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ABSTRACT 
 

In this manuscript we introduce three new algorithms: (1) An algorithm to recover an unknown polynomial in terms of Dickson 

polynomials of the first kind, (2) an algorithm to recover an unknown polynomial in terms Dickson polynomials of the second 

kind, (3) an algorithm to recover an unknown polynomial in terms of Bernstein basis polynomials, from given black boxes for 

the polynomial itself and its first derivative. In each algorithm, we assume that the unknown polynomial has a sparse 

representation in the corresponding basis. The methods presented use transformations from Dickson polynomials to Laurent 

polynomials, a transformation from Bernstein basis polynomials to Laurent polynomials, and a recently developed algorithm 

as a middle step. 

 

Keywords: Hermite Interpolation, Sparse Polynomials, Dickson Polynomials, Bernstein Basis Polynomials, Algorithms 
 

 

1. INTRODUCTION 

 

Hermite interpolation is a method of reconstructing an unknown polynomial 𝑓(𝑥) by using known 

evaluations of 𝑓(𝑥) and known evaluations of the first few derivatives of 𝑓(𝑥). More details about 

Hermite interpolation can be found at [1] and references therein. In this manuscript, we deal with sparse 

Hermite interpolation. 

 

A sparse Hermite interpolation algorithm is presented in [2]: Let 𝑓(𝑥) = ∑ 𝑐𝑗𝑥
𝑒𝑗𝑡

𝑗=1 ∈ 𝐾[𝑥, 𝑥−1] be an 

unknown sparse univariate Laurent polynomial, i.e. an element in 𝐾[𝑥, 𝑥−1], in Laurent polynomial 

basis with 𝑡 ≪ deg(𝑓) terms, where 𝐾 is a field and its’ characteristic is 0 or a prime 𝑝, and where for 

all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡. Let 𝑘 ∈ 𝐾 − {0,1}. Let black boxes for 𝑓(𝑥) and 𝑓′(𝑥) be given. [2] 

introduces a procedure to rebuild the unknown polynomial 𝑓(𝑥) from the data sets {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and 

{(𝑘𝑠, 𝑓′(𝑘𝑠))}
𝑠=0

𝑚
 where 𝑚 = 𝑡 + ⌈

𝑡+1

2
⌉ − 1. Here the tuples (∗, 𝑓(∗)) and (∗, 𝑓′(∗)) can be computed 

with given black boxes. The algorithm presented in [2], which is based on Prony’s sparse polynomial 

interpolation algorithm (a.k.a. Ben-or & Tiwari’s Algorithm) [3,4], performs sparse Hermite 

interpolation using those 2𝑚 + 2, where 𝑡 ≪ deg(𝑓), data points above. The method in [2] uses “less 

data points” than the previously known Hermite interpolation algorithms use to reconstruct the unknown 

polynomial 𝑓(𝑥). 
 

Remark 1.1 We note that a black box for an unknown polynomial 𝑓(𝑥) is a known mathematical object 

that takes a value 𝑘 and evaluates 𝑓(𝑘) without revealing any information about the unknown 

polynomial 𝑓(𝑥). Here we assume a black box for a polynomial always computes the correct evaluation 

with no error. See [5] for more details about computations with black boxes. 
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Any polynomial 𝑓(𝑥) ∈ 𝐾[𝑥] can be represented in terms of Dickson polynomials (both the first and 

the second kind). A degree 𝑛 polynomial with real coefficients can be represented in terms of degree 𝑛 

Bernstein basis polynomials. We want to replace the Laurent polynomial basis with Dickson 

polynomials and Bernstein basis polynomials and aim to develop new sparse Hermite interpolation 

algorithms that work directly with those bases. 

 

In this text, we present three new algorithms that solve the following three problems. The algorithms in 

the present manuscript perform sparse Hermite interpolation with Dickson polynomials (both the first 

and the second kind) and Bernstein basis polynomials. The algorithms use transformations from Dickson 

polynomials to Laurent polynomials, a transformation from Bernstein basis polynomials to Laurent 

polynomials, and the algorithm given in [2] as a middle step. 

