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1. Intrоduсtiоn 

Two different approaches are effective in statistics; 

these are the classical (frequentist) approach and the 

probabilistic (Bayesian) approach (Browne & Draper 

2006; Wagenmakers et al 2008). The classical ap-

proach is based on the deductive method and evaluates 

the parameter as an unknown constant and is based on 

the frequency-based estimation of probability. The 

Bayesian approach is a technique based on the induc-

tion method and evaluates the parameter as a chance 

variable with a probability distribution. The Bayesian 

approach reveals the probability of an event by com-

bining it with experience (prior) with the information 

obtained from the trial.Bayesian theorem gives the 

relationship between conditional probabilities and 

marginal probabilities in a probability distribution for a 

random variable.Bayes Theorem was presented in 1763 

with the article "An Essay towards Solving a Problem 

in the Doctrine of Chances" written by Thomas Bayes, 

a British priest and mathematician. Although centuries 

have passed since its publication, the theory has found 
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its chance to regain popularity after the mid-20
th

 centu-

ry.The classical approach accepts the frequency defini-

tion of probability. According to this definition, the 

probability of an event is the frequency of many re-

peated attempts of that event. In the Bayesian ap-

proach, the parameter is considered as a random varia-

ble with a probability distribution. Accordingly, a prior 

probability distribution is determined for the estimator 

of the parameter. Thus, past experiences are included in 

the analysis. The final probability distribution (posteri-

or) of the parameter is obtained by combining with the 

actual data. In the classical approach, the parameter is 

seen as an unknown constant. Parameter estimation is 

calculated only based on the data available. The Bayes-

ian approach, the point estimate of the parameter is 

usually the mean value of the final distribution (poste-

rior mean), when the value calculated using appropriate 

methods is defined as the best estimate (point estimate) 

in the frequentist approach. 

Resampling is a way to reuse observations of exist-

ing sample data to create new hypothetical samples that 

represent the actual population. It is generally used 

when the population distribution is unknown and in 

cases where effective sample size is difficult to reach. 

ARTICLE INFO

  ABSTRACT 

Article history: 
Received date: 31.01.2020 

Accepted date: 22.03.2020 

 The purpose of the study is to investigate the relative performance of two 

estimation procedures, a semi-frequentist estimation technique (via a Boot-

strapped the restricted maximum likelihood: Bootstrap-REML) and Bayesian 

method (via a Gibbs sampler), for estimation of variance components of a two 

level hierarchical linear mixed model. For this purpose one variable named X 

was generated using R simulation with the structure of two level nested designs 

which showed Gaussian distribution. The variable X contains 10000 data, with 

an average of 0 and variances of 100 and. For this data, five different scenarios 

were created according to the rate of variance components and analyzes were 

carried out. All of the estimations and definitions of autocorrelation, changes of 

the total variance and estimation biases were performed for the posterior distri-

butions and bootstrapped parameter distributions of all the scenarios. In gen-

eral, the results obtained with both methods are close to each other, although 

the bias of the results obtained with the Gibbs sampling method was found less 

and autocorrelation was not found for Gibbs sampling estimates. In conclusion, 

according to the results of this study, it is not possible to say that using the 

Bootstrap-REML estimator under Gaussian distribution and balanced data is a 

good alternative to Bayesian Gibbs sampler.Perhaps different results may be 

obtained from another study using unbalanced data, non-normally distributed 

data and high sample sizes. 

Edited by:  
İbrahim AYTEKİN; Selçuk University, 

Turkey 

Reviewed by: 
Ali AYGÜN; Selçuk University, Turkey  

Eser Kemal GÜRCAN; Tekirdağ Namık 

Kemal University, Turkey 

Hande KÜÇÜKÖNDER; Bartın Univer-

sity, Turkey  

 

Keywords: 
Bayesian 

Gibbs Sampling 

VCE 

REML 

Bootstrap 
   

http://sjafs.selcuk.edu.tr/sjafs/index


92 
Narinç and Narinç / Selcuk J Agr Food Sci, (2020) 34 (1), 91-98 

Some resampling methods (Bootstrap, Jackknife, etc.) 

have been used frequently in recent years for making 

predictions of unknown parameters of a population, 

establishing confidence intervals and testing hypothe-

ses. Bootstrapping is the most popular resampling 

method today and uses sampling with replacement to 

estimate the sampling distribution of the estimator 

(Delpish 2009). The difference between resampling 

methods and Bayesian approach is based on repetitive 

sampling in the same sample in resampling technique. 

