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Abstract 

Vehicle active suspension systems play an important role in ride comfort and driving 

safety. This study considers the problem of an efficient control scheme design for 

vehicle active suspension systems. The active suspension systems aim to get more 

comfortable riding and good handling for random road disturbances. The purpose of 

this work is to reduce the driver’s entire body acceleration and thereby improve ride 

comfort. The inertial weight-free particle swarm optimization (PSO) method is 

utilized to obtain weighting matrices of the optimal control namely linear quadratic 

regulator (LQR) for the active suspension systems. The designed state-feedback 

controller is applied to the quarter-car suspension system under different road 

profiles. Simulation results of the inertia weight-free PSO-tuned LQR are compared 

with the results of the classical-tuned controller and standard PSO-tuned LQR 

controller to show the effectiveness. 

 
 

 
1. Introduction 

Active suspension systems in vehicles aim to ensure 

ride comfort, road holding, and passenger safety for 

different road irregularities. To utilize the potential of 

active suspension systems, the control algorithms 

should deal with changing road profiles. In the 

literature, various control methods have been 

designed for active suspension systems such as 

sliding mode control [1], adaptive control [2], fuzzy 

𝐻∞ control [3], fuzzy [4], machine learning-based 

controller [5], and PID (Proportional-Derivative–

Integral) with the genetic algorithm [6]. The control 

objectives of active suspension systems are passenger 

comfort, minimum vehicle body acceleration, and 

road handling. The linear quadratic controller is 

designed to obtain optimal performance without 

deteriorating conflict design requirements [7-9]. A 

state feedback optimal control law namely Linear 

Quadratic Regulator (LQR) offers guaranteed 

stability, robustness, and a structured design method 

for multiple-input multiple-output systems. The LQR 
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approach computes an optimal state-feedback gain by 

minimizing a quadratic performance index, which 

consists of the state and input variables penalized by 

the weighting matrices. In the spite of the potential 

advantages, one of LQR design difficulties is the 

optimal selection of the weighting matrices, which 

does not have an efficient procedure. Bryson’s 

method [10] can be used to obtain the initial selection 

of weighting matrices. However, this method is a 

check-test method that is a time-consuming and tiring 

approach. Hence, we focus on the problem of the 

selection of weighting matrices for the LQR control 

design using inertia weight-free particle swarm 

optimization (PSO) approach. 

 In literature, several researchers have 

proposed swarm intelligence methods to find out the 

optimal weighting matrices. For instance, Kumar et 

al. [11] use the PSO approach to obtain the weighting 

matrices of LQR for a two-degrees-of-freedom 

helicopter system. It is reported that weighting 

matrices obtained with the PSO make the control law 
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optimal and also eliminate the tiring manual tuning 

procedure. A reinforced quantum-behaved PSO is 

proposed in [12] to optimize the weighting matrices 

of the LQR controller, which is applied to an inverted 

pendulum system and a flight landing system. 

Maghfiroh et al. [13] utilize the PSO algorithm to find 

optimal weighting matrices for a DC motor system. 

The controller provides the smallest integral of 

absolute the error index. Karanki et al. [14] design a 

PSO-based state feedback controller for a unified 

power-quality conditioner. Shao et al. [15] propose 

PSO-based LQR for a model of an overhead crane 

system. For vehicle active suspension systems, the bat 

algorithm [16], artificial fish swarm algorithm [17], 

and adaptive predator–prey optimization algorithm 

[18] are employed for the selection of optimal 

weighting matrices of the LQR controller.  

The main contribution of this work is to propose the 

inertia weight-free PSO algorithm tuned optimal LQR 

controller for an active suspension system. The inertia 

weight-free PSO algorithm improves the convergence 

speed and accuracy of the standard PSO algorithm. 

The simulation studies are conducted to show the 

effectiveness of the proposed method. The inertia 

weight-free PSO-tuned LQR controller is compared 

with the classical tuned LQR controller and the 

standard PSO-tuned LQR in terms of the vehicle body  

acceleration, suspension deflection, and tire 

deflection. 

