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   Abstract 
 

In this study, the control of the single tank liquid level system used in control systems has been 

carried out. The control of the single tank liquid level system has been performed with the classic 

PI, modified PI, state feedback with integrator action, and Q learning algorithm and SARSA 

algorithms, one of the artificial intelligence methods. The tank system to be modelled was carried 

out using classical physics, namely Newton's laws. Then, the mathematical model obtained of the 

system that are continuous model in time is acquired. The originality of the study; the non-linear 

liquid tank system is controlled by classical controllers and reinforcement methods. For this 

purpose, the system was firstly designed to model the system, then the system has been linearized at 

a specific point in order to design classic PI, modified PI, and state feedback with integral. After 

that, agents of the Q Learning algorithm and SARSA algorithms were trained for the system. Then 

the agents have controlled the single-level tank system. The results of the classic controllers and 

supervised controllers are contrasted with regard to performance criteria such as rising time, settling 

time, overshoot and integral square error. Consequently, Q learning method has produced 0.0804-

sec rising time, 0.943 sec settling time and 0.574 integral square errors. So, Q learning algorithm 

has produced and exhibited more thriving and successful results for controlling single liquid tank 

system than PI, Modified PI, state feedback controllers and SARSA. 

 
 

 

 

1. Introduction* 

 

Machine learning is used in artificial intelligence, 

with the development of today's computer technology, 

artificial intelligence has entered many different 

application areas from health [1–3], and logistics [4, 5] to 

chemistry, finance [6], [7] to education [8] to computer 

game [9, 10] and industry [11– 13]. The main cause is that 

machine learning methods can evaluate and interpret data 

faster and more accurately today and make the most 

appropriate and correct decisions. However, according to 

the place of use, machine learning can be divided into 

branches such as supervised, unsupervised and 

reinforcement learning. But reinforcement learning has 

gained in significance since it can adapt to changing 

environmental conditions. An agent can interact with the 

environment, then it can learn what to do, depending on a 

specific reward. its application to many different fields has 

 
* Corresponding Author: zbatik@subu.edu.tr 

 

begun to be developed [13, 14]. Reinforcement learning, 

which has the capacity to learn its environment, could also 

be implemented to control nonlinear systems and industrial 

processes [12].  

Reinforcement learning could be traced back to 

Bellman's work on optimal control theory in the 1950s 

[15]. Bellman, working on optimal control theory, 

developed dynamic programming, which is an approach to 

optimally control dynamic systems over time. In this 

method, a function value of a state for the system is 

specified by calculating the control signal. According to 

this value and according to the function value of the next 

state, iteratively discrete optimal control signal was tried to 

be calculated. This approach can be expressed with the 

Bellman Equation. Therefore, the approach that enables the 

calculation of the control signal using the Bellman 

Equation can be called dynamic programming [16]. This 

method can be implemented to randomly run Markovnian 

decision processes and systems can be controlled via MDP 

without knowing the model of the system. MDP generally 
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refers to processes that depend on the current and next 

state. It can control MDPs with optimal control methods 

using dynamic programming, but it requires a processing 

load [17]. In addition, they have the problem of "the curse 

of dimensionality" as they operate for every situation [18]. 

In their study, Farley and Clark proposed a trial-and-error 

method as well as dynamic programs that evaluate each 

situation. They have proposed artificial neural networks 

that learn by trial and error. Later, Farley and Clark 

implemented the trial-and-error method to pattern 

recognition [15, 16]. Michie has used the trial-error 

learning system for tic tac toe game [19]. The temporal 

difference learning method has also been applied in 

playing the tic tac toe game. In fact, the basis of temporal 

difference learning is based on the learning psychology of 

animals. Minsk first noticed this in 1954 and predicted that 

it could be significant for learning methods [20, 21]. In the 

same period, Samuel developed the temporal difference 

method independently, influenced by chess games [22]. 

However, when we look at the 1980s, the trial error 

method, which was transferred into the temporal difference 

method, is mostly known as actor-critic architecture. 

Different versions of the temporal difference method have 

been developed. Later, Chris Watkins developed the Q 

learning method in 1989 by using the temporal difference 

learning method with optimal control [23, 24]. In the 1990s 

Tesauro developed a backgammon playing program [25]. 

In this method, training has been conducted using a version 

of the Temporal difference method and artificial 

intelligence [26]. In fact, the Q learning method has 

methods such as dynamic programming, temporal 

difference, and Monte Carlo [10, 27, 28]. Today we live 

through the information age, especially the use of 

reinforcement learning with methods such as deep learning 

[13, 28–30], which continues to be up-to-date. Moreover, it 

is open to development and open to application in many 

different fields. 

