
 

GUFBD / GUJS (2023) 13(4): 927-938     doi: 10.17714/gumusfenbil.1281570                                                         Research Article 

 

*Halil ANAC; halilanac@gumushane.edu.tr 

 
ISSN: 2146-538X   e-ISSN: 2146-538X   https://dergipark.org.tr/tr/pub/gumusfenbil 

The new numerical solutions of conformable time fractional generalized Burgers 

equation with proportional delay 
 

Oransal gecikmeli uyumlu zaman kesirli mertebeden genelleştirilmiş Burgers denkleminin 

yeni sayısal çözümleri 
 

Abdullah KARTAL1,a , Halil ANAÇ*2,b , Ali OLGUN3,c  
1Kırıkkale University, Faculty of Science and Letters, Department of Mathematics, 71450, Kırıkkale 
2Gumushane University, Torul Vocational School, Department of Computer Technologies, 29800, Gümüşhane 
3Kırııkkale University, Faculty of Science and Letters, Department of Mathematics, 71450, Kırıkkale 

 

• Received: 12.04.2022 • Accepted: 02.09.2023 

 

Abstract 

The conformable time-fractional partial differential equations with proportional delay are studied using two 

new methods: the conformable fractional q-homotopy analysis transform method and the conformable Shehu 

homotopy perturbation method. The numerical solutions to this equation are graphed. Numerical simulations 

show that the proposed techniques are effective and trustworthy. 

 

Keywords: Conformable q-homotopy analysis transform method, Conformable time-fractional generalized 

Burgers equation, Proportional delay.  

 

Öz 

Oransal gecikmeli uyumlu zaman-kesirli kısmi diferansiyel denklemler, iki yeni yöntem olan uyumlu kesirli q-

homotopi analizi dönüşüm yöntemi ve uyumlu Shehu homotopi pertürbasyon yöntemi kullanılarak incelenir. 

Bu denklemin sayısal çözümleri grafiklerle gösterilmiştir. Sayısal simülasyonlar, önerilen tekniklerin etkili ve 

güvenilir olduğunu göstermektedir. 

 

Anahtar kelimeler: Uyumlu q-homotopi analiz dönüşümü metodu, Uyumlu kesirli mertebeden genelleştirilmiş 

Burgers denklemi, Oransal gecikme. 
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1. Introduction  

 

Fractional calculus (FC) extends integer order calculus to arbitrary order. It was discussed in an early 

communication between the eminent mathematicians Leibniz and L'Hospital around 1695. Because of its 

ability to provide an exact description for numerous sorts of non-linear events, numerous authors have begun 

to investigate fractional calculus in recent years. Fractional order differential equations are a type of differential 

equation that has non-local and genetic material property consequences. Many prominent academics 

investigated and defined the concept of fractional calculus, developing revolutionary definitions that provided 

the groundwork for fractional calculus (Liouville, 1832; Riemann, 1896; Caputo, 1969; Miller&Ross, 1993; 

Podlubny, 1999; Baleanu et al. 2012; Povstenko, 2015). Fractional partial differential equations are now 

commonly used in the creation of nonlinear models and the study of dynamical systems. Many phenomena, 

including chaos theory (Baleanu et al., 2017) financial models (Sweilam et al., 2017), a noisy environment 

(Liu et al., 2015), optics (Esen et al., 2018), and others, have been associated with fractional-order calculus 

theory (Veeresha et al., 2019a; Caponetto et al., 2010; Prakash et al., 2019; Veeresha et al., 2019b; Atangana 

et al., 2022; Shahzad et al., 2023; Iqbal et al., 2023; Iyanda et al., 2023, Hasan et al., 2023; Liaqat et al., 2023). 

The solutions of fractional differential equations are crucial in describing the properties of natural nonlinear 

systems. We apply a number of analytical and numerical techniques to obtain exact solutions to fractional 

differential equations characterizing nonlinear processes. 