2. Material and Method 

 

2.1. Model of Active Suspension System 

This section gives the dynamic equations of a quarter-

active suspension system. The quarter active 

suspension system is depicted in Figure 1. The system 

has two inputs (control input 𝐹 and the road surface 

position, 𝑧𝑟). The vehicle body displacement and the 

tire displacement are denoted by 𝑧𝑠 and 𝑧𝑢𝑠 from the 

ground respectively.  

 

Figure 1. Diagram of the quarter active vehicle suspension 

system 

The quarter active suspension system equation of 

motion are derived in [16] using the Newton law as 

follows: 

musz̈us = −busżus − bsżus − F + bsżs

+ busżr − (zus − zs)ks

− (zus − zr)kus 

(1) 

msz̈s = bsżus + F − bsżs − (zs − zus)ks (2) 

Equations (1)-(2) can be given in the state–space 

realization as: 

ẋ(t) = 𝒜x(t) + ℬu(t) 

y(t) = 𝒞x(t) + 𝒟u(t) 
(3) 

where the state variable vector is 𝑥 = [(𝑧𝑠 −
𝑧𝑢𝑠) �̇�𝑠 (𝑧𝑢𝑠 − 𝑧𝑟)  �̇�𝑢𝑠]

𝑇 and the input vector is 𝑢 =
[�̇�𝑟 𝐹 ]𝑇 and the output vector is 𝑦 = [ (𝑧𝑠 −
𝑧𝑢𝑠)  �̈�𝑠 ]

𝑇. (𝑧𝑠 − 𝑧𝑢𝑠)  and (𝑧𝑢𝑠 − 𝑧𝑟)  are the 

suspension and tire deflections, �̇�𝑠 and �̇�𝑢𝑠  are the body 

and the tire vertical velocities respectively. Matrices 

𝒜,ℬ, 𝒞and 𝒟 are obtained as follows: 

𝒜 =

[
 
 
 
 

0 1
−ks

ms

−bs

ms

0 −1

0
bs

ms

0 0
ks

mus

bs

mus

0 1
−kus

mus
−

(bs+bus)

mus ]
 
 
 
 

,   

ℬ =

[
 
 
 
 0

0

0
1

ms

−1
bus

mus

0

−
1

mus]
 
 
 
 

, 

(4) 



H. Başak, K. Doğan / BEU Fen Bilimleri Dergisi 12 (3), 673-685, 2023 

675 
 

 𝒞 = [
1 0 0 0

−ks

ms

−bs

ms
0

bs

ms

],  𝒟 = [
0 0

0
1

ms

] 

 Table 1 gives the parameters of the quarter active 

suspension system. 

Table 1. Model parameters [16]. 

Symbol Value Definition 

𝐦𝐬 2.45 kg Sprung mass 

𝐦𝐮𝐬 1 kg Unsprung mass 

𝐤𝐬 900  N/m Suspension stiffness 

𝐤𝐮𝐬 1250 N/m Tire stiffness 

𝐛𝐬 7.5 Ns/m Suspension damping 

coefficient 

𝐛𝐮𝐬  5 Ns/m Tire inherent damping 

coefficient 

2.2. Performance Requirements 

The performance requirements of the active suspension 

system are given in [8, 9] as: 

1) Ride comfort: The vehicle body acceleration, 

�̈�𝑠 must be reduced by the active suspension 

system. 

2) Suspension deflection: The active suspension 

system has to maintain the suspension 

deflection within the allowable interval to 

avoid vehicle damage.|(𝑧𝑠 − 𝑧𝑢𝑠)| ≤ 𝑧̅, 𝑧̅ is 

the greatest acceptable suspension deflection. 

3) Road handling: The wheel assembly has to stay 

in firm contact with the road to ensure 

passenger safety. Therefore, the tire’s dynamic 

load has to be smaller than its static load 

(|𝑘𝑠(𝑧𝑢𝑠 − 𝑧𝑟)| ≤ (𝑚𝑠 + 𝑚𝑢𝑠)𝑔). 