The tank system has been used since Hellenistic times 

[31]. In particular, there are studies carried out to measure 

time by keeping the water level constant in the tank. In the 

17th century, applications such as pressure, temperature, or 

speed control of the rotor were carried out in tanks. 

Examples of these are mechanical applications such as 

temperature control for furnaces or speed control for 

windmills. However, the development of the real industry 

was realized with the invention of steam engines and the 

industrial revolution took place. The widespread use of 

variables such as pressure, temperature, mixing, amount, 

flow rate and level in tank systems used in industrial 

processes, especially in sectors such as drink, beverage, 

chemistry, pharmaceutical and petroleum, has made it 

important to control. Many studies on this topic have been 

undertaken in recent years [32, 33]. Mizumoto et al. have 

proposed employing a PID controller design to control the 

tank liquid system [34]. Taler et al. have put forward and 

applied a method to control the hot fluid with PID [35]. 

Samin et al. realized the control of the liquid tank system 

with PID with PLC. At the conclusion of the research, the 

values for different parameters were compared and 

interpreted [36]. Fatih et al. have used to genetic algorithm 

to determine PID and LQR for controlling of level of the 

liquid tank system [37]. Selamet et al. have implemented 

the control of the liquid tank system with the most optimal 

controller parameters by using the PSO algorithm to 

specify the parameters of the PID and LQR methods [38]. 

Sastry et al. have performed the control of the single tank 

system using a nonlinear PID controller [39]. Kum et al. 

have carried out the tank system with a sliding mode 

controller. Wei et al. have realized the control of the liquid 

tank system with the back-stepping method [40]. Xiao et 

al. have used fuzzy logic in the control of the tank system 

in their study. In their study, fuzzy logic can adapt the PID 

controller. They have obtained successful results [41]. 

Esakkiappan, on the other hand, has performed the control 

of the liquid tank system with the PI controller they 

designed with cuckoo optimization [42]. Then, Son 

performed the control of the tank system using an adaptive 

inverse evolutionary algorithm [43]. Urrea et al. Again, 

using the liquid tank system with PID, Gain Scheduling, 

Internal Mode Control and fuzzy logic, they have 

implemented the control of the system comparatively and 

presented the results [44]. 

Essentially, in this study, a nonlinear system is 

controlled using classical controllers and reinforcement 

learning techniques. In particular, the single-level tank 

system was controlled using a modified PI controller as 

well as the classic PI controller. In addition, using the 

linearized model, the design and control of the State 

feedback controller with an integrator has been carried out. 

Finally, the control of the liquid tank system was carried 

out using SARSA (State-action-reward-state-action) and Q 

learning methods. The obtained results have been 

compared with respect to ISE (Integral square error) 

performance value and overshoot and settling time. In 

addition, learning-based SARSA and Q learning methods 

have been compared with regard to performance criteria 

and control signals. It has seen that Q learning algorithm 

produced better results. 
 

The main contributions of this paper are as follows: 

• PI, Modified PI and State Feedback with integral 

action controller have been designed to control 

the single tank liquid system. 

• SARSA and Q Learning Methods are applied to 

control the single tank liquid system. 

In this study, the first part of the content is the 
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introduction and information about artificial intelligence, 

reinforcement learning, tank system and control, and a 

literature review have been given. In Section 2, there is the 

Material and Method section, the methods realized in the 

study have been explained and the designs for the system 

have been made. Section 3 is the result and the control of 

the single-level tank system and the results obtained are 

demonstrated by comparing them in tables and graphics. 

Chapter 4 is the conclusion and the results are evaluated. 

 

2. Materials and Methods 

 

In reinforcement learning, there are two main system 

blocks seen in Figure 1. One of these blocks is an agent 

and the other is an environment. The agent's learning and 

recognition of the environment via interactions with it, and 

the experiences that have been obtained as a result of these 

interactions with the environment, recognizes the 

environment and begins to respond in a way that achieves 

the maximum reward it aims [7, 10, 15, 27, 30]. In this 

method, the agent constantly tries to learn the environment 

and thus develops the next step. 
 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡)

+ 𝛼 [𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾
𝑚𝑎𝑥
𝑎
𝑄(𝑠𝑡+1, 𝑎)

− 𝑄(𝑠𝑡 , 𝑎𝑡)] 

(1) 

 

 

In addition, the epsilon greedy method is applied to 

determine the q values [45]. This method allows the agent 

to visit all possible states during learning. Thus, the agent 

acquires better knowledge of the environment and 

determines the q values that can maximize the reward. The 

pseudocode of Q learning has been presented in Algorithm 

1. This is an off-policy strategy in which the learning agent 

learns the value function depending on the current action 

obtained from the policy currently in use [28].  
 