 

Problem 1.1 

 

i. Let 

 

𝑓(𝑥) =∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡

𝑗=0
∈ 𝐾[𝑥] 

 

where for all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡, be an unknown polynomial. Here 𝐷𝑒𝑗(𝑥, 𝑎) is the 

Dickson polynomial of the first kind of degree 𝑒𝑗. Here we assume that 𝑡 ≪ deg(𝑓), i.e., 𝑓(𝑥) 

has sparse representation in terms of Dickson polynomials of the first kind. 

 

Construct 𝑓(𝑥) from given black boxes for 𝑓(𝑥) and 𝑓′(𝑥), 𝑎 ∈ 𝐾, the integer 𝑡, from the sets 

of tuples {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and {(𝑘𝑠, 𝑓′(𝑘𝑠))}

𝑠=0

𝑚
 where 𝑘 ∈ 𝐾 and 𝑚 = 𝑡 + ⌈

𝑡+1

2
⌉ − 1. Here the 

data points are computed by the given black boxes.  

 

ii. Let 

 

𝑓(𝑥) =∑ 𝑐𝑗𝐸𝑒𝑗(𝑥, 𝑎)
𝑡

𝑗=0
∈ 𝐾[𝑥] 

 

where for all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡, be an unknown polynomial. Here 𝐸𝑒𝑗(𝑥, 𝑎) is the 

Dickson polynomial of the second kind of degree 𝑒𝑗. Here we assume that 𝑡 ≪ deg(𝑓), i.e., 

𝑓(𝑥) has sparse representation in terms of Dickson polynomials of the second kind. 

 

Construct 𝑓(𝑥) from given a black boxes for 𝑓(𝑥) and 𝑓′(𝑥), 𝑎 ∈ 𝐾, the integer 𝑡, from the sets 

of tuples {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and {(𝑘𝑠, 𝑓′(𝑘𝑠))}

𝑠=0

𝑚
 where 𝑘 ∈ 𝐾 and 𝑚 = 𝑡 + ⌈

𝑡+1

2
⌉ − 1. Here the 

data points are computed by the given black boxes. 

 

iii. Let 

 

𝑓(𝑥) =∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡

𝑗=0
∈ 𝐾[𝑥] 

 

where for all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡, be an unknown polynomial. Here 𝐵𝑒𝑗,𝑛(𝑥) is the 𝑒𝑗-

th Bernstein basis polynomial of degree 𝑛. Here we assume 𝑛 = deg(𝑓(𝑥)) is known, 𝐾 = ℝ, 

and 𝑡 ≪ deg(𝑓), i.e., 𝑓(𝑥) has sparse representation in terms of Bernstein basis polynomials. 
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Construct 𝑓(𝑥) from given black boxes for 𝑓(𝑥) and 𝑓′(𝑥), 𝑎 ∈ 𝐾, the integer 𝑡, 𝑛 =

deg(𝑓(𝑥)) from the sets of tuples {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and {(𝑘𝑠, 𝑓′(𝑘𝑠))}

𝑠=0

𝑚
 where 𝑘 ∈ 𝐾 and 

𝑚 = 𝑡 + ⌈
𝑡+1

2
⌉ − 1. Here the data points are computed by the given black boxes. 

 

Before we state our procedures, we briefly mention about Dickson polynomials and Bernstein basis 

polynomials. 
 

1.1. Dickson Polynomials 

 

Dickson polynomials are introduced in [6]. Let 𝐾 be a finite field with characteristic 𝑝 and 𝑎 ∈ 𝐾. 
Degree 𝑛 Dickson polynomial of the first kind, 𝐷𝑛(𝑥, 𝑎), can be defined by the following recursion: 

 

𝐷0(𝑥, 𝑎) ≔ 2 
𝐷1(𝑥, 𝑎) ≔ 𝑥 
𝐷𝑛(𝑥, 𝑎) ≔ 𝑥𝐷𝑛−1(𝑥, 𝑎) − 𝑎𝐷𝑛−2(𝑥, 𝑎), ∀𝑛 ≥ 2. 

