
İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

A Novel Regression Test Selection Method with Graph-Based Genetic Algorithm

Ramazan OZKAN1 , Zeynep ORMAN2 , Ruya SAMLI*3

1Nation Defense University, Air Force Academy, Department of Computer Engineering, Istanbul, 34334, Turkey

2,3Istanbul University-Cerrahpasa, Engineering Faculty, Department of Computer Engineering, Istanbul, 34320, Turkey

Research Article, Received Date: 11.04.2023, Accepted Date: 05.06.2023

Abstract

Regression test is a re-running test type to ensure that previously developed and tested software is not seriously affected by

changes. Testing a software after changes is very important and necessary in order to maintain the software development and

maintenance processes. However, repeating all tests after each change is not feasible especially in large-scale projects.

Regression test selection which means selection of a subset of tests has emerged as a solution to this issue. This paper presents

a GBGA (Graph-Based Genetic Algorithm) with the most compatible neighbor crossover as a solution to the regression test

selection problem. In this GBGA, each individual in the population is located on a node of predefined graph structure and the

probabilities of the crossover are limited depending on the neighborhood relations to increase population diversity, prevent

premature convergence, and refine the convergence performance. This GBGA is applied to this problem to find the minimum

set of test cases to enhance the performance of the genetic algorithm by locating populations on graphs and limiting the

crossover option with neighborhood connections to increase the diversity. The results show that the proposed GBGA with the

most compatible neighbor crossover has superior performance in terms of fitness value when compared to genetic algorithm.

Keywords: Regression test selection, Graph-based genetic algorithm, Compatible crossover, Optimization.

1. INTRODUCTION

A software system evolves during its development and

maintenance phases with bug fixing, optimization,

enhancement or adaptation activities in time and it must be

re-tested after these changes. Regression testing is the

activity which is applied to ensure that this evolution does

not affect the approved functionality of the software

system.

The simplest and safest approach for regression testing is to

re-run all test cases, which is called the

“re-test all” technique (Rothermel, 1996). However,

repeating all test cases, which are previously executed

successfully, after each software revision is not practical

due to time and budget constraints especially in the case of

large-scale software systems.

*Corresponding author ruyasamli@iuc.edu.tr,
1rozkan@hho.msu.edu.tr, 2ormanz@iuc.edu.tr

Therefore, a large amount of research effort has been spent

in the literature to be able to select a subset of the test cases,

which is called regression test selection, with acceptable

cost-benefit balance and several approaches have been

proposed for this purpose. The regression test selection

process requires a balance between the cost and benefit of

regression testing. Providing this balance is an NP-

complete optimization problem and it cannot be solved in a

reasonable amount of time for large-scale software systems

which includes complex test suites (Yamuç et al., 2017).

Many heuristic search-based solutions have been used in

literature for regression test selection (Li et al., 2007; Mittal

& Sangwan, 2018; Panichella et al., 2015; Yadav & Dutta,

2017) and one of them is the Genetic Algorithm.

Genetic Algorithm is a heuristic-based approach to solve

problems that cannot be solved with deterministic methods.

It mimics the evolution of the species based on natural

selection (Mirjalili, 2019) in a population and includes 4

basic steps which are the creation of the initial population,

selection, genetic operators and termination. In the first

step, a random solution population is created from the

search space.

https://orcid.org/0000-0002-6841-3368
https://orcid.org/0000-0002-0205-4198
https://orcid.org/0000-0002-8723-1228

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

2

Then, based on a problem specific fitness function which

mimics the adaptation level of species in nature, individuals

are selected from the population. Genetic operators which

are crossover and mutation are applied to selected

individuals and a new generation is created. This process is

repeated until to reach the termination criteria. Genetic

Algorithm is an efficient heuristic search method and there

is a huge amount of application in literature including

regression test selection (Li et al., 2007; Mittal & Sangwan,

2018; Panichella et al., 2015; Yadav & Dutta, 2017).

On the other hand; the greatest weakness of Genetic

Algorithm is the premature convergence due to the loss of

population diversity over generations (Ghoumari & Nakib,

2019; Lee et al., 2008; Toffolo & Benini, 2003). Selecting

the best individuals in each population creates a population

that includes similar individuals, and this may cause

immature convergence to a local optimum. In order to

resolve this issue, several algorithms have been proposed in

the literature (Bryden et al., 2006; Garousi et al., 2018; Lee

et al., 2008; Lu et al., 2007; Mirjalili, 2019; Toffolo &

Benini, 2003; Whitley et al., 1999). One of these proposals

is the GBEA (Graph-based Evolutionary Algorithm)

(Bryden et al., 2006) which uses graphs as a geographic

structure to locate individuals in the population and indicate

the links between them for mating limitations.

As a subfield of evolutionary algorithm, Genetic Algorithm

can also be used on graphs for the problems encoded in a

series of bit strings and named as GBGA. This paper

proposes a tailored version of GBGA with the most

compatible neighbor crossover for regression test selection.