2.3. Problem Description  

Consider the following linear time-invariant system: 

ẋ(t) = 𝒜x(t) + ℬu(t), x(0) = x0 

y(t) = 𝒞x(t) + 𝒟u(t) 
(5) 

 in which 𝑥(0) is the initial condition. The purpose is 

to find the optimal control law,  𝑢(𝑡) which can drive 

the state variables of the dynamics to demand state by 

optimizing the following quadratic objective function: 

J = ∫ xT(t)Qx(t) + uT(t)ℛ u(t)dt,

 ∞ 

0

 (6) 

Here 𝑄 is the positive semi-definite state and ℛ is the 

positive-definite weighting matrices respectively. 

Diagonal weighting matrices are generally selected. 

The order of 𝑄 and ℛ matrices equals the number of 

states and the number of inputs. Assume that  (𝒜, ℬ) is 

stabilisable and (𝒜, 𝒞) is observable, then the LQR 

controller computes as follows: 

u(t) = −Kx(t) (7) 

 in which 𝐾 is the optimal state-feedback gain 

computed by 𝐾 = ℛ−1ℬ𝑇𝒫 that is called the Lagrange 

multiplier based on optimization. The positive definite-

matrix, 𝒫 is obtained from the solution of the following 

algebraic Riccati equation: 

𝒜T𝒫 + 𝒫𝒜 + Q − 𝒫ℬℛ−1ℬT𝒫 = 0 (8) 

 The design of the LQR control approach has a 

challenging issue in selecting the weighting matrices. 

The selection of weighting matrices 𝑄 and ℛ affect the 

speed of state variables and control effort [17]. Hence, 

the weighting matrices can be determined by using the 

inertial weight-free PSO in this work. The model of the 

active suspension system is given as a fourth-order 

system. Therefore, the weighting matrix 𝑄 is set to be a 

4x4 diagonal semidefinite matrix (𝑄 =
diag([𝑞1 𝑞2  𝑞3  𝑞4]). The system has a control input, 

𝐹   thereby a scalar, ℛ is considered as ℛ = 𝑟1. The 

corresponding 𝐽 to be minimized is given as follows: 

𝐽 = ∫ [

𝑥1

𝑥2
𝑥3

𝑥4

]

𝑇

[

𝑞1 0
0 𝑞2

0 0
0 0

0 0
0 0

𝑞3 0
0 𝑞4

] [

𝑥1

𝑥2
𝑥3

𝑥4

]

 ∞ 

0

+ 𝑢1𝑟1𝑢1𝑑𝑡 

= ∫ (𝑞1𝑥1
2 + 𝑞2𝑥2

2 + 𝑞3𝑥3
2 + 𝑞4𝑥4

2

 ∞ 

0

+ 𝑟1𝑢1
2)𝑑𝑡 

(9) 

 in which 𝑞1, 𝑞2,  𝑞3 and 𝑞4 are scalar weights of state 

variables. 𝑟1 is the scalar weight of the controlled force. 

LQR weighting matrices are optimized using the PSO 

algorithm whose fitness function is given by the 

following integral of the time-weighted absolute error 

(ITAE): 
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ITAE = ∫ t|e|dt

 ∞ 

0

 (10) 

where e =𝒆(𝒛𝒔−𝒛𝒖𝒔) + 𝒆�̇�𝒔
+ 𝒆(𝒛𝒖𝒔−𝒛𝒓)  + 𝒆�̇�𝒖𝒔

 and 

𝒆(𝒛𝒔−𝒛𝒖𝒔),  𝒆�̇�𝒔
, 𝒆(𝒛𝒖𝒔−𝒛𝒓) and 𝒆�̇�𝒖𝒔

 are tracking errors of 

state variables for the given road profile. 

2.4. Inertia Weight-free Particle Swarm 

Optimization  

Many realistic optimization issues demand costly 

computation-based assessments in order to find the 

optimal solution. The optimization method should be 

carried out speedily and it should not be overly 

complicated [17] due to various limits in research such 

project time needs and computer resource constraints. 

Performances of optimization techniques are evaluated 

using different benchmark fitness functions. These 

algorithms often provide acceptable results by utilizing 

their unique information transmission methods in 

conjunction with a variety of first-candidate solutions 

in various fitness evaluations. These procedures 

frequently run-time and resource-intensive computer 

resources since they evaluate each potential resolution. 

