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Abstract: In the present study, the drought tolerance potential of chickpea (Cicer arietinum L.) and lentil (Lens culinaris
Medik.) seeds under different boron (B) levels were assessed. One chickpea (Azkan) and one lentil cultivar (Sahan) were 
selected for the genetic material. To provide drought condition, different level of polyethylene glycol solution (PEG 6000) 
was applied to seeds. Germination experiments were performed under PEG-induced stress to create water potentials of 0 
(control), -2, and -4 MPa. Then, boron was applied as H3BO3 at 0 (control), 5, and 10 mM. The effects of these abiotic stresses 
were determined with the measurement parameters of germination rate and root traits. Drought stress adversely affected 
germination rate and seedling growth characteristics in chickpea and lentil. Especially, seed germination rate is extremely 
reduced by increased levels of drought stress. An increase in PEG levels from 0 to -4 MPa drastically decreased root and shoot
width, and shoot length in chickpea whereas they did not generate a significant difference in seedling growth traits except for 
root width in lentil. Additionally, the results showed that increasing B treatments decreased the germination rate in both 
chickpea and lentil. The low concentration of B (5 mM) increased root and shoot length; however, a remarkable decrease was 
observed in root and shoot growth traits at the highest concentration of B (10 mM). The overall findings show that germination 
and seedling growth parameters were greatly inhibited by different concentrations of PEG and > 10 mM B levels for chickpea 
and lentil production.
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1. Introduction  
The legume family (Fabaceae or Leguminosae) is 
the third largest family of angiosperms. This family 
represents more than 750 genera and 22.000 species 
including grain, pasture, and economically 
important legumes (le Roux et al., 2022). Grain 
legumes contain an important source of dietary 
protein (20-50%), especially of amino acid lysine 
which is generally deficient in cereals (Maphosa 
and Jideani, 2017). They also include complex 
carbohydrates and micronutrients such as iron, 
potassium, and zinc as well as vitamins A and B in 
addition to folate and thiamine (Gaur et al., 2016) 
and have potential protective beneficials for cancer 
(Messina, 1999), diabetes, and obesity (Burstin et 
al., 2011). Due to their capacity for biological 

fixation of atmospheric nitrogen through nodulation 
with Rhizobium species, the legumes have an 
important part in crop rotation (Herridge et al., 
1993). The legumes include cool-season legumes 
such as chickpea (Cicer arietinum L.), lentil (Lens
culinaris Medik.), and faba bean, and warm-season 
legumes such as common bean, pea, cowpea,
lupins, soybean, and peanut. Chickpeas and lentils 
are one of the most important legume crops 
especially grown in arid and semi-arid areas in the 
world (Mohammed et al., 2017; Zeroual et al., 
2023). The chickpea is the third most important 
legume in terms of global production after the 
common bean and soybean, with over 15.9 million 
tonnes produced in 2022. Nearly 5.6 million tonnes 
of lentils were produced globally in 2022, fifth 
among pulse crops after common beans, chickpeas, 
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dry peas, and cowpeas (Anonymous, 2022). 
However, abiotic stresses such as drought, extreme 
temperatures (heat and cold), waterlogging, soil 
salinity, and nutrient deficiencies or toxicities are 
important limiting factors of chickpea and lentil 
production worldwide (Siddique et al., 2000; Toker 
et al., 2007; Sabagh et al., 2021). 

Drought stress is the most important abiotic 
stress that reduces yields in chickpea and lentil since 
they are mostly grown in arid/semi-arid areas under 
rainfed conditions (Toker et al., 2007; Toker and 
Yadav, 2010; Idrissi et al., 2015). Drought stress 
destroys many physiological and biochemical 
processes related to cellular processes and 
photosynthesis (Chaves et al., 2009; Pinheiro and 
Chaves, 2011; Upadhyaya et al., 2012; Akter et al., 
2021), and has a negative effect to N2 fixation, 
resulting in significant yield losses (Thudi et al., 
2014; Venugopalan et al., 2021). In addition, 
drought can occur with other stress factors at the 
same time, such as heat stress, which further leads 
to reproductive losses (Choukri et al., 2020; El 
Haddad et al., 2020). 