To our best knowledge, it is the first time that a GBGA has

been applied to the regression test selection problem in the

literature. This approach enhances the performance of the

Genetic Algorithm by locating populations on a graph and

limiting the crossover option with neighborhood

connections. Another novelty of our paper is that, unlike the

GBGA methods used in the literature, the parent selection

step of the crossover operator is designed as selecting the

most compatible one among the neighbors of the first parent

coming from the crossover parent pool as the second parent.

With this modification to the crossover operator, the genetic

diversity of the GBGA is increased while it is preventing

from transforming into a random search algorithm. The

proposed GBGA with the most compatible neighbor and

Genetic Algorithm are applied to a dataset including 216

test cases, 5610 requirements tested under these test cases

and affected requirements lists of five different software

versions of a software project used in the study of Garousi

et al. (Garousi et al., 2018).The performance of the

proposed GBGA is evaluated by comparing it with Genetic

Algorithm in terms of fitness value, affected requirement

coverage, irrelevant requirement coverage and execution

time.

In terms of fitness value, as main comparison criterion,

which is calculated with affected requirement coverage

rand irrelevant requirement coverage rates, GBGA with the

most compatible neighbor crossover gives better results

than the Genetic Algorithm.

The rest of the paper is organized as follows. Section 2

overviews the related studies in literature according to

underlying goals of this study. Section 3 explains the

materials and the methodology and gives the case

description and needs for the study. Section 4 presents the

proposed GBGA for regression test selection. Section 5

demonstrates and analyzes the results. Finally, conclusions

are given in Section 6.

2. BACKGROUND

2.1. Regression Test Selection

The regression test selection process aims to find test cases

that are relevant to software changes based on impact

analysis. There are several regression test selection

methods proposed in the literature. Based on impact

analysis differences, these techniques can be placed in three

different groups: code analysis-based methods (Aggrawal

et al., 2004; Gupta et al., 1992; Jones & Harrold, 2001;

Rothermel, 1996; Yamuç et al., 2017), model-based

methods (Briand et al., 2009; Engström et al., 2011; Farooq

et al., 2007) and requirement analysis-based methods

(Aggrawal et al., 2004; Özkan, 2017; Rothermel & Harrold,

1997).

2.1.1 Code Analysis-Based Methods

Most of the regressing test selection methods focused on

source code analysis such as execution trace analysis, data

flow analysis and control flow analysis (Garousi et al.,

2018).

The execution trace of a test case on a program means the

execution sequence of program statements that are executed

with the test case. In execution trace analysis, execution

traces of test cases for old and new versions of the program

are compared and test cases that have different execution

paths are selected for regression test (Özkan, 2017). Akhin

and Itsykson have used this method by identifying the

modified software components and extracting the

dependency information for test-software component

relation (Akhin & Itsykson, 2009). Vokolos and Frankl

have proposed a tool named Pythia (Vokolos & Frankl,

1998). This tool uses a slightly different version of

execution trace analysis. It keeps a history of the basic

blocks executed by each test case and to identify the

modified program statements, compares the source files of

the old and new versions of the program.

In data flow analysis, data interactions that have been

affected by modifications are determined. To find affected

interactions, definition-use pairs of the variables are

analyzed and test cases executing the path from definition

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

3

to use of the modified variables are selected for regression.

Gupta et al. (1992) proposed a data flow analysis based

regression test selection method by using slicing algorithms

to explicitly detect definition-use associations that are

affected by a program change.

Control flow analysis-based methods are structured based

on the analysis of Control Flow Graphs (CFG) differences

of original and modified program. A control flow analysis

based regression test selection method has proposed by

Rothermel and Harold (Rothermel & Harrold, 1997) named

as Graph Walk. In this method, control flow graphs of the

old and modified program are compared and if any node in

the control flow graphs of the old program is not equivalent

to the corresponding node in the modified program,

all test cases that execute mismatching node are added to

test suite.

In these methods, it has been tried to find an optimum test

suite that covers the relevance code part based on a time-

consuming static analysis of source code. Basically, the

cost of regression test selection and execution of selected

test cases should be less than rerunning all test cases

(Graves et al., 2001). Because of this concern, the

application of code-analysis based methods especially for

large-scale and complex systems is quite challenging and a

limited number of empirical evaluations have been carried

out in a real industrial context (Engström et al., 2010).

2.1.2. Model-Based Methods

Model-based regression selection methods use design

models like class diagrams, sequence diagrams or case

diagrams (Briand et al., 2009). Changes on these models

and their impacts on previously verified test suite are

analyzed. Farooq et al. (2007) proposed an UML (Unified

Modeling Language) based selective regression testing

strategy which uses state machines and class diagrams for

change identification. Gorthi et al. (2008) proposed a model

based approach in their study and used the UML Use Case

Activity Diagram to analyze the impacts of changes and

select the required test cases.

The application of model-based methods is also limited as

the time-consuming static analysis of design models causes

similar concerns as code analysis-based methods.