 

Similarly, degree 𝑛 Dickson polynomial of the second kind, 𝐸𝑛(𝑥, 𝑎), can be defined by the same 

recursion as above, but with a different zero-degree polynomial: 
 

𝐸0(𝑥, 𝑎) ≔ 1 
𝐸1(𝑥, 𝑎) ≔ 𝑥 
𝐸𝑛(𝑥, 𝑎) ≔ 𝑥𝐸𝑛−1(𝑥, 𝑎) − 𝑎𝐸𝑛−2(𝑥, 𝑎), ∀𝑛 ≥ 2. 

 

Dickson polynomials form a 𝐾 vector space bases for 𝐾[𝑥]: Any 𝑓(𝑥) ∈ 𝐾[𝑥] can be represented in 

terms of Dickson polynomials (both the first and the second kind). 

 

Dickson polynomials are one of the examples of many orthogonal polynomials and they occur in various 

areas of mathematical research, such as cryptography and number theory [8,9]. The polynomials possess 

many useful properties. Details of Dickson polynomials and their further properties can be found at [6-

9] and references in [6-9]. 

 

1.2 Bernstein Basis Polynomials 

 

The 𝑖-th degree 𝑛 Bernstein basis polynomial, which is denoted by 𝐵𝑖,𝑛(𝑥), is defined as 

 

𝐵𝑖,𝑛(𝑥) = (
𝑛
𝑖
) 𝑥𝑖(1 − 𝑥)𝑛−𝑖. 

 

Here (
𝑛
𝑖
) denotes the binomial coefficient. The set {𝐵𝑠,𝑛(𝑥)}𝑠=0

𝑛
form a vector space basis (a.k.a. 

Bernstein-Bezier basis) for the polynomials in Π𝑛, where Π𝑛 is the vector space of polynomials of degree 

≤ 𝑛 with real coefficients. Bernstein-Bezier basis is the standard way of representing a polynomial 

curve. We refer to [10,11] for further properties of Bernstein basis polynomials. 

 

2. DISCUSSION AND ALGORITHMS 

 

2.1. Sparse Hermite Interpolation with Dickson Polynomials of the First Kind 

 

In [9], it is stated that Dickson polynomials satisfy the transformation formulas below: If 𝑥 ≠ 0 and 

𝑥2 ≠ 𝑎, 
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𝐷𝑛 (𝑥 +
𝑎

𝑥
, 𝑎) = 𝑥𝑛 + (

𝑎

𝑥
)
𝑛

 

 

𝐸𝑛 (𝑥 +
𝑎

𝑥
, 𝑎) =

𝑥𝑛+1 − (
𝑎
𝑥
)
𝑛+1

𝑥 − (
𝑎
𝑥)

. 

 

If we let 𝑏2 = 𝑎, then: 

 

𝐷𝑛 (𝑏𝑥 +
𝑎

𝑏𝑥
, 𝑎) = 𝑏𝑛𝑥𝑛 + (

𝑎

𝑏𝑥
)
𝑛

= 𝑏𝑛 (𝑥𝑛 +
1

𝑥𝑛
) 

 

(1) 

(𝑏𝑥 −
𝑎

𝑏𝑥
)𝐸𝑛 (𝑏𝑥 +

𝑎

𝑏𝑥
, 𝑎) = (𝑏𝑥 −

𝑎

𝑏𝑥
)(

𝑏𝑛+1𝑥𝑛+1 − (
𝑎
𝑏𝑥
)
𝑛+1

𝑏𝑥 − (
𝑎
𝑏𝑥
)

) = 𝑏𝑛+1 (𝑥𝑛+1 −
1

𝑥𝑛+1
). 

 

(2) 

Equations (1) and (2) are also used in [12] to perform sparse polynomial interpolation in Dickson 

polynomial bases. 

