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Abstract 

In the current study, the size dependent free vibration of shear deformable functionally graded (FG) nanotubes 
is investigated. The nanotube is modeled as cylindrical shell which contains small scale effects by using the 
nonlocal strain gradient theory. Material properties of the FG nanotube are assumed to be variable along 
thickness direction according to power law distribution. The Hamilton’s principle is implemented to derive the 
governing equations and boundary conditions. The numerical results are presented for simply supported FG 
nanotube and the influence of different parameters, such as nonlocal parameter, length scale parameter, length, 
thickness and power law index on frequency of FG nanotube are extensively studied. The results reveal that the 
frequency is significantly size dependent.  

Keywords: Nonlocal strain gradient theory, Nanotube, Vibration, Size-dependent, first order shear deformation 
theory.  

1. Introduction 

Offering unique benefits compared to conventional materials, functionally graded materials 
have been found tremendous amount of interest among researchers. The material properties of 
FG materials are changed smoothly in one or more directions to overcome stress 
concentration, as a common problem in usual composite materials [1]. Since they include two 
different components, FG materials are able to utilize the desirable properties of each 
constituent and as a result they can be designed for specific functions and applications. The 
static and dynamic behavior of FG beams, plats and shells are studied by many researchers.  
For example, Tadi et al. studied the free vibration of FG nanoshells and the effects of different 
parameters on frequency was shown as well [2]. The bending, buckling and vibration 
behaviors of axially FG nanobeams were investigated by Li et al and the critical buckling 
force and natural frequency were shown size dependent [3]. Ebrahimi et al. examined the 
wave propagation of FG nanoplate under nonlinear thermal loading and the influence of 
different parameters such as gradient index, temperature distribution and length scale 
parameter on the wave dispersion was presented [4]. The buckling of cylindrical and conical 
panels and shells of laminated composite, FGM and carbon nanotube reinforced functionally 
graded cases were examined by Civalek and the effects of material and geometrical 
parameters on buckling response were shown [5]. Akgöz et al. studied the longitudinal free 
vibration of axially FG microbars for different boundary conditions and the effect of material 
and geometrical parameters on natural frequency was shown [6]. 
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In recent years, the increasing growth of nanotechnology leads to inspiring innovations in 
electrical, magnetic, and optical devices at the nanoscale and nanotubes are surely the most 
exciting nanostructure playing an important role in nanotechnology today [7]. The research on 
nanotubes has illustrated their prominent mechanical and electronic properties which are 
expected to result in revolutionary new devices. The more accurate realization of nanotubes 
behavior, however has so far been limited because of their dimensions, which are often equal 
or smaller than the characteristics length scales [8]. Modified continuum theories, which are 
developed as analytical methods producing more accurate results as such being comparable to 
those of atomistic models, are utilized in many studies. For example, Mehralian et al. studied 
the buckling of FG piezoelectric nanoshell under pressure based on the new modified couple 
stress theory and the critical buckling pressure was shown significantly size dependent by 
increase in thickness and decrease in length [9]. Size-dependent first order shear deformable 
shell model on the basis of modified strain gradient theory was utilized by Gholami et al. to 
study the axial buckling of functionally graded cylindrical shell [10]. The effect of material 
property gradient index was illustrated significant on the buckling load. Mehralian et al. 
studied the free vibration of FG truncated conical shell in thermal environment based on the 
modified couple stress theory and natural frequency was shown significantly size dependent 
particularly by decreasing apex angle and increasing gradient index [11]. The size dependent 
buckling behavior of silicon carbide nanotubes were investigated by Mercan et al. on the basis 
of Eringen’s nonlocal elasticity and surface elasticity and the influence of geometrical 
parameters on critical buckling load was indicated [12]. Akgöz et al. studied the buckling of 
single walled carbon nanotubes using modified couple stress theory and strain gradient theory 
[13]. 
Nonlocal strain gradient theory, as higher order continuum theory, which is able to predict the 
stiffens-hardening effects besides stiffness-softening ones, is introduced by Lim et al. [14]. In 
this theory, the stress field accounts nonlocal stress field besides strain gradients stress filed 
and two material length scale parameters beside two Lame constants are introduced [14]. 
There are many studies in which the static and dynamic behaviors of nanobeams and 
nanoplates are investigated based on this theory. For example, Ebrahimi et al. examined the 
buckling of curved FG nanobeam based on the nonlocal strain gradient theory for simply 
supported and clamped boundary conditions and the effect of different parameters such as 
length scale parameters, power law exponent and boundary conditions were indicated [15]. 
The wave propagation in a viscoelastic SWCNT are studied based on the nonlocal strain 
gradient theory using Timoshenko beam model by Tang et al. and the effects of tube size on 
the wave dispersion was shown [16]. 
Motivated by the mentioned discussion, this paper examines the vibration of FG nanotube 
based on the nonlocal strain gradient theory using the first order shear deformation shell 
model. The governing equations and boundary conditions are derived using Hamilton’s 
principle. The free vibration of simply supported cylindrical shell, as a case study, is 
investigated. The effects of different parameters such as material length scale parameters, 
thickness ratio and length ratio are illustrated on the frequency. 