2.1.3. Requirement Analysis-Based Methods

Requirement coverage-based methods aim to find an

optimum test set that covers the maximum number of

affected requirements which means the requirements

affected by software modifications and need to be

re-tested. Chittimalli and Harrold (2008) have proposed the

basic requirement coverage-based regression

test-selection method in which the regression test suite is

created by including modification-related requirements. In

2009, Krishnamoorthi and Mary,

in 2016 Srikanth et al. and in 2010 Gu et al. have improved

this method by using additional factors other than affected

requirement coverage such as irrelevant requirement

coverage which are the ones that are not affected by the

modifications, customer priority, fault impact and

implementation complexity.

Regression test selection is an

NP-complete optimization problem. There are multiple

optimization algorithms used in the literature for regression

test selection. Mirarab et al. (2012) have prioritized the

selected subset of test cases using a greedy algorithm that

maximizes minimum coverage in an iterative manner.

Krishnamoorthi and Mary (2009) have proposed a test case

prioritization technique using the Genetic Algorithm for a

time-constrained execution environment. Li et al. (2007)

have presented results from an empirical study of the

application of several greedy, metaheuristic, and

evolutionary search algorithms to six programs for

regression testing.

In 2011, Harman emphasized the regression test selection

as a multi-objective optimization problem and in 2018

Garousi et al. have applied this approach to a specific

problem by using the genetic algorithm. In their study, the

requirement coverage-based regression test selection

method is applied the data set used in this study by using a

tailored GBGA which has not been applied to regression

test selection before in literature.

2.2. Graph-Based Genetic Algorithm

The GBGA initially was used for problems which are

already in a graph structure such as NN (Neural Networks)

or genetic programming tree. In the study of Miller (1989),

the adjacency matrix of a NN is transformed into a binary

string by concatenating the adjacency matrix. Genetic

programming invented by Koza & Stanford (1990) has

swapped sub trees in a tree topology for crossover similar

to a one-point crossover in the standard Genetic Algorithm.

Korkmaz and Üçoluk (2004) have used the fitness value of

sub trees for guiding recombination, not to lose high-value

sub trees. In Doerr et al., (2007), unlike the general

node-based structure, an edge-based representation has

been proposed to improve optimization time. In this

method, each edge is stored with its two neighbor edges.

Samuel (2008) has proposed a matrix-based crossover and

mutation operator by transforming the graph to the

adjacency matrix. To be able to eliminate invalid solutions,

a connectivity constraint was added to operators.

In the study (Ghoumari & Nakib, 2019),

the adaptation of evolution strategy (associations of a

crossing operator and a mutation operator) during evolution

has been proposed. 20 different evolution strategies are

represented in a graph structure and to minimize diversity

loss during evolution if the strategy could not improve or

protect the diversity it is changed with a new one. Diversity

is calculated using Euclidean distance.

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

4

All of the above-mentioned methods have been proposed to

use evolutionary algorithms on graph type represented

problems. On the other hand, a different approach in

GBEAs which use graphs to add geography to the

population as a solution to premature convergence due to

insufficient diversity in evolutionary algorithms was

proposed (Bryden et al., 2006). In their approach, a suitable

graph structure is selected, and then the evolutionary

algorithm is applied to this structure with graph suitable

operators. In the standard evolutionary algorithm,

individuals that have good fitness values are selected for

recombination in each population. Repeating this process

decreases the diversity and creates a population that

includes similar individuals. GBEA is proposed as a

solution to premature convergence due to insufficient

diversity in evolutionary algorithms. They use

a different type of combinatorial graphs to impose a

topology or “geographic structure” on an evolving

population. To create a population, each individual is

placed on a vertex of the selected graph structure.

In order to improve diversity, individuals can be replaced

only with the combination of neighbor individuals which

are the members of the same edge as a geographic

constraint in natural selection. Then a steady-state

evolutionary algorithm proposed by Syswerda (1991) is

used in which evolution proceeds one mating event at a

time. For a mating event, an individual is selected randomly

and based on the fitness value a neighbor individual is used

for crossover. If the fitness value of the new individual is

better than the selected one, it is replaced with the new one.

Based on the same approach, in a study different

evolutionary computation problems have been categorized

using 15 different connected combinatorial graph

structures. A combinatorial graph is composed of vertices

and edges which connect vertices as a set of unordered

pairs. If any vertex in the graph can be traversed from any

other vertex, that graph is defined as a connected graph.

Each problem is run on several different graphs and based

on the solution time problems are categorized. The choice

of graph affects the recombination number for convergence

and controls the spread of solutions within the population.

It is explained that selecting a suitable graph and tuning can

reduce optimization time significantly. Problems with

simpler fitness function performed best with highly

connected graphs (10 times faster), while problems with

difficult fitness landscapes performed better (12 times

faster) with less connected graphs.

The study (Bryden et al., 2003) applied GBEA to the

optimization of heat transfer in a complex system.

Specifically, the time to solution and the diversity of the

population were examined by using four different graph

structures.

