improved tan(ϕ(ξ)/2)-expansion
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method, the generalized Kudryashov method and the extended (G′/G)-expansion method, and gained the bright-like, dark-like
and singular-like solitary wave solutions [19]. Triki and Wazwaz have used the trial equation method to a generalized Fisher
equation, and gained some new wave solutions [22]. As a different approach, Matinfar et al. [23] focused on the numerical so-
lution. In this context, they obtained solutions compatible with the exact solution by applying the generalized two-dimensional
differential transform method. In this article, we will apply the rational sine-Gordon expansion method to the (1+1)-dimensional
Fisher equation with conformable derivative to construct wave solutions. The conformable derivative operator overcomes some
limitations of other fractional operators (Caputo, Riemann–Liouville, Caputo–Fabrizio and etc.) and provides basic properties of
classical calculus such as the quotient rule, the chain rule, the product of two functions, Rolle’s and mean value theorems. The
application of the conformable derivative is simpler and very effective.
The rest of the paper is organized as follows: In Section 2, we describe the conformable derivative and its fundamental properties.
In Section 3, the basic steps of the rational sine-Gordon expansion method, which is the novelty of the paper are presented. In
Section 4, we apply the proposed method to the (1+1)-dimensional Fisher equation. Several conclusions are given in the last
section.
2 Preliminary remarks on the conformable derivative

Definition 1 Given a function h : [0,∞) → R. Then the conformable derivative of h order γ is defined by

Lγ(h)(t) = lim
ε→0

h
(

t + εt1–γ
) – h(t)

ε
,

for all t > 0, γ ∈ (0, 1] [24].

Theorem 1 Let Lγ be the derivative operator with order γ ∈ (0, 1] and h, k be γ- differentiable at a point t > 0. Then we have the following
properties [24, 25]:

i. Lγ(ah + bk) = aLγ(h) + bLγ(k), ∀a, b ∈ R.
ii. Lγ(tp) = ptp–γ, ∀p ∈ R.
iii. Lγ(hk) = hLγ(k) + kLγ(h).
iv. Lγ( h

k ) = kLγ(h)–hLγ(k)
k2 .

v. Lγ(λ) = 0, for all constant functions h(t) = λ.
vi. If h is differentiable, then Lγ(h)(t) = t1–γ dh

dt (t).
�

3 Fundamental structure of the RSGEM

Before giving the rational sine-Gordon expansion method (RSGEM) [26, 27, 28], we will explain the sine-Gordon expansion method
(SGEM). Let us suppose the sine-Gordon equation

ϕxx –ϕtt = m2 sin(ϕ), (2)
where ϕ = ϕ(x, t), m is a real constant. Considering the wave transform ϕ = ϕ(x, t) = Φ(ξ), ξ = µ(x – ct) into Eq. (2), gives the
nonlinear ordinary differential equation (NODE) as,

Φ′′ = m2
µ2(1 – c) sin(Φ), (3)

where Φ = Φ(ξ),µ is the amplitude and c is the velocity of the travelling wave, respectively.
We find as follows after full simplification of Eq. (3);

[(
Φ

2
)′]2 = m2

µ2 (1 – c2) sin2 (Φ2
)

+ C, (4)

where C is the constant of integration. Replacing C = 0,ω(ξ) = Φ2 and A2 = m2
µ2(1–c2) in Eq. (4), gives;

ω′ = A sin(ω). (5)
Setting A = 1 in Eq. (5), gives

ω′ = sin(ω). (6)
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Solving Eq. (6) by variables separable, we get the two significant properties of trigonometric functions as follows;

sin(w) = sin[w(ξ)] = 2peξ
p2e2ξ + 1

∥∥∥
p=1

= sech(ξ), (7)

cos(w) = cos[w(ξ)] = p2e2ξ – 1
p2e2ξ + 1

∥∥∥
p=1

= tanh(ξ), (8)

where p 6= 0 is the integration constant. Let’s consider the nonlinear partial differential equation (NPDE) of the form below, for
which the solution is searched;

P
(
ϕ,ϕx,ϕt,ϕxx,ϕtt,ϕxt,ϕxxx,ϕxxt,ϕ2, . . .) = 0. (9)

We apply the wave transformation, ϕ = ϕ(x, t) = Φ(ξ),ξ = kx + w tγ
γ into Eq. (9), it gives the following equation,

N
(
Φ, dΦ

dξ , d2Φ
dξ2 , . . .