 
Figure 1. Interaction between Agent and Single Level 

Tank System Environment. 

Algorithm 1 . Q learning Pseudo code. 

Input: 

State (𝑠) 

Action (𝑎𝑡) 

Learning rate (𝛼) 

Discount factor (𝛾) 

Reward 𝑅(𝑠𝑡, 𝑎𝑡) 

Updated table 𝑄(𝑠𝑡 , 𝑎𝑡) 

Output: 

Selected action according to updating table 𝑄(𝑠𝑡, 𝑎𝑡) 

For episode 1, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 do 

Initialise state 𝑠𝑡 

𝑑𝑜𝑛𝑒 = 𝐹𝐴𝐿𝑆𝐸 

While 𝑑𝑜𝑛𝑒 == 𝐹𝐴𝐿𝑆𝐸 

Choose 𝑎𝑡 with 𝜖 greedy probability 

Execute 𝑎𝑡 and observe state 𝑠𝑡+1, reward 𝑟𝑡 and 𝑑𝑜𝑛𝑒 

Update table using Equation 1 

End While 

End For 

 

2.1. Q learning Algorithm 

 

Q learning method and SARSA methods are model-

independent or model-free reinforcement learning 

methods. Reinforcement learning also has a feature that 

learns more from behavior. This occurs during an agent's 

interaction with the environment. Agent, which is being 

learned, interacts with environment and evaluates the 

outputs of the environment to produce an output called a 

reward [31-32, 50–52]. The agent learns the environment 

and begins to operate in a way that receives a better reward 

at each step based on the agent's current state, interaction 

with environment, and agent's next state. It can be 

preferred in applications that are difficult to model, 

especially since they can learn by experiencing the results 

of actions rather than the model. Especially with the 

Bellman equation that Richard Bellman recommends, and 

Watkin uses in reinforcement learning, it is provided to 

learn the actions and outputs performed depending on the 

situations. In this learning method, the system is learned in 

terms of situations and action and reward value rather than 

a specific model. The simplest version of the Bellman 

equation used in Q learning is given in Equation 1. 

Equation 1 used 𝑠𝑡, state at time t, action 𝑎𝑡  at time t, 𝑠𝑡+1 

state at time t+1, 𝑅(𝑠𝑡 , 𝑎𝑡)  reward value at 𝑠𝑡 and 𝑎𝑡, 

𝑄(𝑠𝑡 , 𝑎𝑡) state of being value at 𝑠𝑡 and 𝑎𝑡, 𝛼 learning 

factor, and 𝛾 discount factor. max
𝛼
(𝑄(𝑠𝑡+1, 𝑎𝑡+1)) is the 

value at which the maximum q value is produced 

according to the action α in the case of 𝑠𝑡+1. In each 

iteration, this operation is performed, and the q values are 

updated 
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2.2. SARSA Algorithm 

 

SARSA, which is a method used in learning 

Markovinian processes, is a method used in reinforcement 

learning in machine learning. This method was proposed 

by Rumble and Niranjan as an alternative to the Q learning 

algorithm [46]. This method is an on-policy and the 

learning agent tries to learn the value function depending 

on the action derived from another policy [28]. That is, it 

does not need to be a value generated from within itself. 

The equation used in SARSA is given in Equation 2.  The 

notations 𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑅(𝑠𝑡 , 𝑎𝑡), 𝑄(𝑠𝑡 , 𝑎𝑡),  𝛼, 𝛾, which has 

been used in Equation 1, is the same as the Q learning 

algorithm. There is only a single difference: the value of 

𝑄(𝑠𝑡+1, 𝑎𝑡+1) represents the Q value obtained when the 

action 𝑎𝑡+1 is applied in the case of 𝑠𝑡+1. For this value to 

be produced, the algorithm's action must be applied once, 

and the Q value produced by this applied action must be 

determined. In the SARSA algorithm, each action is 

applied to the 𝑎𝑡 system, and 𝑅(𝑠𝑡 , 𝑎𝑡) and 𝑄(𝑠𝑡+1, 𝑎𝑡+1) 

are determined and 𝑄(𝑠𝑡 , 𝑎𝑡) values are updated. The 

psoudecode of the SARSA algorithm is given in Algorithm 

2. 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = 

𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)

− 𝑄(𝑠𝑡 , 𝑎𝑡)] 

(2) 

 

Algorithm 2. SARSA Pseudo code. 