As mentioned above, GBEA is used in literature to

overcome premature convergence problem of evolutionary

algorithm due to the loss of population diversity over

generations. Genetic Algorithm which is used for the

problems encoded in a series of bit strings is a subfield of

evolutionary algorithms and it can also be used on graphs

as an evolutionary algorithm. In this study, to benefit from

advantage of increasing diversity of graph-based structure,

a tailored version of GBGA with three different graph types

is proposed and applied to regression test selection for the

first time in literature. To increase the diversity of future

generations, mating options of individuals in a population

are limited with the neighbors of the selected individuals on

the graph and the most compatible neighbor is selected for

mating as a novelty on GBGA. The proposed approach is

applied to a regression test selection problem including 216

test cases, 5610 requirements tested under these test cases

and affected requirements lists of five different software

versions of a software project used in the study of Garousi

et al. (2018) and the application results show that GBGA

with the most compatible neighbor has superior

performance in terms of fitness value when compared to

Genetic Algorithm.

3. MATERIALS AND METHODS

GBGA is a version of the Genetic Algorithm in which the

population is placed on a graph inspired by the concept of

distance in geography and mating is permitted only

between neighboring individuals to be able to keep genetic

diversity. In the scope of this study, three different graph

types are used as baseline structures for populations of

GBGA. Graphs are modeled as neighborhood matrices and

these ones which are used to limit crossover possibilities

between individuals. Crossover between any two

individuals is possible only if there is a connection between

their locations on the graph.

In this section of the paper, used graph types and details of

GBGA with the most compatible neighbor crossover are

explained.

3.1. Used Graph Types

Three different graphs are used as baseline structures for

populations of GBGA: torus, Petersen, and 2-pre-Z graphs.

The Torus Graph is a graph whose vertices can be

placed on a torus such that no edges cross (“Toroidal

graph,” 2021).These graphs are grids that wrap at the edges.

The 𝑛 𝑥 𝑚-torus (𝑛 corresponding to the number of

consecutive vertexes on the big circle of torus and 𝑚

corresponding to the number of consecutive vertexes on the

small circle) denoted 𝑇𝑛,𝑚, has vertex set 𝑍𝑛 𝑥 𝑍𝑚 (Bryden

et al., 2006). Each vertex has edges only with its neighbors.

A 12𝑥6-torus is shown in Figure 1(a).

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

5

 (a) (b) (c)

Figure 1. (a)12𝑥6 torus graph, (b) 32x5 Petersen Graph, (c) 2-Pre-Z Graph with 32 vertexes (Bryden et al., 2006)

The generalized Petersen graph with parameters 𝑛 and 𝑘 (𝑛

corresponding to the number of consecutive vertexes on the

outside and inside shape which is a circle here and 𝑘

corresponding to the number of inside vertexes hopped for

next edge) is denoted 𝑃𝑛,𝑘and has vertex set

0, 1, 2, … . , 2𝑛 − 1(Bryden et al., 2006).

An 32𝑥5-Petersen graph is shown in Figure 1(b).

The 2-Pre-Z graph is a graph obtained as an intermediate

product of the simplifying process defined in (Bryden et al.,

2006) on a 4𝑥4 complete graph. A 32 vertex 2-Pre-Z graph

is shown in Figure 1(c).

3.2. Graph-Based Genetic Algorithm with The Most

Compatible Neighbor Crossover

As in genetic algorithm, GBGA has 4 basic steps which are

the creation of the initial population, selection of the

individuals, applying the genetic operators (crossover and

mutation), and termination. However, a neighborhood

matrix which represents the graph structure in GBGA

should be generated before the beginning of the search

process and a

problem-specific fitness function used to evaluate

individuals in selection and crossover operations is defined

for each problem. GBGA flow diagram can be seen in

Figure 2.

3.2.1. Neighborhood Matrix

Neighborhood matrix, an example of which can be seen in

Figure 3, is a symmetric (0,1)-matrix with zeros on its

diagonal. Each row and column number represents a vertex

on the graph and the same row and column number

represent the same vertex. 0 means there is no connection

between the vertexes that row and column number of the

matrix element correspond and 1 means there is a

connection. Neighborhood matrix corresponds to

undirected adjacency matrix in graph theory and computer

science. An adjacency matrix represents a finite graph. Its

elements indicate whether pairs of vertices are adjacent or

not in the graph.

Before starting GBGA, a 𝑛 𝑥 𝑛 neighborhood matrix (𝑛

corresponding to the population size) is created for the

graph that will provide the infrastructure for the population.

This matrix specifies the connections between individuals

which are used as mating possibilities in crossover

operations.

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

6

Figure 2. GBGA Flow Diagram

Figure 3. Sample Neighborhood Matrix

3.2.2. Initial Population Creation:

The initial population is generated randomly based on the

problem-specific gene structure. It is assumed that each

individual in the population is placed on a vertex

corresponding to its number in the selected graph. Graph

vertex set should be equal to predetermined population size.

3.2.3. Fitness Function

In the Genetic Algorithm, a portion of the existing

population is selected through a fitness function to breed a

new generation. As in Genetic Algorithm, a problem-

dependent fitness function which measures the quality of

the individuals for selection should be determined in

GBGA.