)
= 0, (10)

where N is a nonlinear ordinary equation (NODE) that has partial derivatives of Φ depending on ξ. The SGEM, the solution of Eq.
(9) is considered in the following form

Φ(ξ) = n∑
i=1

tanhi–1(ξ) [bi sech(ξ) + ai tanh(ξ)] + a0. (11)

Eq. (11) can be rearranged considering Eqs. (7) and (8) as follows;

Φ(ω) = n∑
i=1

cosi–1(ω) [bi sin(ω) + ai cos(ω)] + a0. (12)

As we know, rational functions are more general functions than polynomial functions. We can obtain significantly general forms
of wave solutions which are including polynomial function solutions by this way. The different point of the method is the solution
functions have two auxiliary functions, viz. sech(ξ), tanh(ξ) We consider the following solution form

Φ(ξ) =
∑M

i=1 tanhi–1(ξ) [ai sech(ξ) + ci tanh(ξ)] + a0∑M
i=1 tanhi–1(ξ) [bi sech(ξ) + di tanh(ξ)] + b0

, (13)

which is also written as

Φ(ω) =
∑M

i=1 cosi–1(ω) [ai sin(ω) + ci cos(ω)] + a0∑M
i=1 cosi–1(ω) [bi sin(ω) + di cos(ω)] + b0

, (14)

where ai, bi, ci, di, a0, b0 are constants that will be determined later. ai, bi, ci, di values are not all zero at the same time. The value
of M is determined using the balance principle between the highest power nonlinear term and the highest derivative in NODE.
After equating the coefficients of sini(ω) cosj(ω) to zero, we find a set of algebraic equations. ai, bi, ci, di, a0, b0 values are found
in solving the set of algebraic equations by Wolfram Mathematica 12. At the end, we substitute these values into Eq. (13) and get
the new travelling wave solutions of Eq. (9).

4 Application of RSGEM

The (1+1)-dimensional conformable Fisher equation is given as
uγt = α2uxx + pu –βu3, (15)

where γ is the order of the conformable derivative between 0 < γ ≤ 1.
We use the wave transformation as given below,

u(x, t) = U(ξ),ξ = kx + w tγ
γ

, (16)

where k, w are constants that will be determined. Getting partial derivatives of U(ξ) the function with respect to x, t, we find a
non-linear ordinary differential equation as

wU′ – α2k2U′′ – pU +βU3 = 0. (17)
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According to the homogeneous balance principle, we obtain a relationship between U′′ and U3 in Eq. (17), M = 1. For M = 1, Eq. (13)
turns to the below form.

U(ξ) = a0 + a1 sech(ξ) + c1 tanh(ξ)
b0 + b1 sech(ξ) + d1 tanh(ξ) . (18)

We put Eq. (18) and its first and second-order derivatives into Eq. (17) and can obtain a system of algebraic equations. By using
Wolfram Mathematica 12, a0, a1, b0, b1, c1, d1 and the other parameters can be found. Finally, we put these coefficients into Eq. (13)
and obtain new travelling wave solutions of Eq. (1).

Case-1

a1 = ib1√wβ –√β (6βa20 – wb21
)

β
√6 , d1 = ia0

√6β
√w

, c1 = –a0, p = –2w
3 , k = i√w

α
√3 , b0 = 0.

Putting the above coefficients into Eq. (13), yields

u1(x, t) = –


Sec [√wx√3α – itγw
γ

] (–i
√

wβb1 +√β (6βa20 – wb21
))

√6β – a0
(

–1 + i Tan
[√wx
√3α – itγw

γ

])
/ Sec

[√wx
√3α – itγw

γ

]
b1 –

√6β
w a0 Tan

[√wx
√3α – itγw

γ

]
.

(19)

where i2 = √–1 . Considering the suitable values of parameters, we can find wave simulations for Eq. (19) as following Figures 1
and 2:
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Figure 1. The 3D and 2D surfaces of the wave solution (19) by considering the values γ = 0.9, a0 = 2.1, b1 = 1.2,α = 2.5, w = 1.6,β = 2, t = 0.1.

Case-2

a1 = a0b1
b0 –

√√√√a20
(

–1 + b21
b20

)
, c1 = –a0, w = –6βa20

b20
,α =

√2βa0
kb0 , p = 4βa20

b20
, d1 = 0.
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Figure 2. The contour plot surfaces of the wave solution Eq. (19) by considering the values γ = 0.9, a0 = 2.1, b1 = 1.2,α = 2.5, w = 1.6,β = 2, t = 0.1.

Putting the above coefficients into Eq. (13), yields

u2(x, t) =
– Sech

[
kx – 6tγβa20

γb20

]√
a20
(

–1 + b21
b20

)
+ a0

1 + Sech
[

kx– 6tγβa20
γb20

]
b1

b0 – Tanh
[

kx – 6tγβa20
γb20

]
b0 + Sech

[
kx – 6tγβa20

γb20

]
b1

. (20)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (20) as following figures:
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Figure 3. The 3D and 2D surfaces of the wave solution Eq. (20) by considering the values γ = 0.9, a0 = 0.2, b1 = 2.5, b0 = 1, k = 2,β = 0.2, t = 0.1.
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Figure 4. The contour plot surfaces of the wave solution (20) by considering the values γ = 0.9, a0 = 0.2, b1 = 2.5, b0 = 1, k = 2,β = 0.2, t = 0.1.
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Case-3

a1 = –
√√√√βa20 + k2α2b21 –√2k2α2βa20b21 + k4α4b41

β
, d1 = –

√2βa0
kα , b0 = 0, c1 = –

a1
(

k2α2b21 +√2k2α2βa20b21 + k4α4b41
)

√2βkαa0b1
,

p = 2k2α2, w = 3c1
a0 .