Input: 

State (𝑠) 

Action (𝑎𝑡) 

Learning rate (𝛼) 

Discount factor (𝛾) 

Reward 𝑅(𝑠𝑡, 𝑎𝑡) 

Updated table 𝑄(𝑠𝑡 , 𝑎𝑡) 

Output: 

Selected action according to updating table 𝑄(𝑠𝑡, 𝑎𝑡) 

For episode 1, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 do 

Initialise state 𝑠𝑡 

𝑑𝑜𝑛𝑒 = 𝐹𝐴𝐿𝑆𝐸 

While 𝑑𝑜𝑛𝑒 == 𝐹𝐴𝐿𝑆𝐸 

Choose 𝑎𝑡 with 𝜖 greedy probability 

Execute 𝑎𝑡 and observe state 𝑠𝑡+1, reward 𝑟𝑡 and 𝑑𝑜𝑛𝑒 

Choose 𝑎𝑡+1 with 𝜖 greedy probability using state 𝑠𝑡+1 from 𝑄  

Update table using Equation 2  

End While 

End For 

 

 

2.3. Single Tank Liquid Level System 

 

Single tank liquid level system, which is a very 

common system in the industry, is widely used in process 

control [37, 49]. It is mostly encountered in places where 

liquid filling and discharge are made such as medicine, 

food, and agriculture. In Figure 1, the structure of the tank 

level system is demonstrated. There is a main tank, motor 

and discharge tank in the system in Figure 1. Liquid level 

in the discharge tank is tried to be controlled by controlling 

a motor connected to the main tank. So, a single tank liquid 

level system has a single input which is the motor and a 

single output that is liquid level. There are parameters used 

in the single tank liquid level system, surface area of the 

tank 𝑎, the surface area of the outlet of the discharge tank 

𝑎𝑏, and the velocity coefficient 𝑐𝑑𝑏 , which differs due to 

the outlet structure for fluid [50]. The modeling of the 

single liquid tank system is presented in equation 3 𝑞𝑖(𝑡) is 

the fluid’s flow rate sent by the engine into the discharge 

tank, 𝑞𝑜(𝑡) is fluid’s flow rate leaving the discharge tank, 

and ℎ(𝑡) is the liquid’s height in the discharge of tank. 

Consequently, the fluid supplied by the engine is the 

system's input, and the fluid’s height in the discharge tank 

is the system's output. 

 

𝑞𝑖(𝑡) − 𝑞𝑜(𝑡) = 𝑎
𝑑ℎ(𝑡)

𝑑𝑡
   

(3) 

𝑞𝑜(𝑡) = 𝑐𝑑𝑏𝑎𝑏√2𝑔ℎ(𝑡) (4) 

 

In Table 1, the parameters of the Single Tank Liquid Level 

System have been displayed. 

 

Table 1. Parameters of Single Tank Liquid Level System. 

Parameters Unit Value 

𝑐𝑑𝑏  - 0.62 

𝑎𝑏 𝑚2 0.00314 

𝑎 𝑚2 0.00314 

𝑔 𝑚
𝑠2⁄  9.81 

 

After the values of the parameter of the system have 

been substituted in their place, the nonlinear model 

becomes like as in Equation 5. Then, Equation 6 is 

obtained by editing Equation 5. After that, Equation 7 is 

obtained when the 𝑥(𝑡) control sign is written instead of 

ℎ(𝑡) height variable and the 𝑢(𝑡) control signal is written 

instead of 𝑞𝑖(𝑡). Controller design will be realized by 

linearizing this equation at a certain point. 

 

𝑑ℎ(𝑡)

𝑑𝑡
= 31.847𝑞𝑖(𝑡) − 0,62√2 × 9.81 × ℎ(𝑡) (5) 

ℎ̇(𝑡) = −2.746√ℎ(𝑡) + 31.847𝑞𝑖(𝑡) (6) 

�̇�(𝑡) = −2.746√𝑥(𝑡) + 31.847𝑢(𝑡) 

𝑦 = 𝑥(𝑡) 

 

(7) 

For linearization, by making  �̇�(𝑡) = 𝑓(𝑥, 𝑢) the 

linear model for a single tank liquid level system has been 
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calculated according to the equilibrium point 𝑥0 = 1, 𝑢0 =

1. For this, in the linearization of the state, Equation 8 is 

first made and linearization is performed around the 

equilibrium point. Then the values of 𝑥0 and 𝑢0 are written 

in place to get Equation 9. Equation 10 is obtained when 

the mathematical operations in Equation 9 are performed. 