2. Theoretical development 

Consider a FG nanotube modeled as cylindrical shell in Fig. 1, in which geometrical 
parameters of length, L, radius, R and thickness h are also indicated. FGM is usually made by 
the combination of two components (e.g. ceramics and metal) and the material properties of 
FG cylindrical shell varies continuously and consistently from the material properties of 
ceramics on the inner surface of the cylindrical shell to the properties of the metal on the outer 
surface as a function of constituent’s volume fraction.  Variation in volume fraction of metal 
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and ceramic according to power law distribution along cylindrical shell thickness is expressed 
in the following equations: 
 

ˆ
m

zV
h

β
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
(1) 

1c mV V= −  
 
In the above equation, β stands for power index which varies in the 0 β≤ ≤ ∞  interval, and as 
illustrated by Fig. 1,	 ẑ  stands for the arbitrary surface distance from the inner ones of the 
cylindrical shell. Therefore, the material properties of this cylindrical shell are expressed as: 
 

( ) ( ) ˆˆ m c c
zE z E E E
h

β
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

(2) ( ) ( ) ˆˆ m c c
zz
h

β

ρ ρ ρ ρ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

( ) ( ) ˆˆ m c c
zz
h

β

ν ν ν ν⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 
where Ec , ρc and νc are obtained in ˆ 0z = , and Em , ρm and νm are obtained in ẑ h= , which 
respectively represent Young’s modulus, density and Poisson’s ratio of ceramics and metal.  
As displayed by Fig. 1, the displacement field of cylindrical shell based on first order shear 
deformation theory along the three directions of x, θ and z is expressed as: 
 

( ) ( ) ( ), , , , , , ,xU x z t u x t z x tθ θ ψ θ= +  

(3) ( ) ( ) ( ), , , , , , ,V x z t v x t z x tθθ θ ψ θ= +  

( ) ( ), , , , ,W x z t w x tθ θ=  
 
In the above equation, u(x,θ,t), v(x,θ,t)  and w(x,θ,t)  are considered as neutral axis 
displacement, and ( ), ,x x tψ θ  and ( ), ,x tθψ θ  as rotation of a transverse normal about the 
circumferential and axial directions. Besides, the position of the neutral axis is expressed as 
follows [2]: 
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To extract the governing equations of FG nanotubes, Hamilton’s principle is utilized as 
below:   
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where δT represents kinetic energy variation, δUs  stands for  strain energy variation, and δWe  
is variation in the work of external loads acting on the cylindrical shell, which is neglected in 
this study .  
The kinetic energy is obtained from time derivation on the displacement variables, as follows: 
 

 
Fig. 1. Coordinate system and geometry of the FG nanotube. 