The study and creation of effective optimization 

algorithms for assessing a small number of functions is 

therefore an expanding research topic. Several novel 

ideas have been proposed and published recently. 

These techniques with constrained function evaluations 

have produced some pleasing results [17-19].  

  Wilson [20] first put out the swarm idea in 

1975. Each member of a swarm may use the discoveries 

and experiences of the others to escape from predators 

and find food. Each bird in a swarm can identify where 

it is within the swarm. Every individual will observe 

neighbouring individuals' flight motions to modify their 

own flight trajectory, giving the impression that a single 

entity is in charge of the whole swarm. The positions of 

two or three of its neighbours, as well as the flight path 

of the entire swarm, are the three features that each bird 

must see [21]. Reynolds [22] established a distributed 

behavioural model in light of this. 

 Kennedy and Eberhart [23] first developed the 

stochastic population-based technique known as 

particle swarm optimization (PSO), which was inspired 

by some animals' intelligent group behaviour. This 
technique is a unique evolutionary technique, first 

motivated by the specific social behaviours of fish 

schools and bird flocks. PSO blends evolutionary 

calculations with social psychology concepts from 

socio-cognition agents. It uses a swarm of particles to 

represent the potential solutions to the objective issue 

when applied for optimization processes. Each particle 

will move in the direction of the problem's probable 

solution after a search has started, based on its own and 

the partner particles' investigations. The easy 

implementation and the limited number of adjustable 

parameters of PSO are its two main benefits. Inertia 

weight (w), one of PSO's parameters, to strike a balance 

between the features of exploration and exploitation. 

Since the parameter's inception, several ideas for 

various approaches to calculating the value of inertia 

weight throughout the duration of a run have been 

made. 

The standard PSO contains the following four items: 

1. Determine the objective function. 

2. Set parameters. 

The basic parameters of the PSO include: 

(i) Space dimension 

(ii) Particle swarm size 

(iii) Location constraint 

(iv) Velocity constraint 

(v) Number of iterations 

(vi) Inertia weight 

(vii) Learning factor: The ranges of the 

independent variables should be 

considered while determining the learning 

factor. Particle and particle swarm learning 

factors are the two different categories of 

learning factors. Typically, a value 

between 0 to 5 can be used. 

3. Initialize particle swarm. 

4. Update velocity and location. 

Updating velocity and position is the essence of the 

standard PSO. The function velocity and position, 

which is called the PSO algorithm, is as follows: 

𝑣𝑘+1(𝑚, 𝑛) = 𝑤𝑣𝑘(𝑚, 𝑛)

+ 𝑟1𝑐1(𝑥𝑝𝑘(𝑚, 𝑛)

− 𝑥𝑘(𝑚, 𝑛))

+ 𝑟2𝑐2(𝑥𝑔𝑘(𝑛)

− 𝑥𝑘(𝑚, 𝑛)) 

𝑥𝑘+1(𝑚, 𝑛) = 𝑥𝑘(𝑚, 𝑛) + 𝑣𝑘+1(𝑚, 𝑛)   

(11) 

Where 𝑣k(𝑚, 𝑛) is the velocity of the 𝑚𝑡ℎ particle for 

the 𝑛𝑡ℎ  dimension at the 𝑘𝑡ℎ iteration,  𝑥k(𝑚, 𝑛) is the 

current position of the 𝑚𝑡ℎ particle for the 𝑛𝑡ℎ  

dimension at the 𝑘𝑡ℎ iteration. 𝑥𝑝(𝑚, 𝑛) represents the 
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position of the best solution that the 𝑚𝑡ℎ particle has 

achieved so far, for the 𝑛𝑡ℎ dimension of the problem. 