Putting these coefficients into Eq. (13), yields

u3(x, t) = kα
(

a0 + a1 Sech [kx + 3c1tγ
a0γ

] + c1 Tanh [kx + 3c1tγ
a0γ

])
kαb1 Sech [kx + 3c1tγ

a0γ
] –√2βa0 Tanh [kx + 3c1tγ

a0γ
] . (21)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (21) as following figures:
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Figure 5. The 3D and 2D surfaces of the wave solution (21) by considering the values γ = 0.9, a0 = 2.5, b1 = 1.5,α = 2.5, k = 0.2,β = 0.2, t = 0.1
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Figure 6. The contour plot surfaces of the wave solution (21) by considering the values γ = 0.9, a0 = 2.5, b1 = 1.5,α = 2.5, k = 0.2,β = 0.2, t = 0.1.

Case-4

a1 = – a0b1 +√a20
(

b21 + d21
)

d1 , c1 = –a0,α = –
√p
√2k

,β = pd214a20
, w = –3p

2 , b0 = 0,
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Putting these values into Eq. (13), yields

u4(x, t) = –
a0
(

b1 – e–kx+ 3ptγ2γ d1
)

+√a20
(

b21 + d21
)

d1
(

b1 + Sinh [kx – 3ptγ2γ
]

d1
) . (22)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (22) as following figures:
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Figure 7. The 3D and 2D surfaces of the wave solution (22) by considering the values γ = 0.9, a0 = 2.5, b1 = 3.1, d1 = 1, p = 1.2, k = 2.5, t = 0.1.
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Figure 8. The contour plot surfaces of the wave solution (22) by considering the values γ = 0.9, a0 = 2.5, b1 = 3.1, d1 = 1, p = 1.2, k = 2.5, t = 0.1.

Case-5

c1 = –a1b1 +√a21
(–b20 + b21

)
b0 , a0 = a1b1 –√a21

(–b20 + b21
)

b0 , w = –3k2α2,β = k2α2 (–a1
(

b20 – 2b21
) + 2b1

√
a21
(–b20 + b21

))
2a31

,

p = 2k2α2, d1 = 0.
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Putting these values into Eq. (13), yields

u5(x, t) =
2
(

a1
(

ekx– 3k2α2tγ
γ b0 + b1

)
–√a21

(–b20 + b21
))

(
1 + e2(kx– 3k2α2tγ

γ

))
b0
(

b0 + Sech [kx – 3k2α2tγ
γ

]
b1
) . (23)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (23) as following figures:

-20 -10 10 20
x

0.2

0.4

0.6

0.8

u5(x,t)

Figure 9. The 3D and 2D surfaces of the wave solution (23) by considering the valuesθ = 0.9, a1 = 1.5, b1 = 2, b0 = 0.5,α = 0.5, k = 2.9, t = 0.1.
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Figure 10. The contour plot surfaces of the wave solution (23) by considering the valuesθ = 0.9, a1 = 1.5, b1 = 2, b0 = 0.5,α = 0.5, k = 2.9, t = 0.1.

5 Conclusion

In this paper, the rational sine-Gordon expansion method has been applied to the (1+1)-dimensional conformable Fisher equation.
We have obtained some new wave solutions including hyperbolic and trigonometric functions. Figure 1 shows multi-soliton
solution surfaces both imaginary and real parts of Eq. (19). Figure 3, Figure 5, and Figure 9 show the anti-kink soliton surfaces
for Eq. (20), Eq. (21) and Eq. (23), respectively. Figure 7 shows the kink soliton surface for Eq. (22). Kink-type solitons are
travelling wave solutions that climb up or climb down from one phase to another, and kink soliton reaches a constant at infinity.
The mentioned model is used for modelling the relationship between the rate of inflation and both real and nominal interest rates,
population dynamics in nonlinear media, and logistic population growth models, as well [20, 29, 30]. Fisher’s model has been
investigated by a numerical technique which is the q-homotopy analysis transform method (q-HATM) in [31]. They considered the
time-fractional Fisher’s model in Caputo’s sense. Besides, they assumed special values of the coefficients in the model. The main
advantage of the proposed method is the derived solutions include many other analytical techniques. According to new results
and all figures, it has been observed that this method is a powerful tool for obtaining analytical solutions of nonlinear partial
differential equations such as governing models. We hope that the provided solutions may be useful for scientists in mathematical
biology, neurophysiology, chemical reactions, and economy.
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