Equation 11 is obtained when this expression in the time 

dimension is moved to the Laplace dimension. After that, 

by using the output-to-input ratio to determine the system's 

transfer function, Equation 12 is obtained. 

 

∆�̇�(𝑡) =
𝑑𝑓(𝑥, 𝑢)

𝑑𝑥
|
𝑥=𝑥0

∆𝑥(𝑡)

+
𝑑𝑓(𝑥, 𝑢)

𝑑𝑢
|
𝑢=𝑢0

∆𝑢(𝑡) 

𝑦 = ∆𝑥(𝑡) + 𝑥(𝑡) 

(8) 

∆�̇�(𝑡) = −2.746 (
1

2
(𝑥0)

−0.5) ∆𝑥(𝑡)

+ 31.847∆𝑢(𝑡) 

𝑦 = ∆𝑥(𝑡) + 𝑥(𝑡) 

(9) 

∆�̇�(𝑡) = −1.373∆𝑥(𝑡) + 31.847∆𝑢(𝑡) 

𝑦 = ∆𝑥(𝑡) + 𝑥(𝑡) 
(10) 

𝑠∆𝑥(𝑠) = −1.373∆𝑥(𝑠) + 31.847∆𝑢(𝑠) (11) 

𝐺(𝑠) =
∆𝑥(𝑠)

∆𝑢(𝑠)
=

31.847

𝑠 + 1.373
 (12) 

 

2.4.  PI and Modified PI 

 

The transfer function of a single tank liquid level 

system has been obtained in Equation 12. When the PI 

controller has been designed according to Zeigler Nichol’s 

step response for this system, the obtained controller has is 

given in Equation 13. 

 

𝑃𝐼(𝑠) = 𝐾𝑝 + 𝐾𝑖
1

𝑠
= 0.3887 + 2.9905

1

𝑠
 

 

(13) 

Since this tank system has been controlled in discrete 

time, the controller has to be discretized for the system to 

be implemented. The discrete structure of the discretized 

controller at T=0.05 sec has been obtained as 𝑃𝐼(𝑧) =
19,82𝑧−7.43

𝑧−1
. Then by using this controller, controlling of 

single-level tank system has been conducted by using PI as 

in Figure 2 and modified PI as in Figure 3. 

 

 
                                     Figure 2. Control Structure with Single Tank Liquid Level System with PI. 

 

 
                                     Figure 3. Single Tank Liquid Level System Control Structure with Modified PI. 

2.5.  State Feedback Controller Design 

 

State feedback controllers with integral action have 

been designed for tank system control, and the tank system 

has been controlled. The structure of state feedback with 

integral action has been demonstrated in Figure 4. The 

controller has been realized by adding an integral action to 

a system in the structure designed in the state space. By 

adding an integrator to controller, steady state error 

between reference and system response would be 

eliminated. In Figure 4, each signal namely error (𝑒(𝑡)), 

control signal (𝑢(𝑡)), and state of the system (�̇�(𝑡)) is 

designed step by step as in Equation 14. As a result, and 

augmented state space containing the state of the system 

(�̇�(𝑡)) and integral of the error (�̇�𝑖(𝑡)) is obtained in 

Equation 15. In Equation 15, the Control signal of the 

system has become 𝑟𝑒𝑓(𝑡) in the augmented state. After 

the parameters of the tank system are substituted in their 

place, the structure of the system’s model to be utilized in 

the design has been obtained in Equation 16. 
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𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) = 𝑟(𝑡) − 𝐶𝑥(𝑡) 

𝑒(𝑡) = �̇�𝑖 = 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) = 𝑟(𝑡) − 𝐶𝑥(𝑡) 

𝑢(𝑡) = 𝑥𝑖 − 𝐾𝑥(𝑡) 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑥𝑖 − 𝐾𝑥(𝑡)) 

�̇�(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝑥𝑖 

(14) 

[
�̇�(𝑡)
�̇�𝑖(𝑡)

] = [
𝐴 − 𝐵𝐾 𝐵
−𝐶 0

] [
𝑥(𝑡)
𝑥𝑖(𝑡)