However, in the Monte Carlo simulation, the data is 

created purely on a theoretical basis through an algo-

rithm. The use of resampling methods for parameter 

estimation as an alternative to the classical approach is 

similar to the Bayesian approach when there is no prior 

knowledge of the parameters of the population being 

studied, but only one sample is observed. This parame-

ter estimation method, which basically contains the 

frequentist algorithm but looks like a Bayesian tech-

nique, can be called a semi-frequentist approach. 

Statistical models are three types as a fixed effect, 

random effect, mixed effect. While the hypothesis tests 

that compare the classes of the variables are performed 

for fixed effect models, it is desired to know the rates 

of the components that create total variation in random 

and mixed effect models (Searle et al 2006; Rash & 

Masata 2006). One of the goals of applied statistical 

methods is to estimate variance components. Research-

ers want to determine the components of the variance 

observed in the data obtained at the end of the experi-

ment and how much of total variance is caused by 

which reasons (Dağ et al 2003; Gökmen et al 2008; 

Altay et al 2019). It is desirable that the rate of error 

variance is small in the total variance and that the part 

of the total variance that can be explained by mixed 

effects is high. Researchers want to make some gener-

alizations or conclusions based on their results (Zülka-

dir & Aytekin 2009; Aytekin et al 2019). Many studies 

are carried out to estimate the variance components in 

fields such as agriculture, genetics, medicine, econom-

ics, astronomy and space sciences, and physics, where 

the applied statistics field is used extensively (Zülkadir 

et al 2008). 

In a mixed linear model (y = Xb + Zu + e), if the 

variance-covariance matrix V is unknown, then the 

variance D of V = ZDZ '+ R and the error variance R 

must be estimated. The estimation of these two matri-

ces forming V is called the estimation of the variance 

components. Various methods have been developed to 

make these predictions. The first studies for the estima-

tion of variance elements were performed by R. A 

Fisher (Robinson 1987, Searle et al 2006). The basic 

principle of this method, known as the ANOVA (Anal-

ysis of Variance) method, consists of solving the linear 

equation system obtained after equalizing the mean of 

squares to their expected values (Theobald et al 1997). 

However, studies at that time were limited only to 

balanced data or single factor unbalanced data (Robin-

son, 1987). Henderson developed the methods named 

after him (Henderson Type 1, 2, 3) (Searle et al 2006). 

Since ANOVA and Henderson methods are designed 

for balanced data, negative variance elements can also 

be estimated in the data obtained from the sample. In 

contrast, ML (Maximum Likelihood-maximum likeli-

hood) and REML (Restricted Maximum Likelihood-

restricted maximum likelihood) methods have been 

developed (Hartley & Rao 1967; Patterson & Thomp-

son 1971). These two methods based on likelihood are 

asymptotic normality, consistency and being within the 

parameter definition range (Fırat 2000). ML and 

REML methods are the most used applications because 

the variance elements do not give negative estimates. 

Different estimators are also used in the Bayesian esti-

mation of variance elements. According to the Bayesi-

an approach, the expected values are obtained by se-

lecting samples from the required distribution with 

Monte Carlo integration and using the sample averag-

es. There are estimation methods such as Metropolis 

Hastings algorithm and Gibbs sampling to obtain Mar-

kov chains according to specific properties. Gibbs 

sampling, which is a powerful iterative method for 

estimating posterior distributions, is a very popular 

method for predicting variance components. Gibbs 

sampling approaches the joint conditional density func-

tion of all parameters in the model by sampling from 

all full conditional density functions (Fırat, 1996). 