𝑥𝑔(𝑛) is the current global best obtained so far by the 

particle swarm optimization for the 𝑛𝑡ℎ dimension of 

the problem.  𝑤, 𝑐1,  𝑐2 and 𝑟1,  𝑟2 are defined as inertia 

weight, single particle’s learning factor, particle 

swarm’s learning factor and random values in [0,1], 

respectively [24]. The hybrid optimization algorithm is 

an effective combination of a metaheuristic 

optimization algorithm with another optimization 

algorithm that can exhibit more stable behaviour and 

greater flexibility against complicated and difficult 

problems. Local search algorithms use a well-specified 

neighborhood mechanism to recursively explore the 

search space for a better answer than an already existing 

one. Metaheuristics are made up of iterative processes 

that successfully integrate many sub-heuristics to find 

a search space. To locate global optimal areas, certain 

learning algorithms are employed. Natural approaches 

known as population-based metaheuristics investigate 

the search space by manipulating the population, and 

the outcomes heavily depend on these particular 

manipulative techniques. Compared to other trajectory 

approaches, which are easily impacted by local optima, 

population-based metaheuristics methods are better at 

characterizing local optima. Because of this, 

metaheuristic hybrids that effectively combine the 

advantages of population-based and trajectory 

approaches are typically quite effective and successful 

[25-26]. 

During the early search phase, the standard PSO 

technique often converges quickly before slowing 

down. It frequently has slow convergence and becomes 

locked in local minima. Moreover, the inertia weight, 

𝑤  and the pair of learning factors (𝑐1,  𝑐2) are important 

variables affecting the standard PSO convergence. The 

way each particle updates are the main difference 

between the inertia weight-free PSO and the standard 

PSO algorithm.  In this work, the inertia weight-free 

means that PSO algorithm does not have adjustable 

parameters of  𝑤, 𝑐1 and 𝑐2.The following equations 

show the calculation of particle positions and velocity 

in the inertia weight-free PSO algorithm [27]: 

 𝑣𝑘+1(𝑚, 𝑛) = (2𝑟1 − 0.5)𝑣𝑘(𝑚, 𝑛)

+ (2𝑟2 − 0.5)(𝑥𝑝𝑘(𝑚, 𝑛)

− 𝑥𝑘(𝑚, 𝑛))

+ (2𝑟3 − 0.5)(𝑥𝑔𝑘(𝑛)
− 𝑥𝑘(𝑚, 𝑛)) 

(12) 

𝑢𝑘+1(𝑚, 𝑛) = (2𝑟4 − 0.5)(𝑥𝑔𝑘(𝑛)

− 𝑥𝑝𝑘(𝑚, 𝑛))

+ (2𝑟5 − 0.5)(𝑥𝑔𝑘(𝑛)

− 𝑥𝑘(𝑚, 𝑛)) 

(13) 

 𝑥𝑘+1(𝑚, 𝑛) = 𝑥𝑝𝑘(𝑚, 𝑛)

+ (2𝑟6 − 0.5)𝑣𝑘+1(𝑚, 𝑛)
+ (2𝑟7 − 0.5)𝑢𝑘+1(𝑚, 𝑛)   

(14) 

where, 𝑟1,  𝑟2 ,  𝑟3   𝑟4  𝑟5  𝑟6 and   𝑟7   are defined as 

random values in [0,1]. Figure 1 illustrates the 

flowchart of the inertia weight-free PSO algorithm. 
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Figure 2. Flowchart of the inertia weight–free PSO algorithm 

The process of LQR controller design through the 

inertia weight-free PSO algorithm can be summarized 

as follows: A state-feedback gain is computed using 

with Matlab lqr() command for the pair of system 

matrices (A,B) from equation (4) and matrices Q and R  

are found by the inertia weight-free PSO algorithm. For 

each iteration, the closed-loop system is simulated to 

calculate ITAE (fitness) given in equation (10). 

Obtained ITAE values are compared. As a result, the 

lowest ITAE value and corresponding matrices Q and 

R are recorded at the final iteration. Simulation results 

will be given in next section. 

3.  Simulation Results and Discussion 

In this section, simulation results are given to show the 

effectiveness of the active suspension system with the 

designed LQR controller against random road 

disturbances. A square shape (with an amplitude of 

0.01 m and frequency of 0.3 Hz) and a bumpy shape 

(with an amplitude of 0.1 m and 0.175 Hz) signals are 

taken into consideration as random road disturbances. 

Classical-tuned LQR, standard PSO-tuned LQR, and 

inertia weight-free PSO-tuned LQR are tested under 

random road disturbances. 