] + [
0
1
] 𝑟𝑒𝑓(𝑡) (15) 

[
∆�̇�(𝑡)
�̇�𝑖(𝑡)

] = [
−1,373 − 31,847𝐾 31,847

−1 0
]

⏟                    
𝐴𝑐𝑙

[
∆𝑥(𝑡)
𝑥𝑖(𝑡)

]

+ [
0
1
] 𝑟𝑒𝑓(𝑡) 

(16) 

 

 

The system matrix of the system in which pole 

placement will be made is 𝐴 = −
√2×9.81

2
. B=1 is taken as 

C=1. The pole’s place of the tank system will be 

determined with respect to the K parameter. But the value 

of K parameter will be determined with respect to places of 

the poles of the tank system. Then, the closed loop 

characteristic equation is obtained as 𝑑𝑒𝑡(𝐼𝑠 − 𝐴𝑐𝑙) =

(𝑠 − (𝐴 − 𝐵𝐾))(𝑠) + 𝐵𝐶 = (𝑠 − (−1,373 −

31,847𝐾))(𝑠) + 31,847. When this equation is expanded, 

it is arranged as 𝑑𝑒𝑡(𝐼𝑠 − 𝐴𝑐𝑙) = 𝑠
2 + (𝑠 + 1,373 +

31,847𝐾)𝑠 + 31,847. Normally the characteristic 

equation of the second order system is 𝑠2 + 2𝜁𝑤𝑛𝑠 +

𝑤𝑛
2 = 0. When these equations are equalized, the natural 

frequency of the system becomes 𝑤𝑛 = 5,643. For the 

design, the 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔  value was chosen as 1 sec, 20 times 

the sampling time. For this design, the damping coefficient 

of the system becomes 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 =
4

𝜁𝑤𝑛
= 1𝑠𝑒𝑐 → 𝜁𝑤𝑛 =

4. In the characteristic equation, 𝜁 = 0,708 is obtained 

from the equation 1,373 + 31,847𝐾 = 2𝜁𝑤𝑛 = 8 → 𝐾 =

0.208 =2. Since 0 < 𝜁 < 1, the system will be controlled 

as oscillating damped. 

 

 
Figure 4. Control Structure with Single Tank Liquid Level System integrator with state feedback. 

 

2.6. Adaptation of Single Tank Liquid Level 

System to Q Learning and SARSA Controller 

 

When the single-tank system is considered an 

environment for reinforcement learning, expressions or 

symbols could be matched each other. For instance, action 

a(t) applied to the system, that is control signal u(t) or 

states 𝑠𝑡 of Q learning and SARSA might be matched to 

the states of the system to be controlled. Therefore, the 

states are given in Equation 17 so that the method can be 

applied to algorithms. In addition, the reward function 

obtained from the environment is specified in Equation 18. 

Nevertheless, it is useful to know that these states and 

reward functions could be changed as to designer.  

 

𝑠(𝑡) = (𝑟𝑒𝑓, 𝑥(𝑡)) 
(17) 

𝑟𝑒𝑤𝑎𝑟𝑑

= {
15 − 200 × |𝑟𝑒𝑓 − 𝑥(𝑡)| − 𝑎(𝑡)2 |𝑟𝑒𝑓 − 𝑥(𝑡)| < 0.01

5 − 200 × |𝑟𝑒𝑓 − 𝑥(𝑡)| − 𝑎(𝑡)2 𝑜𝑡ℎ𝑒𝑟
 

(18) 

 

Due to the controller running on the Q table, the Q 

table of the system was created according to the actions 

and states. The reference range was chosen between 

[0,5] and increased in steps at certain step lengths. 𝑥(𝑡) 

state is selected between [0,2] and increased with a certain 

step length and the q table is created. A small part of the 

created table is presented in Table 2. At first, before the 

learning process, a 0 value was assigned to all variables of 

the Q table. As seen in Table 2, some values are still 0 as 

seen in the Q table of the agent trained for 200000 steps. 