In a study by Harville (2004), was reported to the 

Gibbs sampler can be used to estimate iterates of a 

first-order REML algorithm. In the study, it was 

claimed that the use of the REML estimator is good for 

large data sets and the use of the Gibbs sampler is a 

good alternative to traditional numerical methods.In a 

study by Browne & Draper (2006), simulation studies 

whose design is realistic for education and medical 

research (and other research areas) were used to com-

pare Bayesian and probability-based methods for the 

estimation of variance components.In the study per-

formed by Delpish (2009), the variance components 

were estimated in the sample distributed χ
2
 using the 

minimum norm quadratic estimation estimator with the 

Bootstrap technique and using REML estimator for a 

two-level hierarchical linear model.According to the 

results of the study, although the estimations of fixed 

effects are correct both through Bootstrap MINQUE 

and REML, the efficiency of the estimates was deter-

mined to be affected by the distribution of errors for 

both procedures, especially for variance-covariance 

component estimates.It was concluded that the Boot-

strap via MINQUE appears to be an attractive alterna-

tive to estimation in cases where normality is not guar-

anteed.The purpose of the study is to investigate the 

relative performance of two estimation procedures, a 

semi-frequentist estimation technique (via a Boot-

strapped the restricted maximum likelihood: Boot-

REML) and Bayesian method (via a Gibbs sampler), 

for estimation of variance components of a two level 

hierarchical linear mixed model. 
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2. Materials and Methods 

In the study, one variable named X for the structure 

of two level nested designs was obtained using simula-

tions in an R package which showed Gaussian distribu-

tion. The variable X contains 10000 data, with an aver-

age of 0 and variances of 100 which are shown in the 

frequency histogram plots in Figure 1.  

 

Figure 1 

Frequency histogram with Gaussian distribution curve-

of X variable 

According to the two levels of nested design (a and 

b (a)), which constitute the two factors that this X vari-

able is associated with, 5 different scenarios have been 

constructed using the classical ML estimator for the 

proportions of the variance components. The five dif-

ferent scenarios mentioned are presented in Table 1. 

Table 1  

Variance components scenarios of simulated data  

Scenario 𝜎𝑎
2 𝜎𝑏(𝑎)

2
 𝜎𝑒

2 

1 2 3 95 

2 20 5 75 

3 45 5 50 

4 70 5 25 

5 90 5 5 

In the analysis of the data, the univariate mixed lin-

ear model shown as y = Xβ + Zu + e was used for the 

N dimensional y observation vector. In the model, X, g 

dimensional fixed effects vector; mat, Nxg dimensional 

fixed effects pattern matrix; Z, s dimensional chance-

related effects vector; u is the pattern matrix of Nxs 

dimensional chance-related effects and e is the vector 

of N-size chance-related errors.  

The Gibbs sampler was used in Bayesian analysis 

of variance component estimation. the prior distribu-

tion in Gibbs sampling; the uniform prior (f(β)=sabit) 

for fixed effect parameter and  it is assumed that ran-

dom effects show normal distribution 

(u|σ
2

a~N(0,I,σ
2
a)). It is assumed that the conjugate 

density functions of the prior distributions of the vari-

ance components 𝜎𝑎
2, 𝜎b(a)

2 and 𝜎𝑒
2 as follows (1); 
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It is understood from this function (1), that 𝜎𝑎
2, 𝜎b(a)

2  

and 𝜎𝑒
2 follow independent and inverse chi-square 

distributions. Thus,  𝜎𝑎
2, 𝜎b(a)

2  and 𝜎𝑒
2 are interpreted as 

the prior expected values of  𝜎𝑎
2, 𝜎b(a)

2  and 𝜎𝑒
2, respec-

tively, whereas the precision parameters are equivalent 

to the degrees of freedom of 𝑣𝑎
2, 𝑣b(a)

2 and 𝑣𝑒
2 (Fırat, 

1996a). Gibbs sampling, which is a powerful iterative 

algorithm to study posterior distributions in complex 

Bayesian models, generates sample values for the 

common posterior density distribution of all parameters 

in the model by sampling from all full conditional 

distributions, respectively. For this purpose, all varia-

bles (β, u,  𝜎𝑎
2, 𝜎b(a)

2  and 𝜎𝑒
2) are given a random initial 

value and a Markov chain is created when a cycle is 

completed by updating the previous one for each varia-

ble (Fırat, 1996b).  