 
( ) 2 2 2ˆ
2 V

z
T V WU dVρ

⎡ ⎤+ +⎣ ⎦= ∫∫∫  (6) 

 
and the variation of kinetic energy is obtained as: 
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Based on the nonlocal strain gradient theory proposed by Lim et al. the strain energy is given 
by [9]: 
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which, εij, σij are the components of strain and stress tensor respectively and Cijkl represents 
the elasticity tensor for cylindrical shell. Also, the non-zero components of strain field are 
obtained by substituting Eq. (3) into (9) and using the assumption ( )1 1z R+ ≈ . 
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Given the assumption of plane stress in the shear deformation shell theory, the stress tensor 
can be defined as: 
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In Eq. (12), elastic constants are defined as: 
 

( )
( )

( ) ( )
( )

( )11 22 12 33 44 552 2

ˆ ˆ ˆ
ˆ, ,

ˆ ˆ1 1
E z E z z

C C C C C C z
z z

ν
µ

ν ν
= = = = = =

− −
 (13) 

 
In the above equation, ( )ˆE z  and ( )ẑν  respectively represent Young’s modulus and 
Poisson’s ratio for FG cylindrical shell. Also, by substituting Eqs. (11) and (12) into Eq. (8), 
the variation of strain energy is obtained: 
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According to nonlocal strain gradient theory, its constitutive equation is as follows: 
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2 21 ij i ijkl kl jkl klt C Cηµ ε ε⎡ ⎤⎣ ⎦− ∇ = − ∇  (16) 
 
In the above equation, µ is equal to square of nonlocal scale parameter (e0a). Furthermore, η is 
equal to square of material length scale parameter (l).  
Consequently, by substituting Eqs. (7,14) into Eq. (5) and calculating multiple integral by 
parts, the governing equations of FG nanotube are extracted as: 
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The boundary conditions are given in Appendix A. 
In order to solve the governing equations, the following approximate solutions, satisfied 
differential equations and boundary conditions, are utilized: 
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where m, n stand for axial and circumferential wave numbers. 
Therefore, by substituting Eq. (22) into the equations of motion, the equations are written in 
the matrix form as follows: 
 

[ ]{ } [ ]{ } 0k d M d+ =  (23) 
 
where 
 

{ } { }0 i td d e ω=  (24) 
 
Now, by substituting Eq. (24) into (23), we have  
 

[ ] [ ]( ){ }2
0 0k M dω− =  (25) 

 
whereω stands for natural frequency,{ } { }0

T
mn mn mn xmn mnd U V W θψ ψ= is displacement 

amplitude vector. To obtain the non-trivial solution to Eq. (25), one must consider the 
determinant of coefficients equivalent to zero from which the shell frequency equation is 
derived and solved.  

3. Results 

For the sake of predicting the vibration behavior of nanotubes more accurately using nonlocal 
strain gradient theory, since the efficiency of the nonlocal strain gradient shell model is 
strongly dependent on the recognition of the proper values of small length scale parameters, µ 
= (e0a)2 and η = l2 are also calibrated using MD results of a (5,5) armchair CNT, due to 
lacking of the values of small length scale parameters of FG nanotubes. Also the values of µ 
and η are considered to be (3.3)2 to (3.5)2 nm2 and (0.1)2 to (0.4)2 nm2, respectively, for 
different length ratios. The following material parameters are considered for FG nanotube 
[17]: 
 

Table 1. Material properties of FG cylindrical shell. 
 E (GPa) υ ρ (kg/m3) 

Aluminum 70 0.3 2702 
Ceramics 427 0.17 3100 

  
In the following, the vibration response of nanotubes under different material and geometrical 
parameters is indicated to illustrate the applications of nonlocal strain gradient theory.  
In order to show the influences of small length scale parameters on frequency of nanotubes, 
Figs. 2 and 3 are presented. It is seen that increasing nonlocal parameter (µ) at a certain scale 
factor (η) decreases frequency which reveals the softening effect of nonlocal parameter (see 
Fig. 2); while, increasing scale factor in the case of certain nonlocal parameter increases 
frequency and it means that the effective stiffness of nanotube becomes larger with increasing 
scale factor (see Fig. 3). These phenomena illustrate that by using nonlocal strain gradient 
theory, the nanotube exerts the softening and stiffening behavior by increasing the nonlocal 
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parameter and scale factor, respectively. Besides, due to the higher elastic modulus of 
ceramics compared to aluminum, with the increase in the gradient index in the shell, where β 
= 0 is for the aluminum shell and β = ∞ for the ceramic shell, the frequency increases as well. 