 

Assume that 𝑓(𝑥) = ∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . Then, with the help of Equation (1), we can define 𝑔(𝑥) from 

𝑓(𝑥): 
 

 

 

𝑔(𝑥) ≔ 𝑓 (𝑏 (𝑥 +
1

𝑥
)) 

= 𝑓 (𝑏𝑥 +
𝑎

𝑏𝑥
) 

=∑ 𝑐𝑗𝐷𝑒𝑗 (𝑏𝑥 +
𝑎

𝑏𝑥
, 𝑎)

𝑡

𝑗=0
 

=∑ 𝐺𝑗 (𝑥
𝑒𝑗 +

1

𝑥𝑒𝑗
)

𝑡

𝑗=1
∈ 𝐾[𝑥, 𝑥−1] 

 

(3) 

where 𝐺𝑗 = 𝑏𝑒𝑗𝑐𝑗.  

 

Here, 𝑔(𝑥) has 𝑇 = 2𝑡 terms in Laurent polynomial bases and 𝑔(𝑘𝑖) = 𝑔(𝑘−𝑖)for 𝑘 ∈ 𝐾. To compute 

the two evaluations 𝑔(𝑘𝑖) and 𝑔(𝑘−𝑖), we need to evaluate 𝑓(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

Here, we have 

 

𝑔′(𝑥) = 𝑓′ (𝑏 (𝑥 +
1

𝑥
))(𝑏 (1 −

1

𝑥2
)) 

 

and 

 

𝑔′(𝑥) =∑
𝐺𝑗𝑒𝑗

𝑥
(𝑥𝑒𝑗 −

1

𝑥𝑒𝑗
)

𝑡

𝑗=1
. 
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Note that, 𝑘𝑖𝑔′(𝑘𝑖) = −(𝑘−𝑖𝑔′(𝑘−𝑖)). To compute the two evaluations 𝑔′(𝑘𝑖) and 𝑔′(𝑘−𝑖)), we need 

to evaluate 𝑓′(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

We make use of Equation (3) to present Algorithm 2.1.1 below that solves Problem 1.1.i. Algorithm 

2.1.1 first uses Equation (3) to convert Problem 1.1.i to another problem that the Algorithm in [2] can 

solve, then uses Algorithm [2], and then recovers the coefficient-degree tuples (𝑐𝑗, 𝑒𝑗) such that 𝑓(𝑥) =

∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . 

 

Algorithm 2.1.1 

 

Input: 

 

• Black boxes for 𝑓(𝑥) and 𝑓′(𝑥). 
• The integer 𝑡. 
• 𝑘 ∈ 𝐾 − {0,1}. 
• 𝑎 ∈ 𝐾 − {0} such that 𝑏2 = 𝑎. 

 

Output: 

 

• The 𝑐𝑗 and the 𝑒𝑗 such that 𝑓(𝑥) = ∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . 

 

• The 𝛿𝑗 and the 𝜀𝑗 such that for 𝑓𝜀(𝑥) = ∑ 𝛿𝑗𝐷𝜀𝑗(𝑥, 𝑎)
𝑡
𝑗=0 ; 𝑓(𝑘𝑖0+𝑖) = 𝑓𝜀(𝑘

𝑖0+𝑖) and 𝑓′(𝑘𝑖0+𝑖) =

𝑓𝜀
′
(𝑘

𝑖0+𝑖). 

 

1.  

i. Use Equation (3) and form 𝑔(𝑥). 
 

ii. Let ℓ = − ⌈
3𝑡−1

2
⌉. 

 

a. By using the black box for 𝑓(𝑥), for 𝑖 = 0,1,… , |ℓ|, …3𝑡 − 1, compute the 𝑎𝑖 =

𝑔(𝑘ℓ+𝑖)by using 𝑔(𝑥) = 𝑓 (𝑏 (𝑥 +
1

𝑥
)). 