In this study, this process was repeated 55000 times 

for variable X and repeated each scenario, and margin-

al posterior distributions were obtained from a single 

long chain per scenarios. In the meantime, the first 

5000 burn-in parts of Gibbs chains were removed, and 

the thinning interval value was accepted as 200 for the 

remaining chain for dilution according to the effective 

independent sample numbers calculated by using time-

interval auto-covariances. Gibbs sampling was per-

formed using the R program's MCMCglmm library 

(Hadfield, 2010). In this study, simulation data was 

used and no fictional data was simulated, and parame-

ters were selected appropriately for convenience in 

calculations and estimates. In the estimates of the vari-

ance components of each scenario obtained from the 

mentioned data, the methodology of the REML estima-

tion is described by Fırat (2000). As explained by 

Efron & Tibshirani (1993), Bootstrap technique was 

applied for variable X and each scenario. For this pur-

pose, in the data set consisting of 10000 observations, 

the observations were changed and bootstrap sample 

datasets were generated with a choice of 1/10000 prob-

ability. In the study, 250 different samples were ob-

tained with the Bootstrap method for each scenario and 

the SAS macros presented below were written to per-

form this operation. The SAS program macro also 

includes the varcomp procedure and REML method 

used for variance component estimation. 
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Table 2 

A SAS macro codes for Bootstrapped REML variance 

component estimator 

title'Simulated Data forBootstrapping 

REML'; 

dataefruz; 

input f1 f2 ID X1; 

label f1  ='Effect 1' 

         f2  ='Effect 2' 

         ID  ='ID' 

    X1  ='X variable'; 

datalines; 

1  201  601  19.76 

1  201  602  4.62 

1  201  603  6.12 

. . . . 

. . . . 

. . . . 

200  600  10599 22.84 

200  600  10600 25.22 

; 

%macroboot; 

%letn_boot=250; 

%do i=1%to&n_boot; 

       data cboot1;scan: set        

 efruzend=last;n+1; 

if not lastthengotoscan; 

do j=1to n; 

seed=floor(1000000000*(sqrt(time())-

floor(sqrt(time())))); 

k=ceil(ranuni(seed)*n); 

setefruzpoint=k; 

if _error_ thenabort; 

output; 

end; 

stop; 

run; 

       data a3;set cboot1 ; 

newobs=_n_; 

run; 

data boot52;set a3; 

run; 

procvarcompdata=boot52 method=reml; 

Class f1 f2 x1 ; 

model x1 = f1 f2(f1); 

run; 

 %end; 

  %mendboot; 

  %boot 

After all estimations the definitions of autocorrela-

tion and bias were performed on the posterior distribu-

tions and bootstrapped parameter distributions generat-

ed for the variance components of each of the scenari-

os. Data simulation, Gibbs sampling, Durbin-Watson 

statistic and, all other statistical analyses were per-

formed using different packages of the R program, 

Bootstrap and REML estimations of variance compo-

nents were performed using different procedures of the 

SAS program. 

3. Results and Discussion 

The descriptive statistics of posterior distributions 

of parameters and the distributions of Bootstrap sam-

ples are presented in Table 3 and Table 4, respectively. 