Therefore, the agent recognizing the environment shows 

that it does not undergo every state, that is, not every state 

occurs in the environment. In addition, in Table 3, common 

parameters for SARSA and Q learning have been 

presented. Also, the maximum number of iterations 

(𝐼𝑡𝑒𝑟𝑚𝑎𝑥) for which the algorithms are run is. The 

parameters of the 𝜀 variable used in the epsilon greedy 

algorithm are presented in Table 3 as the initial value 

(𝜀𝑠𝑡𝑎𝑟𝑡), the decreased value (𝜀𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡) and the 

minimum value (𝜀𝑚𝑖𝑛). In addition, the 

minimum(𝑟𝑒𝑓𝑚𝑖𝑛 , 𝑥(𝑡)𝑚𝑖𝑛), maximum (𝑟𝑒𝑓𝑚𝑎𝑥 , 𝑥(𝑡)𝑚𝑎𝑥) 

and step lengths (𝑟𝑒𝑓𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 , 𝑥(𝑡)𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒) of discretized 𝑟𝑒𝑓(𝑡) 

and 𝑥(𝑡) state values have been presented in Table 3. Reward 

values of Q learning and SARSA algorithm trained to 

control the single-level tank system are given in Figure 5 

by plotting according to iterations. In the beginning, it 

could be seen that the reward value fluctuated and then 

increased due to the epsilon decreased in the greedy 

algorithm during iteration. At last, reward values have been 

fixed in both algorithms. 
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Table 2. A sample Q table with Q learning trained over 200000 iterations for controlling the Single Tank Liquid Level 

System. 

State Action     

𝑟𝑒𝑓(𝑡), 𝑥(𝑡) 0 0.05 0.1 7.95 8 

Real Discrete      

0,−0.1 0, 0 0 0 0 0 0 

0,−0.079 0, 1 0 0 0 0 0 

       

0.1,0.005 0, 5 −115.91 74.56 97.84 −550165.34 −539846.01 

0.1,0.026 1, 6 0 0 0 0 0 

0.1,0.047 1,7 0 0 0 0 0 

       

0.3,0.383 3,23 349.43 −0.13 −0.31 −3215.11 −3184.24 

0.3,0.425 3,24 345.86 −0.58 −0.57 −3223.79 −3268.76 

       

0.8,0.782 8,42 13.13 18.39 23.42 −3653.06 −2483.30 

0.8,0.782 8,43 −0.56 −0.39 −0.32 0 0 

       

0.9,0.782 9,43 0 0 0 0 0 

0.9,0.782 8,43 −0.56 −0.39 −0.32 0 0 

 

Table 3. Parameters for SARSA and Q learning. 

Parameters Value 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥  195000 

𝜀𝑠𝑡𝑎𝑟𝑡 1.0 

𝜀𝑚𝑖𝑛 0.001 

𝜀𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡  
𝜀𝑠𝑡𝑎𝑟𝑡

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
⁄  

𝑟𝑒𝑓𝑚𝑖𝑛 0. 

𝑟𝑒𝑓𝑚𝑎𝑥 5 

𝑟𝑒𝑓𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 0.1 

𝑥𝑚𝑖𝑛 −0.1 

𝑥𝑚𝑎𝑥  2.0 

𝑥𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 0.0209 

 

 
Figure 5. Reward values of Single Tank Liquid Level System by PI, modified PI, state feedback with integral action, Q 

Learning and SARSA. 
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3. Simulation Results 

 

The simulation studies carried out in this study have 

been conducted on a computer with Intel(R) Core (TM) i5-

9400 CPU @ 2.90GHz, 64-bit, 8GB RAM. The software 

language in which the study is carried out is Python and 

the interface is the Anaconda program. The single-level 

tank system to be controlled has been built as an 

environment in this program. Then, the designs were made 

to control the system with PI, modified PI, state feedback 

with integral action, Q learning and SARSA. After that 

system cosntrol has been carried out, and then the results 

have been obtained. The results obtained have been 

presented in the table in terms of performance values. In 

addition, the results obtained in terms of system response 

and control responses have been given in graphics. 

The results of the single-level liquid tank system 

controlled by PI, modified PI, state feedback, Q learning 

and SARSA methods were evaluated in terms of 𝑇𝑟𝑖𝑠𝑖𝑛𝑔, 

𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔, overshoot and 𝐼𝑆𝐸 performance criteria. The 

numerical results, in Table 4, for single-level liquid tank 

system have been demonstrated. The best results among 

methods are written in bold. When the results are 

examined, the Q learning algorithm has produced better 

results than the others with regard to  𝑇𝑟𝑖𝑠𝑖𝑛𝑔, 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 and 