 

Use the equality 𝑔(𝑘ℓ+𝑖) = 𝑔(𝑘−ℓ−𝑖) to generate the 𝑎𝑖 with less computation. 

 

b. By using the black box for 𝑓′(𝑥), for 𝑖 = 0,1,… , |ℓ|, … ,3𝑡 − 1, compute the 𝑎𝑖
′ =

𝑔′(𝑘ℓ+𝑖)by using 𝑔′(𝑥) = 𝑓′ (𝑏 (𝑥 +
1

𝑥
)) (𝑏 (1 −

1

𝑥2
)).  

 

Use the equality 𝑘ℓ+𝑖𝑔′(𝑘ℓ+𝑖) = −(𝑘−ℓ−𝑖𝑔′(𝑘−ℓ−𝑖)) to generate the 𝑎𝑖
′ with less 

computation. 

 

We encounter the same scenario as in Section 5.2 of [1]: Similarly, here we have 𝑖0 = ℓ =

− ⌈
3𝑡−1

2
⌉, 𝑔(𝑘ℓ+𝑖) = 𝑔(𝑘−ℓ−𝑖), 𝑘ℓ+𝑖𝑔′(𝑘ℓ+𝑖) = −(𝑘−ℓ−𝑖𝑔′(𝑘−ℓ−𝑖)). As stated in Section 5.2 

of [1], we can compute the 𝑎𝑖 and the 𝑎𝑖
′ above from 2(|ℓ| + 1) ≤ 3𝑡 + 2 values of 𝑓(𝑥) and 

𝑓′(𝑥). To generate those values of 𝑓(𝑥) and 𝑓′(𝑥), we need to use given black boxes for 𝑓(𝑥) 

and 𝑓′(𝑥) only ≤ 𝑡 + ⌊
𝑡

2
⌋ + 1 times. 
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2. Use the Algorithm 2.1 in [1] with inputs 𝑇 = 2𝑡, 𝑘, 𝑖0 = ℓ, 𝑟 = ⌊
𝑡

2
⌋, and 𝑎𝑖 = 𝑔(𝑘ℓ+𝑖) and 𝑎𝑖

′′ =

𝑘ℓ+𝑖𝑎𝑖
′ = 𝑘ℓ+𝑖𝑔′(𝑘ℓ+𝑖). Note that here we have 3𝑇 = 6𝑡 values of 𝑔(𝑥) and 𝑔′(𝑥). 

 

3.  

i. If Step 2 decides there is no 𝑇 sparse polynomial 𝑔(𝑥) in Laurent basis that interpolates 𝑎𝑖 and 

𝑎𝑖
′′, then print that information and stop. 

 

ii. If 𝑐ℎ𝑎𝑟(𝐾) = 0, or, 𝑐ℎ𝑎𝑟(𝐾) > 0 and 𝑘𝑠 ≠ 1 for all 𝑠 ≥ 1, then the algorithm in Step 2 

returns the 𝐺𝑗 and the 𝑒𝑗 such that 𝑔(𝑥) = ∑ 𝐺𝑗 (𝑥
𝑒𝑗 +

1

𝑥
𝑒𝑗
)𝑡

𝑗=1 .  

 

In this case, compute the 𝑐𝑗 from 𝐺𝑗 = 𝑏𝑒𝑗𝑐𝑗 and return the 𝑐𝑗 and the 𝑒𝑗 such that 𝑓(𝑥) =

∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . 

 

iii. If 𝑐ℎ𝑎𝑟(𝐾) > 0 and there exists 𝑠 ≥ 2 such that 𝑘𝑠 = 1, then the algorithm in Step 2 returns Γ𝑗 

and 𝜀𝑗 such that 𝑔𝜀(𝑥) = ∑ Γ𝑗 (𝑥
𝜀𝑗 +

1

𝑥
𝜀𝑗
)𝑡

𝑗=1  such that 𝑔(𝑘ℓ+𝑖) = 𝑔𝜀(𝑘
ℓ+𝑖) and 𝑔′(𝑘ℓ+𝑖) =

𝑔𝜀
′
(𝑘

ℓ+𝑖). 