Micronutrients are essential for increasing the 
yield of pulses due to their effects on the process of 
symbiotic N2 fixation. Boron (B) is an important 
micronutrient and has a significant role in cell 
division, carbohydrate metabolism, elongation in 
meristematic tissues and floral organs, pod/seed 
formation, yield and yield components (Marschner, 
1995; Dell et al., 1997; Özyazıcı and Açıkbaş, 
2021). Thus, the requirement of B seems more 
important in the reproductive growth period (Nalini 
and Bhavana, 2013). In chickpeas, B deficiency 
causes flower drops resulting in low pod sets and 
seed yields (Valenciano et al., 2010). The lack of B 
similarly leads to a decrease in yield in lentil-
growing areas (Oktem, 2022). However, excessive 
intake of B results in B toxicity that restricts plant 
growth and damages the photosynthetic system 
(Riaz et al., 2021). Ardıc et al. (2009) showed the 
effects of B toxicity on the activities of antioxidant 
enzymes in chickpea. Besides, Tepe and Aydemir 
(2017) mentioned the toxic effects of B on plant 
growth and the antioxidant response of lentil 
cultivars.    

Abiotic stress factors may affect plants at all 
stages of growth and development (Shabbir et al., 
2022). However, the plants are more sensitive to 
abiotic stress during early seed and seedling stages 
(Cuartero et al., 2006). So, these stages are 
extremely critical for initial growth and getting an 
optimal number of seedlings for higher seed yield. 
Many studies indicated that different B levels 
(Valenciano et al., 2010; Hoque et al., 2021; Iqbal 
et al., 2022; Oktem, 2022) and drought (Saglam et 

al., 2014; Khatun et al., 2021) influenced the seed 
germination performance and seedling traits in 
chickpea and lentil. In these studies, different B 
levels were selected to understand the effects of 
drought. In addition, osmotic adjustment plays an 
important role in tolerance to drought during 
germination (Muscolo et al., 2014). Polyethylene 
glycol (PEG), is a non-ionic surfactant, that has the 
capability of inducing water stress (Larher et al., 
1993) and is mainly used to regulate water 
availability in seed germination (Kulkarni and 
Deshpande, 2007). With all this, this study aimed to 
investigate the effects of drought and boron stresses 
on the growth and physiological properties of 
chickpea (C. arietinum) and lentil (L. culinaris). 

 
2. Materials and Methods 
Chickpea (C. arietinum) seeds of the released 
cultivar, Azkan, and lentil (L. culinaris) seeds of the 
released cultivar, Sahan were used as a plant 
material. The experiment was carried out in the 
Forage Crops Laboratory of Akdeniz University, 
Antalya-Türkiye. The seeds were sterilized and 
after that rinsed with sterile water. Four replications 
of the seeds (5 chickpea seeds and 5 lentil seeds) 
were placed on 9-cm Petri dishes having one layer 
of Whatman No. 1 filter paper. The seeds were 
soaked in different concentrations of PEG 6000 
(Polyethylene glycol 6000) solution as 0 (control), 
-2, and -4 MPa. Boric acid (H3BO3) was used as a 
B source at different levels (0.5, and 10 mM). The 
Petri dishes were moistened with either deionized 
water as a control option or 10 ml of treatment 
solution for each application and they were 
incubated in 16 h light and 8 h dark photoperiod for 
10 days at 20 °C and 70% relative humidity. 
Germination counts were made each 3 days when 
their shoot length was at least 1 mm long. 
Germination rate was calculated with the formula as 
seeds germinated/total seeds x 100. After 10 days of 
seed germination, data for root length, shoot length, 
root width, shoot width, root fresh weight, and shoot 
fresh weight were measured and subjected to 
analysis of variance (ANOVA) and the least 
significant difference (LSD) test for comparisons 
using SAS version 9.3 (Anonymous, 2011).  
 