3.2.4. Parent Selection for Mating

Selected individuals through fitness function are the parent

pool of the next generation. In the Genetic Algorithm, to

produce each child individual via crossover operator, a pair

from the parent pool is selected and a child is produced by

using different crossover methods.

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

7

In GBGA with the most compatible neighbor crossover,

only one of the parents is selected from the parent pool.

Therefore, the crossover parent pool size is half of the

Genetic Algorithm. To increase the diversity, the other one

is chosen among the selected one’s neighbors on the graph

via neighborhood matrix. This selection process consists of

two steps: finding neighbors and selecting the most

compatible neighbor.

Finding neighbors: As shown in Figure1 vertexes have

different edge structures for each graph. Neighbors of the

selected parent are determined based on the neighborhood

matrix of the used graph. In the neighborhood matrix, a

binary representation is used to show edges between

vertexes. Each binary value of “1” means the existence of a

connection between the corresponding row and column

vertexes and “0” means no connection. Therefore, column

numbers with “1” values in the row corresponding to the

selected individual indicate its neighbors.

Selecting the most compatible neighbor: Inspired natural

mating, the most compatible neighbor is selected as the

other parent for crossover.

“Most compatible” means the similarity between parents.

For example, for the problem addressed in this study,

regression test selection, “most compatible” means test

coverage similarity between parents.

The neighbor which covers more common tests with the

selected parent than other neighbors is chosen as the second

parent.

Limiting the crossover between neighboring increases

diversity and choosing the most compatible neighbor

prevents the genetic algorithm from turning into a random

search.

3.2.5. Crossover and Mutation

After the selection of parents, identical crossover and

mutation operators with the genetic algorithm are used for

GBGA.

4. PROPOSED ALGORITHM: REQUIREMENT

COVERAGE BASED REGRESSION

SELECTION BY USING THE GRAPH-BASED

GENETIC ALGORITHM WITH THE MOST

COMPATIBLE NEIGHBOR CROSSOVER

In the scope of this study, GBGA with the most compatible

neighbor crossover is applied to a requirement coverage-

based regression test selection problem for three different

graphs defined in section 3 and it is compared with the

traditional genetic algorithm. The proposed solution is

developed in Matlab Global Optimization Toolbox by

modifying the genetic algorithm structure provided by this

toolbox.

4.1. Dataset

Dataset of the problem which includes a traceability matrix

between the test cases and requirements and affected

requirements lists of five different software versions of a

software project are obtained from (Garousi et al., 2018).

Traceability Matrix is the fundamental structure of the

requirement coverage-based selection. It represents the

relationship between the test cases and requirements in

binary matrix format. Each row of the matrix represents a

test case, and each column represents a requirement.

Each binary value of “1” means that the corresponding row

test case covers the corresponding column requirements

and “0” means do not cover. This binary matrix

representation makes it easy to find out the requirement

coverage of candidate solutions in the GBGA search flow.

The size of the traceability matrix has the dimension of

216 𝑥 5610. 5610 system requirements are tested via 216

different test cases. The relationship between test cases and

requirement list is many-to-many which means that a test

case covers more than one requirement, and a requirement

can be tested in more than one test case.

In addition to traceability matrix, affected requirements

lists are used to calculate the requirements coverage

performance of GBGA and Genetic Algorithm for five

different software versions are represented in 1 𝑥 5610 size

binary vector format.

This dataset is used for empirical evaluation and tuning of

the GBGA.

4.2. Proposed Solution

In this part of the paper, the basic steps of GBGA with the

most compatible neighbor crossover are explained from an

application perspective.

4.2.1. Initial Population Creation

The initial population is created randomly in the structure

shown in Figure 4. Each gene as a binary bit represents a

regression test case and each chromosome/individual as a

1 𝑥 5610 size binary vector represents a set of test cases as

a possible solution. For each bit, the value of “1” means the

existence of the corresponding test case in the solution

(regression test-set), and “0” means its absence.

Population size is an important parameter that significantly

affects the performance of the Genetic Algorithm and also

GBGA. An insufficient number of individuals will cause

the Genetic Algorithm to quickly converge to a local

minimum (Gotshall & Rylander, 2000). On the other hand,

if the population includes too many chromosomes, the

Genetic Algorithm may have a performance problem. De

(1998) proposed a population size ranging from 50 to 100

chromosomes. Cobb & Grefenstette (1993) recommended

a range between 30 and 80. In this study, population size is

determined and used as 80 for GBGA and Genetic

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

8

Algorithm

Figure 4. Representation of Population

4.2.2. Fitness Function

In this study, the fitness function is designed on minimizing

irrelevant requirement coverage while maximizing the

affected requirement coverage.