Table 3 

The descriptive statistics of posterior distributions of 

variance component estimates (VC) from Gibbs sam-

pler 

Scenario VC Mean SE Median 

Confi-

denceIntervals 

2.5% 97.5% 

   𝜎𝑎
2 2.05 0.01 2.05 2.02 2.08 

S1 𝜎b(a)
2  3.04 0.01 3.04 3.02 3.07 

  𝜎𝑒
2 93.95 0.06 93.91 93.82 94.07 

   𝜎𝑎
2 21.09 0.11 21.06 20.84 21.34 

S2 𝜎b(a)
2  4.60 0.02 4.57 4.55 4.64 

  𝜎𝑒
2 73.82 0.05 73.77 73.71 73.93 

   𝜎𝑎
2 45.35 0.19 45.07 44.91 45.78 

S3 𝜎b(a)
2  4.66 0.02 4.68 4.62 4.71 

  𝜎𝑒
2 49.34 0.03 49.34 49.27 49.42 

   𝜎𝑎
2 70.82 0.31 69.98 70.12 71.52 

S4 𝜎b(a)
2  4.15 0.01 4.15 4.12 4.19 

  𝜎𝑒
2 24.79 0.02 24.79 24.76 24.83 

   𝜎𝑎
2 91.53 0.42 90.82 90.57 92.48 

S5 𝜎b(a)
2  3.88 0.01 3.86 3.85 3.92 

  𝜎𝑒
2 4.60 0.00 4.60 4.59 4.61 

The mean and median values of the distributions 

obtained by estimating the variance components with 

both Gibbs sampling and the Bootstrap-REML estima-

tor show that the posterior distributions are Gaussian.  

Table 4 

The descriptive statistics of variance component esti-

mates (VCE) distributions of Bootstrap-REML estima-

tion 

Scenario VC Mean SE Median 

Confi-

denceIntervals 

2.5% 97.5% 

   𝜎𝑎
2 7.05 0.05 7.08 6.94 7.16 

S1 𝜎b(a)
2  2.12 0.04 2.12 2.04 2.20 

  𝜎𝑒
2 88.76 0.09 88.75 88.56 88.95 

   𝜎𝑎
2 23.24 0.04 23.22 23.16 23.32 

S2 𝜎b(a)
2  5.22 0.04 5.17 5.12 5.31 

  𝜎𝑒
2 69.88 0.08 69.82 69.70 70.06 

   𝜎𝑎
2 46.40 0.03 46.45 46.34 46.47 

S3 𝜎b(a)
2  5.33 0.03 5.35 5.26 5.41 

  𝜎𝑒
2 46.65 0.07 46.60 46.50 46.80 

   𝜎𝑎
2 72.40 0.02 72.41 72.34 72.45 

S4 𝜎b(a)
2  2.46 0.02 2.43 2.41 2.52 

  𝜎𝑒
2 23.53 0.05 23.45 23.42 23.65 

   𝜎𝑎
2 92.93 0.01 92.93 92.90 92.96 

S5 𝜎b(a)
2  1.64 0.01 1.62 1.61 1.68 

  𝜎𝑒
2 4.03 0.02 4.02 3.99 4.08 
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By the scenarios and components, the amount of 

bias (%), change (%) and Durbin Watson statistics for 

distributions estimated using Gibbs Sampling and 

Bootstrap-REML estimatorwere presented in Table 5 

and Table 6, respectively.  

Significant differences were observed between 

Bootstrap-REML and Gibss sampling methods in terms 

of biases in parameter estimates and changes in total 

variance. When Gibbs sampling results are examined, 

biased results are lower in scenarios where the error 

variance share is large, on the contrary, bias in esti-

mates increased as the rate of error variance decreased. 

In the Gibbs sampling method, the bias of the b(a) 

factor of nested designed model was found to be higher 

than the bias results of other variance components.In 

terms of biased estimates in the estimation of variance 

elements, the results of the Bootstrap-REML method 

were found worse than the Gibbs sampling.  

Especially in scenario 1 where the error variance is 

highest, the biases realized with the Bootstrap-REML 

method for 𝜎𝑎
2, 𝜎b(a)

2  and 𝜎𝑒
2are 257.37%, 29.27% and 

6.57%, respectively. In terms of bias in estimates, the 

results obtained for scenario 4 and scenario 5 were 

found to be quite high in the analyses made with the 

Bootstrap-REML method. The lowest biased variance 

component estimation results were found for Gibbs 

sampling for scenario 1and for Bootstrap-REML for 

scenario 3. 