3. Results 
Drought stress primarily affected germination rate, 
root width, shoot length, and shoot width in 
chickpea whereas it influenced germination rate and 
root width in lentil (Table 1). Different rates of PEG  
negatively affected the germination rate in 
chickpea. A reduction of up to 8.4 and 26.7% 
germination rate was monitored when the use of -2 
and -4 MPa compared to the control treatment 
(96.7%), respectively. Increasing PEG 
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concentrations from 0 to -4 MPa drastically 
decreased root width and the lowest value was 
recorded at -4 MPa. The root width was found as 
2.5, 2.1, and 1.9 cm at 0 (control), -2, and -4, 
respectively. Shoot length significantly decreased 
from -2 to -4 MPa. In the control condition, the 
longest shoot length was 2.6 cm. There was a 
significant reduction in shoot width with increasing 
concentrations of PEG. The highest value for shoot 
width as 2.4 cm was observed in the control 
condition. The fresh weight of root and shoot also 
declined with increasing PEG levels, however, 
there was no significant difference. In lentil, 
germination ratios declined from the control 
condition to -4 MPa (Table 2). A significant 
reduction was observed in germination ratio with 
increasing concentrations of PEG from 2 to -4 MPa. 
Different drought levels did not generate a 
significant difference in seedling growth traits 
except for root width. The highest value was 0.9 cm 
in the control condition. It was also observed as 0.8 
with the same values at -2 and -4 MPa. 

The ANOVA analysis revealed that boron 
significantly influenced root width and root fresh 
weight, but it did not significantly influence the 
germination rate in chickpea. It also did not affect 
all growth traits except for root and shoot fresh 
weights. Additionally, there was a significant 
interaction among drought and boron stress only in 
root fresh weight. The boron treatments reduced the 
germination rate compared to control, however, 
there was no statistical difference. The highest 
value was observed in the control (88.3%). It 
declined with increasing levels of boron. Significant 
differences were observed among boron treatments 
in root width, shoot width, and root fresh weight. 5 
and 10 mM concentrations made a strong 
suppression of root width. The highest root width 
was recorded in the control (2.4 cm) and the lowest 
was measured in the concentration of 10 mM (2.0 
cm). The highest root fresh weight was observed at 
5 mM concentration with 0.5 cm compared to the 
control. In lentil, different boron levels significantly 
influenced all seedling growth traits however there 
is no statistically significant difference in the trait of 
germination rate. The highest value was 96.7% 
under control conditions. An increase from 5 to 10 
mM did not affect the germination value in lentils. 
Increasing boron levels reduced root length 
drastically in the seeds. The lowest value was 
observed in the concentration of 10 mM boron. The 
root width also decreased with the increase in the 
boron level, significantly. Lower values were 
observed in the high concentrations of boron. 5 mM 
boron treatment provided the highest values in root 
length, shoot length, shoot width, and root fresh 
weight compared to the control treatment (Table 3). 

In terms of shoot fresh weight, the same values (0.9 
cm) were observed in all boron levels. However, 
there was not a statistically significant difference. 