The affected requirement coverage of a regression test set

is the proportion of affected requirements covered by that

test set to the total number of affected requirements. On the

other hand, irrelevant requirement coverage is one minus

the proportion of irrelevant requirements covered by a

subject test set to the total number of irrelevant

requirements. It was formulated as shown in Equation 1 in

order to construct it as finding the smallest value. 𝑎𝑟𝑣 is

used for affected requirement coverage, 𝑖𝑟𝑣 is used for

irrelevant requirement coverage. Identical fitness function

is used for classic and GBGAs.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐) =
1

𝑎𝑟𝑣 + 𝑖𝑟𝑣

Equation 1. Fitness function

4.2.3. Parent Selection for Mating

As defined in section 3, only one of the parents is obtained

from the crossover parent pool. The other parent is selected

among the neighbors of the first parent on the graph. After

determining the neighbors via neighborhood matrix, the

most compatible neighbor is selected as the second parent.

For the requirement coverage-based regression test

selection problem “the most compatible neighbor” means

the neighbor which has more common tests with the chosen

parent than the other neighbors. After determining the

parents,

an identical crossover operator with the Genetic Algorithm

is used to generate child individuals.

4.2.4. Termination

Termination criteria determine what causes the algorithm

to terminate. In this study, the maximum generation number

as 120 and the maximum generation number where the best

value does not change more than a certain threshold as 20

are used as the termination criteria for Genetic Algorithm

and GBGA. Algorithms stop when reaching any of these

two criteria.

4.3. Tuning Parameters of Graph-Based Genetic

Algorithm

To be able to reach the best performance, internal

parameters of the Genetic Algorithm

(e.g., crossover and mutation rates) must be properly tuned

for a specific case. Many studies have shown that the tuning

of a Genetic Algorithm has a strong impact on its

performance. In this study, crossover rate and mutation rate

parameters of both the Genetic Algorithm and GBGA for

three different graphs are tuned empirically based on the

fitness value and execution time. Each GBGA and Genetic

Algorithm is executed 100 times for each crossover rate

starting from 0.05 to 1 with an increasing value of 0.05 and

for each mutation rate starting from 0.01 to 0.2 with an

increasing value of 0.01. In order to assess the performance

with each crossover rate and mutation rate, average values

of fitness values across 100 runs are used. Determined

values after this tuning process are shown in Table 1.

Table 1. Tuned parameter values

 Crossover Rate Mutation Rate

GA 0.6 0.07

Torus GBGA 0.75 0.03

Petersen GBGA 0.8 0.04

2-Pre-Z GBGA 0.7 0.06

5. RESULTS AND DISCUSSIONS

In order to test the performance and compare, GBGA and

Genetic Algorithm are used to find the minimum set of tests

for regression test selection based on a data set which

includes 216 tests, 5610 requirements verified by these

tests, and an affected requirement list for five different

software versions. Each algorithm is run 100 times for each

software version and each run starts with a different initial

population and stops when one of the termination criteria is

met. The performance of the GBGA with three different

graphs and Genetic Algorithm is compared in terms of

fitness value, affected requirement coverage, irrelevant

requirement coverage, and execution time.

5.1. Fitness Value Comparison

From the fitness value aspect, GBGA with three different

graphs provides better results (lower values are better

because fitness function is formulated as finding the

smallest value) than the Genetic Algorithm for all five

software versions as shown in Figure 5. GBGA with

Petersen graph is slightly better than the other two GBGAs

with torus and 2PreZ graphs. It can be said that the Petersen

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

9

graph is the best option for requirement coverage-based

regression test selection with GBGA.

In this study, fitness value is the one and only determinant

for solution selection. Therefore, it is the most important

factor to make a comparison in the scope of this study. The

fitness value is the primary comparison criterion in this

study. As discussed in Section 4, the fitness value of a

solution is the combination of affected and irrelevant

requirement coverage.

Figure 5. Fitness Value Comparison

5.2. Affected and Irrelevant Requirement Coverage

Comparison

In addition to fitness value comparison, coverage ratios of

affected and irrelevant requirements are also compared

separately. As explained in section 2, affected requirements

are those which correspond to the modifications made in

the source code across two software versions and irrelevant

requirements are the ones that are not affected by the

modifications.

Requirement coverage comparison has two different

scenarios as shown in Figures6 and 7. Genetic Algorithm

has slightly better results in affected requirement coverage

perspective than GBGAs, while GBGAs have clearly better

results in irrelevant requirement coverage perspective.

When compare GBGAs; GBGA with 2PreZ graph is the

best one among GBGAs in affected requirement coverage,

while GBGA with Petersen graph is the best in irrelevant

requirement coverage. However, affected and irrelevant

requirements coverages are secondary criteria, and these

comparisons are given as details of fitness value

comparison.

Figure 6. Affected Requirement Coverage Comparison

5.3. Execution Time Comparison

In execution time comparison seen in Figure 8, the Genetic

Algorithm requires less execution time than GBGAs as

expected. “Finding the most compatible neighbor” process

is the reason for this difference.

It increases the execution time of the GBGAs linearly

depending on the number of neighbors. However, this

difference is negligible when compared to the execution of

tests cases.

When comparing the GBGAs, it is observed that GBGA

with Petersen graph has a lower execution time values than

the other two because its average neighbor number for a

vertex is less than others.