 

The investigation deals with the numerical solution of conformable time-fractional partial differential 

equations with proportional delay defined by 

 

{
𝐷𝑡

𝛼𝑤(𝑥, 𝑡) = 𝜓 (𝑥, 𝑤(𝜌0𝑥, 𝜎0𝑡),
𝜕𝑤(𝜌1𝑥,𝜎1𝑡)

𝜕𝑥
, … ,

𝜕𝑚𝑤(𝜌𝑚𝑥,𝜎𝑚𝑡)

𝜕𝑥𝑚 ) ,

𝑤(𝑘)(𝑥, 0) = 𝜑𝑘(𝑥).
                                     (1) 

  

where 𝜌𝑖, 𝜎𝑖 ∈ (0,1) for all 𝑖 ∈ 𝑁, 𝜑𝑘 is initial value, 𝜓 differential operator and 𝐷𝑡
𝛼 is conformable time-

fractional operator.  

 

There are few publications about time fractional partial differential equatiions with proportional delay in the 

literature. These include the Chebyshev pseudospectral method (Zubik-Kawal, 2000), the homotopy analysis 

method (Alkan, 2022), the spectral collocation and waveform relaxation methods (Jackiewicz&Zubik-Kawal, 

2006), and the iterated pseudospectral method (Mead&Zubik-Kawal, 2005). Abazari & Ganji (2011) were able 

to find approximate solutions to PDEs utilizing RDTM. These solutions involved proportional delay. Abazari 

& Ganji (2014) employed DTM to obtain analytical solutions to nonlinear integro-differential equations with 

proportional delay. These answers were obtained by solving the equations using DTM. Tanthanuch (2012) was 

successful in solving the non-homogeneous inviscid Burgers equation with proportional delay by employing 

a method known as group analysis. Analytical solutions to TFPDE with proportionate delay were found by 

using the homotopy perturbation approach by Sakar et al. (2016) and Biazar & Ghanbari (2012). Chen & Wang 

(2010) used the variational iteration method to solve a neutral functional-differential problem with proportional 

delays. Singh & Kumar (2017) accomplished their goal of finding an alternate approximation solution to the 

initial valued autonomous system of TFPDE with proportional delay by employing an additional variational 

iteration approach, abbreviated as AVIM. The fundamental objective of this research is to make two novel 

methodological suggestions: the conformable q-homotopy analysis transform method (Cq-HATM) and the 

conformable Shehu homotopy perturbation method (CSHPM).  
 

2. Preliminaries 

 

Now let's give the definitions to be used in the study. 

 

Definition 2.1. Let a function 𝑓: [0,∞) → ℝ. Then, the conformable fractional derivative of 𝑓 order 𝛼 is 

described by (Khalil et al., 2014; Abdeljawad, 2015; Ala et al., 2020; Gözütok et al., 2019) 

 

𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥+𝜀𝑥1−𝛼)−𝑓(𝑥)

𝜀
,                                                                                                                      (2) 

 

for all 𝑥 > 0, 𝛼 ∈ (0, 1]. 
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Theorem 2.1. Let 𝛼 ∈ (0, 1] and 𝑓, 𝑔 be 𝛼 −differentiable at a point 𝑥 > 0. Then (Khalil et al., 2014; 

Abdeljawad, 2015; Gözütok and Gözütok, 2017) 

 

 

(i) 𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝛼(𝑓) + 𝑏𝑇𝛼(𝑔), for all 𝑎, 𝑏 ∈    ℝ,                    

(3) 

 

(ii) 𝑇𝛼(𝑥𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ,                                                                                                          (4) 

 

(iii) 𝑇𝛼(𝜆) = 0, for all constant functions 𝑓(𝑡) = 𝜆,                                                                               (5) 

 

(iv) 𝑇𝛼(𝑓𝑔) = 𝑓𝑇𝛼(𝑔) + 𝑔𝑇𝛼(𝑓),                                                                                                                                   (6)  

 

(v) 𝑇𝛼 (
𝑓

𝑔
) =

𝑔𝑇𝛼(𝑓)−𝑓𝑇𝛼(𝑔)

𝑔2 .                                                                                                                                              (7)  

 

Definition 2.2. Let 0 <  𝛼 ≤ 1, 𝑓: [0,∞) → ℝ  be real valued function. Then, the conformable fractional Shehu 

transform (CFST) of order 𝛼 of 𝑓 is defined by (Benattia & Belghaba, 2021) 

 

𝑆𝛼𝑐 [𝑓(𝑡)] = 𝑉𝛼(𝑠; 𝑢) = ∫ 𝑒𝑥𝑝 (
−𝑠𝑡𝛼

𝑢𝛼
)𝑓(𝑡)𝑡𝛼−1𝑑𝑡.