𝐼𝑆𝐸. However, when examined in terms of overshoot, it 

can be seen that SARSA algorithm indicated better results 

than classical controllers and the Q learning methods. In 

addition, the step response graph, control signal and 

reward values of the controlled system have been depicted 

in graphics. In Figure 6, system responses of the single-

level tank system to the step reference input have been 

depicted. When the responses of the Q learning and 

SARSA methods have been examined, it can be noticed 

that although the system has reached the desired reference 

value faster, it has not remained at the desired reference 

value or have fluctuated in its responses compared to the 

classical control methods, that is, it has deviated and come 

back again. The prime cause for this is that the system is 

continuous and the controller that controls the system is 

discretized according to certain step lengths. In addition, 

control signs have been depicted in Figure 7. Fluctuating in 

the control signal could be seen more easily. Another 

reason could be that there is epsilon greedy in the structure 

that controls the system in Q learning and SARSA 

algorithms. This method, which is used for discovery, 

could sometimes lead to the selection of a different control 

signal within the solution pool. On the other hand, the 

reward values, that have been obtained after the single tank 

liquid level system have been controlled, have been 

indicated in Figure 8 according to time. 

 

 1 

        Table 4. Performance results of controlling Single Tank Liquid Level System 2 

 𝑇𝑟𝑖𝑠𝑖𝑛𝑔  (sec) 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔  (sec) 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝐼𝑆𝐸 

PI 0.0875 0.4283 %25,40 0,1968 

Modifiye PI 0.1676 0.5035 %11.36 0.1168 

State Feedback 0,4167 0.8180 %6,10 0.2893 

Q learning 0.0804 0,0943 %1,2 0.0574 

Sarsa 0.0874 0.0943 %0,7 0,0590 

3 

 
Figure 6. System responses of single tank liquid level System by PI, modified PI, state feedback with integral action, Q 

Learning and SARSA. 
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Figure 7. Control signals of Single Tank Liquid Level System by PI, modified PI, state feedback with integral action, Q 

Learning and SARSA.

 

 

 

 
Figure 8. Reward values of Single Tank Liquid Level System by PI, modified PI, state feedback with integral action, Q 

Learning and SARSA. 

 

The system has been controlled at several reference 

values in order to better see the performances of controllers 

for the Single Tank Liquid Level System.  As can be seen, 

Q learning and SARSA methods have generally produced 

faster results than PI, Modified PI and State Feedback with 

integral action. However, looking at results for SARSA, it 

can be noticed that there are chattering or fluctuations 

when the reference value is 0.5. To prevent this, agents 

could be trained more or the size of Q table would be 

increased by reducing the step lengths of the states while 

creating the Q table. However, the decrease in step length 

is a tradeoff that increases memory and processing load.                                 

In this study, since the Q learning and SARSA methods 

work discrete, system response and control signal can be 

aggressive when step length is large. In addition, since it is 

operated discretely, the performances of the controllers 

may vary at reference signals at different points. The 

biggest constraint at this point is memory and processing 

time. However, in future studies, soft actor-critic, deep q 

learning, double deep q learning methods that work 

continuously with artificial neural networks will be used to 

overcome memory size constraints. 
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Figure 9. System responses of Single Tank Liquid Level System by PI, modified PI, state feedback with integral action, Q Learning and 

SARSA for different reference signals. 

 

4. Conclusions  

 

In this study, classical and reinforcement learning-

based controllers have been designed to control the 

nonlinear single-level tank system. First, the system has 

been linearized and the PI controller has been designed 

with the classical Ziegler Nichols method. Then, Modified 

PI has been applied and state feedback with integral action 

controllers were designed with pole assignment. Then, 

agents have been trained for SARSA and Q learning 

algorithms on the Single Tank Liquid Level System which 

is an environment and also this is a nonlinear system. After 

that, trained agents have applied to the system to be 

controlled. The results of the nonlinear single-level liquid 

tank system controlled by these methods have been 

assessed about rising time (𝑇𝑟𝑖𝑠𝑖𝑛𝑔), settling time 

(𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔), overshoot and ISE performance indexes. When 

the results have been examined, it can be noticed that the Q 

learning algorithm has produced better results with regard 

to rise time (𝑇𝑟𝑖𝑠𝑖𝑛𝑔), settling time (𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔) and 𝐼𝑆𝐸. 

Furthermore, it has been noticed and concluded that, due to 

SARSA and the Q learning used in the study being 

discrete, there might be memory size difficulty that caused 

chattering or fluctuating problems of system responses in 

this method. In future studies, softened control signals 

could be improved in transitions between states, and deep 

learning-based reinforcement learning methods, which are 

popular topics, are going to be used. 
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