Table 5 

The amount ofbias (%), change (%) and Durbin Wat-

son statistics for distributions estimated using Gibbs 

Samplingby scenarios and components 

 

Variance 

Component 

Bias 

% 

Change 

% 

Durbin 

Watson 

   𝜎𝑎
2 2.49 

 
1.90 

S1 𝜎b(a)
2  1.46 0.96 2.05 

  𝜎𝑒
2 1.11 

 
1.95 

   𝜎𝑎
2 5.46 

 
1.87 

S2 𝜎b(a)
2  8.10 0.49 1.99 

  𝜎𝑒
2 1.57 

 
1.99 

   𝜎𝑎
2 0.77 

 
2.10 

S3 𝜎b(a)
2  6.70 0.65 1.96 

  𝜎𝑒
2 1.31 

 
2.01 

   𝜎𝑎
2 1.18 

 
2.03 

S4 𝜎b(a)
2  16.93 0.23 2.04 

  𝜎𝑒
2 0.83 

 
2.12 

   𝜎𝑎
2 1.70 

 
1.92 

S5 𝜎b(a)
2  22.31 -0.01 2.07 

  𝜎𝑒
2 7.98 

 
1.98 

Table 6 

The amount of bias (%), change (%) and Durbin Wat-

son statistics for distributions estimated using Boot-

strap-REMLby scenarios and components 

 

Variance 

Component 

Bias 

% 

Change 

% 

Durbin 

Watson 

   𝜎𝑎
2 252.37 

 
0.06 

S1 𝜎b(a)
2  29.27 2.07 0.02 

  𝜎𝑒
2 6.57 

 
0.05 

   𝜎𝑎
2 16.19 

 
2.04 

S2 𝜎b(a)
2  4.30 1.66 2.06 

  𝜎𝑒
2 6.82 

 
1.92 

   𝜎𝑎
2 3.12 

 
2.12 

S3 𝜎b(a)
2  6.65 1.61 2.27 

  𝜎𝑒
2 6.70 

 
2.28 

   𝜎𝑎
2 3.43 

 
1.94 

S4 𝜎b(a)
2  50.75 1.61 1.91 

  𝜎𝑒
2 5.87 

 
2.19 

   𝜎𝑎
2 3.26 

 
2.20 

S5 𝜎b(a)
2  67.13 1.39 1.76 

  𝜎𝑒
2 19.35 

 
2.12 

The distributions of parametersobtained from Gibbs 

sampling and Bootstrap-REML estimator were pre-

sented in Figure 2 and Figure 3, respectively.  
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Figure 2 

The frequency distributions for variance components estimated using the Gibbs sampling for each scenario and for each 

parameter 
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Figure 3 

The frequency distributions for variance components estimated using the Bootstrap-REML sampler for each scenario 

and for each parameter 

Similar results were obtained for both estimation 

methods in terms of changes in the total variation, 

which is another criterion in which Gibbs sampling and 

Bootstrap-REML method can be compared in the esti-

mation of variance components. Similar results were 

obtained for both estimation methods in terms of 

changes in the amount of total variance, which is an-

other criterion in which Gibbs sampling and Bootstrap-

REML method can be compared in the estimation of 

variance components. While the decrease in the total 

variance estimated by both methods occurs, the amount 

of this decrease is less of the Gibbs sampling method 

than the Bootstrap-REML method. In point of autocor-

relation, in all the scenarios tested in both estimation 

methods, only the Bootstrap-REML method deter-
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mined a significant positive relationship in the distribu-

tion of all three parameters in scenario 1. 

In a study conducted by Delpish (2009), variance 

elements were estimated by using REML and Boot-

strap-Minque estimators, and bias amounts were quite 

small in accordance with this study. Different research-

ers (Swallow & Monahan 1984; Raudenbush & Bryk 

1986; Delpish 2009; Narinç et al 2011) have performed 

similar comparison using different variance component 

estimator for balanced-unbalanced data or non-

Gaussian distributed data. In this study, 5 different 

scenarios were emphasized by keeping the sample size 

(10000) constant. Based on the results of Delpish's 

work, it is possible to say that the Bootstrap-MINQUE 

is an attractive alternative to predictions when normali-

ty is not guaranteed. Maas & Hox (2005) proposed a 

similar proposal, according to which they said that 

Bootstrap was a different approach that caught the 

attention of analysts if the assumption of normality was 

violated. However, according to the results of this 

study, it is not possible to say that using the Bootstrap-

REML technique under Gaussian distribution is a good 

alternative. Perhaps different results may be obtained 

from another study using unbalanced data, non-

normally distributed data and high sample sizes. There-

fore, it is recommended that the similar study be car-

ried out for unbalanced data, non-normally distributed 

data and high sample sizes. 
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