∞

0
                                                                                       (8) 

  

Definition 2.3 Let 0 <  𝛼 ≤ 1, 𝑓: [0,∞) → ℝ  be real valued function. The conformable Shehu transform for 

the conformable fractional-order derivative of the function 𝑓(𝑡) is described by (Benattia & Belghaba, 2021) 

 

𝑉𝛼[𝑇𝛼𝑓(𝑡)](𝑣) =
𝑠

𝑢
𝑉𝛼(𝑠; 𝑢) − 𝑓(0).                                                                                                                  (9) 

 

3. New numerical methods  

 

We will introduce new methods. 

 

3.1. Conformable q-homotopy analysis transform method 

 

Consider the conformable time-fractional order nonlinear partial differential equation (CTFNPDE) with 

proportional delay to explain the fundamental idea of Cq-HATM: 

 

𝑇𝛼𝑤(𝑥, 𝑡) +𝑡 𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) = 𝑓(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛,                                            (10) 

   

where 𝑀 is a linear operator, 𝑁 is a nonlinear operator, 𝑓(𝑥, 𝑡) is a source term, 𝜌𝑖, 𝜎𝑖 ∈ (0,1) and 𝑇𝛼𝑡  is a 

conformable fractional derivative of order 𝛼. 
 

Applying the conformable Laplace transform to Eq. (10) and utilizing the initial condition, then, we have  

 

𝑠ℒ𝛼[𝑤(𝑥, 𝑡)] − 𝑤(𝑥, 0) + ℒ𝛼[𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] + ℒ𝛼[𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] = ℒ𝛼[𝑓(𝑥, 𝑡)].                                       (11) 

                         
Rearranging the last equation, then we get  

 

ℒ𝛼[𝑤(𝑥, 𝑡)] −
1

𝑠
𝑤(𝑥, 0) +

1

𝑠
ℒ𝛼[𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] +

1

𝑠
ℒ𝛼[𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] −

1

𝑠
ℒ𝛼[𝑓(𝑥, 𝑡)] = 0.                          (12) 

 

With the help of HAM, we can describe the nonlinear operator for real function 𝜑(𝑥, 𝑡; 𝑞)  as follows: 

 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞) ] −
1

𝑠
𝜑(𝑥, 𝑡; 𝑞) (0+) +

1

𝑠
(ℒ𝛼[𝑀𝜑(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)]     

 

+ℒ𝛼[𝑁𝜑(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)] − ℒ𝛼[𝑓(𝑥, 𝑡)]),                                                                                                             (13) 
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where 𝑞𝜖 [0,
1

𝑛
]. 

 

We construct a homotopy as follows:  

 

(1 − 𝑛𝑞)ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞) − 𝑤0(𝑥, 𝑡)] = ℎ𝑞𝐻(𝑥, 𝑡)𝑁[𝜑(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)],                                                                  (14) 

  

where, ℎ ≠ 0 is an auxiliary parameter and ℒ𝛼 represents conformable Laplace transform. For 𝑞 = 0 and 𝑞 =
1

𝑛
, the results of Eq. (14) are as follows: 

 

𝜑(𝑥, 𝑡; 0) = 𝑤0(𝑥, 𝑡), 𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝑤(𝑥, 𝑡),                                                                                                        (15) 

 

Thus, by amplifying 𝑞 from 0 to 
1

𝑛
, then the solution 𝜑(𝑥, 𝑡; 𝑞) converges from 𝑤0(𝑥, 𝑡) to the solution 𝑤(𝑥, 𝑡).  

 

Using the Taylor theorem around 𝑞 and then expanding 𝜑(𝑥, 𝑡; 𝑞), we get  

 

𝜑(𝑥, 𝑡; 𝑞) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡)𝑞𝑚∞
𝑖=1 ,                                                                                                         (16) 

 

where  

 

𝑤𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚 |𝑞=0.                                                                                                                             (17) 

 

Eq. (16) converges at 𝑞 =
1

𝑛
  for the appropriate 𝑤0(𝑥, 𝑡), 𝑛 and ℎ. Then, we have 

 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 .                                                                                                       (18) 

 

If we differentiate the zeroth order deformation Eq. (14) m-times with respect to 𝑞 and we divide by 𝑚!, 
respectively, then for 𝑞 = 0, we acquire 

 
ℒ𝛼[𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎ𝐻(𝑥, 𝑡)ℛ𝑚(𝑤⃗⃗ 𝑚−1),                                                                                   (19) 