Figure 7. Irrelevant Requirement Comparison

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

10

Figure 8. Execution Time Comparison

6. CONCLUSIONS

This paper presents a GBGA modeled with three different

graphs named torus, Petersen, and 2PreZ for requirement

coverage-based regression test selection. To the best of the

authors' knowledge, there is no study in the literature using

a GBGA for regression test selection problems.

In order to evaluate the performance of the GBGA with the

most compatible neighbor crossover, it is compared with

the Genetic Algorithm in terms of fitness value, affected

requirement coverage, irrelevant requirement coverage,

and execution time.

When evaluated in terms of fitness value, which is the one

and only determinant for solution selection as explained in

detail in section 5, the GBGA gives better results than the

Genetic Algorithm in all five different software versions

included in the dataset.

In this study, the GBGA with the most compatible neighbor

crossover is proposed as a solution to requirement

coverage-based regression test selection. However, the

application model of the GBGA provides a general and

flexible structure which is applicable to most of the

optimization problems by customizing the genetic structure

based on problem-specific data and tuning the parameters

of genetic operators.

In the scope of this study, three different graph types are

used as the baseline structure for GBGA. These graphs are

obtained from the study of Bryden, Ashlock, Corns, and

Stephen (Bryden et al., 2006). They have reviewed 15

different graphs in their study for GBGA. Inspired by this

paper, other graph types which are not used in our study can

also be applied to the regression test selection problem.

Application of GBGA to different optimization problems

with a newly designed crossover operator would be a step

toward understanding what types of problems it is

applicable to.

Future work directions can be applying the proposed

approach with more graph types (1), and to different

optimization problems (2).

REFERENCES

Aggrawal, K. K., Singh, Y., & Kaur, A. (2004). Code

coverage based technique for prioritizing test cases

for regression testing. In Proceedings of ACM

SIGSOFT Software Engineering Notes.

Akhin, M., & Itsykson, V. (2009). A regression test

selection technique based on incremental dynamic

analysis. In Proceedings of Software Engineering

Conference in Russia CEE-SECR.

Briand, L. C., Labiche, Y., & He, S. (2009). Automating

regression test selection based on UML designs.

Information and Software Technology, 51, 16–30.

Bryden, Kenneth M., Ashlock, D. A., McCorkle, D. S., &

Urban, G. L. (2003). Optimization of heat transfer

utilizing graph based evolutionary algorithms.

International Journal of Heat and Fluid Flow, 24(2),

267–277.

Bryden, Kenneth Mark, Ashlock, D. A., Corns, S., &

Willson, S. J. (2006). Graph-Based Evolutionary

Algorithms. 10(5), 550–567.

Chittimalli, P. K., & Harrold, M. J. (2008). Regression Test

Selection on System Requirements.

In Proceedings of the 1st India Software Engineering

Conference,87–96.

Cobb, H. G., & Grefenstette, J. J. (1993). Genetic

Algorithms for Tracking Changing Environments. In

Proceedings of the 5th International Conference on

Genetic Algorithms 523–530.

De, K. (1988). Learning with Genetic Algorithms : An

Overview. 121–138.

Doerr, B., Klein, C., & Storch, T. (2007). Faster

evolutionary algorithms by superior graph

representation. In Proceedings of the 2007 IEEE

Symposium on Foundations of Computational

Intelligence, FOCI, 245–250.

Engström, E., Runeson, P., & Ljung, A. (2011). Improving

regression testing transparency and efficiency with

history-based prioritization -

An industrial case study. In Proceedings of the 4th

IEEE International Conference on Software Testing,

Verification, and Validation, ICST.

Engström, E., Runeson, P., & Skoglund, M. (2010).

A systematic review on regression test selection

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

11

techniques. Information and Software Technology,

52(1), 14–30.

Farooq, Q., Iqbal, M. Z. Z., Malik, Z. I., & Nadeem, A.

(2007). An approach for selective state machine

based regression testing. In Proceedings of the 3rd

International Workshop on Advances in Model-

Based Testing - A-MOST, 44–52.

Garousi, V., Özkan, R., & Betin-Can, A. (2018). Multi-

objective regression test selection in practice: An

empirical study in the defense software industry.

Information and Software Technology, 103.

Ghoumari, A., & Nakib, A. (2019). Graph based adaptive

evolutionary algorithm for continuous optimization.

September. http://arxiv.org/abs/1908.08014

Gorthi, R. P., Pasala, A., Chanduka, K. K., & Leong, B.

(2008). Specification-based approach to select

regression test suite to validate changed software.

Neonatal, Paediatric and Child Health Nursing,

153–160.

Gotshall, S., & Rylander, B. (2000). Optimal population

size and the genetic algorithm.

In Proceedings On Genetic And Evolutionary

Computation Conference, 1–5.

Graves, T. L., Harrold, M. J., Kim, J. M., Porter, A., &

Rothermel, G. (2001). An empirical study of

regression test selection techniques. ACM

Transactions on Software Engineering and

Methodology, 10(2), 184–208.