           The parameters of the standard PSO and the 

inertia weight–free PSO are given in Table 1. The 

number of the optimized parameter is five which 

consists of four states and a control variable. The range 

of weighting matrices Q and R are set between 0.01 and 

500. Both the standard PSO and weight–free PSO have 

60 particles and 50 iterations.  The standard PSO has an 

inertia weight and a cognitive constant but the weight-

free PSO algorithm does not have these critical weight 

and cognitive constants.  

            For both the standard PSO and the inertia 

weight-free PSO, the convergence of the fitness 

function is shown in Figure 3. It can be seen that the 

weight-free PSO reaches the minimum fitness value 

faster than the standard PSO. The standard PSO 

approach typically converges rapidly during the initial 

search period and then slows. It has the tendency of 

being trapped in local minima and slow convergence. 

Furthermore, inertia weight w, c1 and c2 are critical 

factors that affect the convergence of the PSO. The 

inertia weight–free PSO algorithm overcomes these 

problems.  The inertia weight-free PSO takes 27 

iterations to find the minimum fitness value whereas 

the standard PSO obtains the minimum fitness value 

with 34 iterations. The resulting weighting matrices and 

gains of state-feedback controllers are reported in Table 

2. 

Start

Initialise particle with random position and velocity

Compute the initial firtness, F for each particle's position and 
determine pbest of each particle and gbest

For each particle,  update the velocity using equation (12) and 
the position using equation (14)

Compute the fitness F of each particle's positin and determine 
pbest of each particle and g bbest

If 𝐹(𝑝𝑏𝑒𝑠𝑡) > 𝐹(𝑥)  set 𝑝𝑏𝑒𝑠𝑡 = 𝑥 and set the best of pbest as 
gbest 

The iteration is equal to the 
maximum

Report the best fitness and position 

End

No 

Yes 
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Table 1.  Parameters of the standard PSO and the inertia 

weight-free PSO 

Parameters Standard PSO Inertia weight-

free PSO 

Iterations 50 50 

Particles 60 60 

Variables 5 5 

Inertia weight 0.9 - 

Cognitive  

constants  

2 - 

 

       Figure 3. Comparison of fitness function values 

 

 

Table 2.  State feedback gains and weighting matrices 

 

 

State-feedback gain Weighting matrices 

Classical-tuned LQR 

[8]  
𝐾 = [

469.4581 
52.2394
−179.95
−12.35

]

𝑇

 

𝑄 = diag(692.52, 0.16,  

652.52,0.16) 

ℛ = 0.00065 

Standard PSO-tuned 

LQR 
𝐾 = [

0.0006 
73.96

−347.90
−13.6843

]

𝑇

 

𝑄 = diag(0.0100, 53.5209,  

1.2415, 14.0084) 

ℛ = 0.01 

 Inertia weight-free  

PSO-tuned LQR 

𝐾 = [

0.00060
116.9200

−494.5004
−13.6274

]

𝑇

 

𝑄 = diag(0.0101, 136.7950,  

204.8922, 19.2798) 

ℛ = 0.01 

Figure 4 compares the vehicle body acceleration 

closed-loop responses for the square road profile. The 

inertia weight-free PSO-tuned LQR controller (black 

line) provides lower body acceleration than other 

controllers do. Figures 5 and 6 display the vehicle body 

and tire positions respectively. It can be seen from plots 

that the inertia weight-free PSO-tuned LQR controller 

achieves better road profile tracking. However, the 

classical-tuned LQR controller (green line) has an 

oscillatory response that might damage the vehicle. To 

void structural damage, the absolute value of the 

suspension deflection should be less than 0.038 m 

(|(𝑧𝑠 − 𝑧𝑢𝑠)| ≤ 0.038 m) [8]. The results of 

suspension deflections with all designed controllers are 

given in Figure 7. It can be seen that |(𝑧𝑠 − 𝑧𝑢𝑠)| ≤
0.02 m which is within the acceptable range. The tire 

deflection responses are plotted in Figure 8. For road 

handling requirements, the tire’s dynamic load has to 

be smaller than its static load (((𝑚𝑠 + 𝑚𝑢𝑠)𝑔 =
33.84 𝑁). All controllers satisfy this performance 

requirement. The active suspension system with the 

classical tuned LQR controller has tire’s dynamic load, 
|𝑘𝑠(𝑧𝑢𝑠 − 𝑧𝑟)| = 17.16 N and with the standard PSO-

tuned LQR controller has tire’s dynamic load |𝑘𝑠(𝑧𝑢𝑠 −
𝑧𝑟)| = 17.12 N. Although, the inertia weight-free 

PSO-tuned LQR controller has a less dynamic load 
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(|𝑘𝑠(𝑧𝑢𝑠 − 𝑧𝑟)| = 17.07 N) within the permissible 

range. 