 

where the vectors are described by 

 

𝑤⃗⃗ 𝑚 = {𝑤0(𝑥, 𝑡), 𝑤1(𝑥, 𝑡), … , 𝑤𝑚(𝑥, 𝑡)}.                                                                                                          (20) 

 

Applying the inverse conformable Laplace transform to Eq. (20), we get  

 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎℒ𝛼
−1[𝐻(𝑥, 𝑡)ℛ𝑚(𝑤⃗⃗ 𝑚−1)],                                                                             (21) 

 

where 

 

ℛ𝑚(𝑤⃗⃗ 𝑚−1) = ℒ𝛼[𝑤𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
)

1

𝑠
𝑤0(𝑥, 𝑡) +

1

𝑠
ℒ𝛼[𝑀𝑤𝑚−1(𝜌𝑖𝑥, 𝜎𝑖𝑡)         

   

+𝐻𝑚−1(𝑥, 𝑡)−𝑓(𝑥, 𝑡)],                                                                                                                                                      (22) 

 
and  

 

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1.

                                                                                                                                                  (23) 

 

Here, 𝐻𝑚 is homotopy polynomial and presented by 
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𝐻𝑚 =
1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚 |𝑞=0   and 𝜑(𝑥, 𝑡; 𝑞) = 𝜑0 + 𝑞𝜑1 + 𝑞2𝜑2 + ⋯.                                                                            (24) 

 

Using Eqs. (21) - (22), we get  

 

𝑤𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑤𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚

𝑛
)

1

𝑠
𝑤0(𝑥, 𝑡) + hℒ𝛼

−1 [(
1

𝑠
ℒ𝛼[𝑀𝑤𝑚−1(𝜌𝑖𝑥, 𝜎𝑖𝑡)    

 

+𝐻𝑚−1(𝑥, 𝑡) − 𝑓(𝑥, 𝑡)])].                                                                                                                                (25) 

 

When q-HATM is used, the series solution is given by  

 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)∞
𝑖=0 .                                                                                                                                 (26) 

 

3.2. Conformable Shehu homotopy perturbation method 

 

We analyze the CTFNPDE with proportional delay: 

 

𝑇𝛼𝑤(𝑥, 𝑡) +𝑡 𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) = 𝑓(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛,                                             (27) 

 

with initial condition  

 

𝑤(𝑥, 0) = 𝑎(𝑥),                                                                                                                                                (28) 

 

where 𝑀 is a linear operator, 𝑁 is a nonlinear operator, 𝑓(𝑥, 𝑡) is a source term, 𝜌𝑖, 𝜎𝑖 ∈ (0,1) and 𝑇𝛼𝑡  is a 

conformable fractional derivative of order 𝛼. 
 
Applying the conformable fractional Shehu transform to Eq. (27) and using the initial condition, then we get  

 
𝑠

𝑢
𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] − ∑ 𝑤(𝑥, 0)𝑘−1

𝑚=0 + 𝑆𝛼𝑐 [𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) − 𝑓(𝑥, 𝑡)] = 0.                                (29) 

 
 Eq. (29) is simplified, then we have  

 

𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] −
𝑢

𝑠
𝑎(𝑥) +

𝑢

𝑠
𝑆𝛼𝑐 [𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) − 𝑓(𝑥, 𝑡)] = 0.                                            (30) 

 
When Eq. (30) is rearranged, it is obtained as  

 

𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] =
𝑢

𝑠
𝑎(𝑥) −

𝑢

𝑠
𝑆𝛼𝑐 [𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) − 𝑓(𝑥, 𝑡)].                                                   (31) 

 
When the inverse conformable fractional Shehu transform is implemented to both sides of Eq. (31), we have  

 

𝑤(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) − ( 𝑆𝛼𝑐 )
−1

{
𝑢

𝑠
𝑆𝛼𝑐 [𝑀𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝑁𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)]},                                                         (32) 

 
where the term 𝐴(𝑥, 𝑡) emerges from the in-homogeneous term and initial conditions. 