 

In this case, compute the 𝛿𝑗 from Γ𝑗 = 𝑏𝜀𝑗𝑐𝑗 and return the 𝑐𝑗 and the 𝜀𝑗 such that 𝑓𝜀(𝑥) =

∑ 𝛿𝑗𝐷𝜀𝑗(𝑥, 𝑎)
𝑡
𝑗=0 , such that 𝑓(𝑘ℓ+𝑖) = 𝑓𝜀(𝑘

ℓ+𝑖) and 𝑓′(𝑘ℓ+𝑖) = 𝑓𝜀
′
(𝑘

ℓ+𝑖). 

 

2.2 Sparse Hermite Interpolation with Dickson Polynomials of the Second Kind 

 

Assume that 𝑓(𝑥) = ∑ 𝑐𝑗𝐸𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . Then, with the help of Equation (2), we can define ℎ(𝑥) from 

𝑓(𝑥): 
 

 

 

ℎ(𝑥) ≔ (𝑏 (𝑥 −
1

𝑥
))𝑓 (𝑏 (𝑥 +

1

𝑥
)) 

= (𝑏𝑥 −
𝑎

𝑏𝑥
) 𝑓 (𝑏𝑥 +

𝑎

𝑏𝑥
) 

= (𝑏𝑥 −
𝑎

𝑏𝑥
)∑ 𝑐𝑗𝐸𝑒𝑗 (𝑏𝑥 +

𝑎

𝑏𝑥
, 𝑎)

𝑡

𝑗=0
 

=∑ 𝐻𝑗 (𝑥
𝑒𝑗+1 −

1

𝑥𝑒𝑗+1
)

𝑡

𝑗=1
∈ 𝐾[𝑥, 𝑥−1] 

 

(4) 

where 𝐻𝑗 = 𝑏𝑒𝑗+1𝑐𝑗.  

 

Here, ℎ(𝑥) has 𝑇 = 2𝑡 terms in Laurent polynomial bases and ℎ(𝑘𝑖) = −ℎ(𝑘−𝑖) for 𝑘 ∈ 𝐾. To compute 

two evaluations ℎ(𝑘𝑖) and ℎ(𝑘−𝑖), we need to evaluate 𝑓(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

Here, we have 

 

ℎ′(𝑥) = 𝑏 (1 +
1

𝑥2
) 𝑓 (𝑏 (𝑥 +

1

𝑥
)) + 𝑎 (𝑥 −

1

𝑥
) (1 −

1

𝑥2
)𝑓′ (𝑏 (𝑥 +

1

𝑥
)) 

 

and 
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ℎ′(𝑥) =∑
𝐻𝑗(𝑒𝑗 + 1)

𝑥
(𝑥𝑒𝑗+1 +

1

𝑥𝑒𝑗+1
) .

𝑡

𝑗=1
 

 

Note that, 𝑘𝑖ℎ′(𝑘𝑖) = 𝑘−𝑖ℎ′(𝑘−𝑖). To compute the two evaluations ℎ′(𝑘𝑖) and ℎ′(𝑘−𝑖), we need to 

evaluate 𝑓(𝑥) and 𝑓′(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

One can make use of Equation (4) and can design an algorithm (which is similar to Algorithm 2.1.1) 

that solves Problem 1.1.ii. 

 

2.3 Sparse Hermite Interpolation with Bernstein Basis Polynomials 

 

In [13], it is introduced that 

 

(1 + 𝑥)𝑛𝐵𝑖,𝑛 (
𝑥

1 + 𝑥
) = (

𝑛
𝑖
) 𝑥𝑖 . 