 Similarly, closed-loop responses are given in Figures 

9, 10, 11, 12 and 13 under the bumpy road profile. 

Vehicle body acceleration plots are given in Figure 9 to 

evaluate the passenger ride comfort. It is clearly seen 

that the inertia weight-free PSO-tuned LQR controller 

improves the ride comfort better than other controllers 

do. Figures 10 and 11 show that the vehicle body and 

the tire positions are tracked well with the inertia 

weight-free PSO-tuned LQR controller so passenger 

safety is ensured. Figure 12 indicates the suspension 

deflection under the bumpy road profile. The inertia 

weight-free PSO-tuned LQR controller increases the 

suspension deflection to improve ride comfort. The 

maximum value of the suspension deflection is 0.0124 

m with the inertia weight-free PSO-tuned LQR 

controller, which is less than the permissible travel 

range of 0.038 m. Lastly, the tire deflection is depicted 

in Figure 13. The dynamic loads with the classical 

tuned LQR, the standard PSO-tuned LQR and the 

inertia weight-free PSO tuned LQR controllers are 

3.049 N, 2.755 N, and 2.62 N respectively which are 

lower than the tire’s static load. Furthermore, the 

closed-loop response with the inertia weight-free PSO-

tuned LQR controllers has the best tire deflection 

amongst all designed controllers. ITAE values under 

different road profiles are reported in Table 3. Closed-

loop response with the inertial weight-free PSO-tuned 

LQR controller has the lowest ITAE index. The above 

discussion and figures show that the inertial weight-free 

PSO-tuned LQR controller outperforms the other 

controllers and enhances ride comfort without an 

important deterioration in suspension deflection. 

 

Table 3.  ITAE values of controllers in the different road conditions. 

Road Profile Controller ITAE values 

Square road profile Classical tuned LQR 12.7569 

Standard PSO-tuned LQR 5.2322 

Inertia weight-free PSO-tuned LQR 5.2296 

Bumpy road profile Classical tuned LQR 8.9835 

Standard PSO-tuned LQR 8.3998 

Inertia weight-free PSO-tuned LQR 7.9868 

Figure 4.  The vehicle body acceleration under the square road disturbance 
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              Figure 5.  The vehicle body position under the square road disturbance 

 

Figure 6. Vehicle tire position under the square road 

 

 

Figure 7. Suspension deflection under the square road 
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Figure 8.  Tire deflection under the square road 

 

 

Figure 9. Vehicle body position under the bumpy road 

 

Figure 10. Tire position under the bumpy road 



H. Başak, K. Doğan / BEU Fen Bilimleri Dergisi 12 (3), 673-685, 2023 

683 
 

 

Figure 11. Suspension deflection under the bumpy road 

 

Figure 12. Tire deflection under the bumpy road

 

4. Conclusions 

In this paper, the efficiency of a quarter-active 

suspension system has been investigated under 

different road profiles with the optimal control law. 

To improve ride quality, the inertia weight-free PSO-

tuned LQR control law is proposed. Here, the inertia 

weight-free PSO finds the optimal weighting matrices 

of the LQR controller so as to satisfy conflicting 

performance requirements for the quarter-active 

suspension system. A comparative simulation study is 

carried out for inertia weight-free PSO-tuned LQR, 

the standard PSO-tuned LQR controller and the 

classical-tuned LQR controller. The simulation 

results demonstrate that the inertia weight-free PSO-

tuned LQR controller provides well body and tire 

position tracking performances and reduces the 

vehicle body acceleration with the permissible 

suspension deflection. 
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