Gu, Q., Tang, B., & Chen, D. (2010). Optimal Regression

Testing based on Selective Coverage of Test

Requirements. In Proceedings of International

Symposium on Parallel and Distributed Processing

with Applications, ISPA.

Gupta, R., Harrold, M. J., & Soffa, M. L. (1992). An

approach to regression testing using slicing. Software

Maintenance, 1992.

Harman, M. (2011). Making the case for MORTO: Multi

objective regression test optimization.

In Proceedings of 4th IEEE International Conference

on Software Testing, Verification, and Validation

Workshops, ICSTW, 111–114.

Jones, J. a., & Harrold, M. J. (2001). Test-suite reduction

and prioritization for modified condition/decision

coverage. In Proceedings of IEEE International

Conference on Software Maintenance, ICSM, 92–

103.

Korkmaz, E. E., & Üçoluk, G. (2004). A controlled genetic

programming approach for the deceptive domain.

IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, 34(4), 1730–1742.

Koza, J. R., & Stanford, K. E. (1990). Genetic

Programming: A Paradigm For Genetically

Breeding Populations Of Computer Programs To

Solve Problems.

Krishnamoorthi, R., & Sahaaya Arul Mary, S. A. (2009).

Factor Oriented Requirement Coverage Based

System Test Case Prioritization of New and

Regression Test Cases. Informaton and Software

Technology, 51, 799–808.

Lee, Z. J., Su, S. F., Chuang, C. C., & Liu, K. H. (2008).

Genetic algorithm with ant colony optimization (GA-

ACO) for multiple sequence alignment. Applied Soft

Computing Journal, 8(1), 55–78.

Li, Z., Harman, M., & Hierons, R. M. (2007). Search

algorithms for regression test case prioritization.

IEEE Transactions on Software Engineering, 33(4),

225–237.

Lu, J., Fang, N., Shao, D., & Liu, C. (2007). An improved

immune-genetic algorithm for the traveling salesman

problem. In Proceedings of International Conference

on Natural Computation, ICNC, 297–301.

Miller, G. F. . T. P. M. (n.d.). Designing Neural Networks

using Genetic Algorithms.

Mirarab, S., Akhlaghi, S., & Tahvildari, L. (2012). Size-

constrained regression test case selection using

multicriteria optimization. IEEE Transactions on

Software Engineering, 38(4), 936–956.

Mirjalili, S. (2019). Evolutionary Algorithms and Neural

Networks. Springer, Cham.

Mittal, S., & Sangwan, O. P. (2018). Prioritizing test cases

for regression techniques using metaheuristic

techniques. Journal of Information and Optimization

Sciences, 39(1), 39–51.

Özkan, R. (2017). Multi-Objective Regression Test

Selection in Practice: An Industrial Case Study.

METU.

Panichella, A., Oliveto, R., Di Penta, M., & De Lucia, A.

(2015). Improving multi-objective test case selection

by injecting diversity in genetic algorithms. IEEE

Transactions on Software Engineering, 41(4), 358–

383.

Rothermel, G. (1996). ERothermel, G. (1996). Efficient,

Effective Regression Testing Using Safe Test

Selection Techniques. Clemson University.fficient,

Effective Regression Testing Using Safe Test

Selection Techniques.

Rothermel, G., & Harrold, M. J. (1997). A safe, efficient

regression test selection technique. ACM

Transactions on Software Engineering and

Methodology, 6(2), 173–210.

Ozkan et.al. (2023). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1), 1-12

12

Samuel, W. S. Y. (2008). A Graph Based Evolutionary

Algorithm. In Thesis (Issue July).

Srikanth, H., Hettiarachchi, C., & Do, H. (2016).

Requirements Based Test Prioritization Using Risk

Factors. Informaton and Software Technology, 69,

71–83.

Syswerda, G. (1991). A Study of Reproduction in

Generational and Steady-State Genetic Algorithms.

Foundations of Genetic Algorithms, 1, 94–101.

Toffolo, A., & Benini, E. (2003). Genetic diversity as an

objective in multi-objective evolutionary algorithms.

Evolutionary Computation, 11(2).

Toroidal graph. (2021). In Wikipedia.

Vokolos, F. I., & Frankl, P. G. (1998). Empirical Evaluation

of the Textual Differencing Regression Testing

Technique Outsource Laboratories. In Proceedings

of ACM Sigsoft International Conference on Software

Testing and Analysis, ISSTA, 44–53.

Whitley, D., Rana, S., & Heckendorn, R. B. (1999). The

island model genetic algorithm: On separability,

population size and convergence. In Journal of

Computing and Information Technology, 7(1), 33–

47.

Yadav, D. K., & Dutta, S. (2017). Regression test case

prioritization technique using genetic algorithm.

Advances in Intelligent Systems and Computing, 509,

133–140.

Yamuç, A., Cingiz, M. Ö., Biricik, G., & Kalipsiz, O.

(2017). Solving test suite reduction problem using

greedy and genetic algorithms.

In Proceedings of International Conference on

Electronics, Computers and Artificial Intelligence,

ECAI, 1–5.