 
Fig. 2. Effect of nonlocal parameter on frequency for different power law index. 

 

 
Fig. 3. Effect of scale factor on frequency for different power law index. 

 
Fig. 4 is indicated the influences of thickness ratio on frequency of nanotubes. Regarding Fig. 
4, it is witnessed that the increase in thickness ratio contributes to the higher frequency for 
various values of power law index because of ascending the stiffness of nanotube; besides, the 
more increase in the frequency is occurred when the power law index goes up. Also, it is 
found that the higher frequency takes place at high power law index and thickness ratio. This 
is regarded as evidence that the power law index makes nanotube stiffer.  
In order to see the effects of thickness ratio more clearly, Figs. 5 and 6 illustrate the effects of 
thickness ratio on frequency of nanotubes, particularly on different scale factors and nonlocal 
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parameters. It is shown that, the high frequency appears at high scale factor and low nonlocal 
parameter. It is clear that the trends of the frequency variation versus thickness ratio for 
various scale factors and nonlocal parameters are similar to Fig. 4 and similar conclusion can 
be drawn. It should be noted that, the influence of the transverse shear deformation is 
significant when thick and short nanotubes are investigated and since the first order shear 
deformation theory is used in this study, there is no limitation on choosing the values of 
thickness parameter.  

 

 
Fig. 4. Effect of thickness ratio on the frequency for different power law index (µ = (3.3e-9)2, η = 

(0.4e-9)2). 
 

 
Fig. 5. Effect of thickness ratio on the frequency for different scale factors (β = 2, µ = (3.3e-9)2). 
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Fig. 6. Effect of thickness ratio on the frequency for different nonlocal parameters (β = 2, η = 

(0.4e-9)2). 
 
Variation of frequency versus length ratio for different power law index is illustrated in Fig. 
7. As is evident from Fig. 7, the frequency is shown to be decreasing with increasing length 
ratio and this effect is more significant by increasing power law index which depicting stiffer 
nanotubes. In other words, the effects of length ratio on the frequency with greater power law 
index are relatively more than those of ones with small power law index.  
In order to have a deeper insight into the influence of length ratio, Figs. 8 and 9 are also 
illustrated for various scale factors and nonlocal parameters. According to these figures, the 
decreasing procedure of frequency with respect to the increase in length ratio for various scale 
factors and nonlocal parameters is the same as Fig. 7. Moreover, from these figures it can be 
seen that the influence of scale factor and nonlocal parameter is more evident when length 
ratio is small. Also, according to Figs. 8 and 9, at high length ratio the results of the present 
model approach to those of classical ones which shows the capability of classical model to 
predict the vibration response of large-scale structures.  
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Fig. 7. Effect of length ratio on frequency for different power law index (µ = (3.3e-9)2, η = (0.4e-9)2). 

 

 
Fig. 8. Effect of length ratio on frequency for different scale factors (β = 2, µ = (3.3e-9)2). 
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Fig. 9. Effect of length ratio on frequency for different nonlocal parameters (β = 2, η = (0.4e-9)2). 

 

 

4. Conclusion 

In this study, the free vibration of FG nanotube is studied based on the nonlocal strain 
gradient theory and first order shear deformable theory. The material properties are 
considered to be variable through thickness direction according to power law distribution. The 
governing equations and boundary conditions are derived based on the Hamilton’s principle 
and the free vibration of simply supported FG nanotube is studied as well. The effects of 
various parameters such as material length scale parameters, thickness, length and power law 
index are investigated on the frequency. It was revealed that increase in power law index 
intensifies the influence of nonlocal parameter and scale factors on the FG nanotube 
frequency. Moreover, the higher frequency appears at higher thickness ratios and lower length 
ratios. Furthermore, the effects of length ratio and thickness ratio are relatively intense for 
greater scale factors and lower nonlocal parameters. 
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Due to the stress distribution along thickness of the shell, stress resultants are introduced as 
follows: 
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