 
4. Discussion and Conclusion 
In the present study, germination traits were 
negatively affected by drought stress in chickpea. 
Especially, the increase of drought conditions 
drastically reduced the seed germination rate (Table 
2). Correlative results were obtained by Koskosidis 
et al. (2020) and Yucel et al. (2010) who indicated 
drought negative effect on the germination of 
chickpea seeds. The same negative effects on 
germination ratio were also observed in lentil. 
Previously, Foti et al. (2018) and Muscolo et al. 
(2014) reported that drought stress reduced 
germination percentage by 20% in lentil. The 
decrease in germination of the seed might be caused 
by lower water uptake through the testa (Bahrami et 
al., 2012). Metabolic changes that occurred during 
germination might also lead to lower success rates 
(Ayaz et al., 2000). Root traits are valuable features 
because they improve crop yield under drought 
stress (Ye et al., 2018). Considerable advances have 
been made in clarifying the role of the root traits for 
drought stress tolerance in chickpea 
(Krishnamurthy et al., 2003; Chen et al., 2017). In 
the present study, only root width was negatively 
affected by drought conditions. An increase was 
observed in root length. Increasing the capacity of 
root systems was previously reported in rice 
(Courtois et al., 2009), wheat (Sharma et al., 2011), 
and maize (Giuliani et al., 2005). Increased root 
biomass, root length, and root weight are often 
considered to be primary strategies for drought 
stress avoidance (Kashiwagi et al., 2005). In 
chickpea, a significant decrease in shoot length and 
shoot width was observed at higher PEG levels. 
However, it did not negatively affect these traits in 
lentil seeds although the results of Foti et al. (2018) 
were contrary to ours. Although Mujtaba et al. 
(2016) reported that low water levels restricted 
plant growth which could potentially lead to 
decreasing in biomass, an increase in drought stress 
level did not cause a decline in root and shoot fresh 
weights of chickpea and lentil. Correlative result 
was obtained by Kashiwagi et al. (2005). The 
germination rate was reduced with the increase of 
boron treatments for both species. The highest 
germination rate was monitored in the control 
(88.3%). It declined up to 80% with increasing 
levels of boron in chickpea. The decrease was from 
96.7% (control) to 95% (10 mM) in lentil. The 
results showed that increasing boron treatments 
reduced to germination rate in both chickpea and 
lentil. This was in accordance with the findings of 
Shah  et al. (2013)  and  Alamri  et  al.  (2018)       who  
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identified negative effects of high dose boron on 
maize and barley, respectively. Turhan and Kuscu 
(2021) reported that the decline in germination ratio 
started with 2.0 mg L-1 boron and upper levels. They 
also observed that the germination ratio was 
51.89% in pepper, 50.18% in eggplant, and 53.06% 
in watermelon at 16.0 mg L-1 of boron 
concentration. The most visible change of boron 
deficiency reducing root growth, after exposure to 
B-deficient conditions (Marschner, 2012). The low 
concentration of boron (5 mM) increased root and 
shoot length in chickpea and lentil. Camacho-
Cristóbal et al. (2015) mentioned that B deficiency 
negatively affects cell elongation of the primary 
root. However, excess boron primarily inhibits 
plant germination and cell division and damages the 
thylakoid assembly by affecting photosynthesis, 
thereby reducing CO2 absorption, and resulting in 
reduced root and shoot growth (Reguera et al., 
2009). This hypothesis was in concordance with our 
results since a remarkable decrease was observed in 
root and shoot growth traits at the highest 
concentration of boron (10 mM). Similar results 
were reported by Valenciano et al. (2010). 5 mM 
boron concentration increased root and shoot fresh 
weights in chickpea and lentil. However, they 
declined under 10 mM concentration. The decline 
was higher in the chickpea compared to the lentil. 
So, the lentil could be evaluated as more tolerant to 
high concentrations of boron. Tepe and Aydemir 
(2017) also reported 0.5 and 1.0 mM concentrations 
of boron increased fresh root and shoot weight in 
lentil. Molassiotis et al. (2006) reported that a 0.5 
mM concentration of boron increased dry weight, 
however, Karabal et al. (2003) observed a decline 
in root and leaf dry weights of barley under a high 
concentration of boron (10.0 mM). 

Water scarcity is one of the most important 
agricultural and environmental threats in cultivated 
areas and based on climatic predictions, the 
availability of water resources is expected to 
decrease (Ceccarelli et al., 2010). Drought is a 
temporary decrease in water availability because of 
insufficient rainfall that limits plant growth, 
development, and productivity in many crops 
worldwide. So, the focus on breeding for drought 
tolerance mechanisms is becoming increasingly 
important. The present study investigated the 
effects of drought on the growth and physiological 
properties of chickpea and lentil under increasing 
boron treatments. Drought stress adversely affected 
to germination rate and seedling growth 
characteristics in chickpea and lentil. Especially, 
the seed germination rate is extremely reduced by 
increased levels of drought stress. The results also 
showed that increasing boron treatments decreased 
the germination rate in both chickpea and lentil. As 

a result, the overall findings show that germination 
and seedling growth parameters were greatly 
inhibited by different concentrations of PEG and 
>10 mM boron levels for chickpea and lentil 
production. 
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