 

(5) 

 

Assume 𝑓(𝑥) = ∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡
𝑗=0 . Then, with the help of Equation (5), we can define 𝑧(𝑥) from 𝑓(𝑥): 

 

𝑧(𝑥) ≔ (1 + 𝑥)𝑛𝑓 (
𝑥

1 + 𝑥
) 

= (1 + 𝑥)𝑛∑ 𝑐𝑗𝐵𝑒𝑗,𝑛 (
𝑥

1 + 𝑥
)

𝑡

𝑗=0
 

=∑ 𝑍𝑗
𝑡

𝑗=0
𝑥𝑒𝑗  

 

(6) 

where 𝑍𝑗 = (
𝑛
𝑗) 𝑐𝑗 . Here 𝑧(𝑥) and 𝑓(𝑥) have the same number of terms and 𝑧(𝑘𝑖), 𝑧′(𝑘𝑖) can be 

computed from 𝑓 (
𝑘𝑖

1+𝑘𝑖
) , 𝑓′ (

𝑘𝑖

1+𝑘𝑖
).  

 

We can make use of Equation (6) and can design an algorithm that solves Problem 1.1.iii. Algorithm 

2.3.1 first uses Equation (6) to convert Problem 1.1.iii to another problem that the Algorithm in [2] can 

solve, then uses Algorithm [2], and then recovers the coefficient-degree tuples (𝑐𝑗, 𝑒𝑗) such that 𝑓(𝑥) =

∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡
𝑗=0 . 

 

Algorithm 2.3.1 

 

Input: 

 

• Black boxes for 𝑓(𝑥) and 𝑓′(𝑥). 
• The integer 𝑡. 
• An integer 𝑟 such that 1 ≤ 𝑟 ≤ 𝑡 − 1. 

• An integer ℓ. 

• 𝑘 ∈ ℝ − {0,1}. 
• 𝑛 = deg(𝑓(𝑥)). 

 

Output: 
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• The 𝑐𝑗 and the 𝑒𝑗 such that 𝑓(𝑥) = ∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡
𝑗=0 . 

 

1.  

i. Use Equation (6) and form 𝑧(𝑥). 
 

ii. By using black the boxes for 𝑓(𝑥) and 𝑓′(𝑥), for 𝑖 = 0,… ,2𝑡 − 𝑟 − 1, compute 𝑎𝑖 = 𝑧(𝑘ℓ+𝑖) 

and 𝑎𝑖
′′ = 𝑘ℓ+𝑖𝑧′(𝑘ℓ+𝑖) by using 𝑧(𝑥) = (1 + 𝑥)𝑛𝑓 (

𝑥

1+𝑥
). 

 

2. Use the algorithm 2.1 in [1] with inputs 𝑡, 𝑘, 𝑖0 = ℓ, 𝑟, and 𝑎𝑖 = 𝑧(𝑘ℓ+𝑖) and 𝑎𝑖
′′ = 𝑘ℓ+𝑖𝑧′(𝑘ℓ+𝑖). 

 

3.  

i. If Step 2 decides there is no 𝑡 sparse polynomial 𝑧(𝑥) in Laurent basis that interpolates 𝑎𝑖 and 

𝑎𝑖
′′, then print that information and stop. 

 

ii. If Step 2 returns the 𝑍𝑗 and the 𝑒𝑗 such that 𝑧(𝑥) = ∑ 𝑍𝑗
𝑡
𝑗=0 𝑥𝑒𝑗, then compute the 𝑐𝑗 from 𝑍𝑗 =

(
𝑛
𝑗) 𝑐𝑗, and then return the 𝑐𝑗 and the 𝑒𝑗. 

 

3. CONCLUSION 

 

In this manuscript, we present three sparse Hermite interpolation algorithms: An algorithm that 

computes an unknown polynomial directly as a linear combination of Dickson polynomials of the first 

kind, an algorithm that recovers an unknown polynomial directly in terms of Dickson polynomials of 

the second kind, and an algorithm that rebuilds an unknown polynomial as a combination of Bernstein 

basis polynomials. Future work may include developing sparse Hermite interpolation algorithms that 

perform similar compuations with orthogonal polynomial bases, such as Legendre polynomials and 

Jacobi polynomials. 
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