 

Applying the homotopy perturbation method yields 

 
𝑤(𝑥, 𝑡) = ∑ 𝑝𝑛𝑤𝑛(𝑥, 𝑡).∞

𝑛=0                                                                                                                               (33) 

 
Now, let the nonlinear term be represented as 

 

𝑁𝑤(𝑥, 𝑡) = ∑ 𝑝𝑛𝐻𝑛(𝑤)∞
𝑛=0 ,                                                                                                                             (34) 

 

where 𝐻𝑛(𝑤) is defined by the form 

 



Kartal et. al. 2023 / Volume:13 • Issue:4 • Page 927-938 

932 

𝐻𝑛(𝑤0, 𝑤1, … , 𝑤𝑛) =
1

𝑛!

𝜕

𝜕𝑝𝑛 [𝑁(∑ 𝑝𝑖𝑤𝑖
∞
𝑖=0 )]

𝑝=0
, 𝑛 = 0,1,2,…                                                                         (35) 

 

Substituting the Eqs. (33)-(34) into Eq. (32), it is obtained as 

 

∑ 𝑝𝑛𝑤𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝐴(𝑥, 𝑡) − 𝑝 {( 𝑆𝛼𝑐 )

−1
[
𝑢

𝑠
𝑆𝛼𝑐 {𝑀∑ 𝑝𝑛𝑤𝑛(𝜌𝑖𝑥, 𝜎𝑖𝑡) + ∑ 𝑝𝑛𝐻𝑛(𝑤)∞

𝑛=0 }]}.∞
𝑛=0                 (36) 

 

Eq. (36) is the combination of the conformable fractional Shehu transform and the homotopy perturbation 

method. The coefficients of the same power terms of 𝑝 is compared, then we have the following iterations. 

 

𝑝0: 𝑤0(𝑥, 𝑡) = 𝐴(𝑥, 𝑡),                                                                                                                                     (37) 

 

𝑝1: 𝑤1(𝑥, 𝑡) = −( 𝑆𝛼𝑐 )
−1

{
𝑢

𝑠
𝑆𝛼𝑐 [𝑀𝑤0(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻0(𝑤)]},                                                                       (38) 

 

𝑝2: 𝑤2(𝑥, 𝑡) = −( 𝑆𝛼𝑐 )
−1

{
𝑢

𝑠
𝑆𝛼𝑐 [𝑀𝑤1(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻1(𝑤)]},                                                                       (39) 

 

𝑝3: 𝑤3(𝑥, 𝑡) = −( 𝑆𝛼𝑐 )
−1

{
𝑢

𝑠
𝑆𝛼𝑐 [𝑀𝑤2(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻2(𝑤)]},                                                                        (40) 

 

⋮ 
 

Thus, the series solution of the equation is obtained in the form  

 

 𝑤(𝑥, 𝑡) = lim
𝑝→1

∑ 𝑝𝑚𝑤𝑚(𝑥, 𝑡)∞
𝑚=0 = 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯                                                      (41) 

 

4. Application  

 

Consider the conformable time-fractional Burgers equation with proportional delay (Sakar et al., 2016; Singh 

& Kumar, 2017)  

 

𝜕𝛼𝑤(𝑥,𝑡)

𝜕𝑡𝛼 =
𝜕2𝑤(

𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡),                                                                                              (42) 

 

where 𝑥, 𝑡 ∈ [0,1], 0 < 𝛼 ≤ 1, subject to initial condition  

   

𝑤(𝑥, 0) = 𝑥2.                                                                                                                                                    (43) 

 

Case (i) Cq-HATM solution 

 

Implementing the conformable Laplace transform to Eq. (42) and using Eq. (43), then we get 

 

ℒ𝛼[𝑤(𝑥, 𝑡)] =
1

𝑠
𝑤(𝑥, 0) +

1

𝑠
ℒ𝛼 [

𝜕2𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡)],                                                             (44)                                                             

 

We define the nonlinear operators by using Eq. (44), as  

 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞) ] −
1

𝑠
𝑥2 −

1

𝑠
ℒ𝛼 [

𝜕2𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡)].                                  (45)                                   

 

By applying the proposed algorithm, the 𝑚 − 𝑡ℎ order deformation equations are defined by 

 

ℒ𝛼[𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎℛ𝑚[𝑤⃗⃗ 𝑚−1],                                                                                             (46) 

 

where 
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ℛ𝑚[𝑤⃗⃗ 𝑚−1] = ℒ𝛼[𝑤⃗⃗ 𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
)

1

𝑠
𝑥2 −

1

𝑠
ℒ𝛼 [∑

𝜕2𝑤𝑟(
𝑥

2
,
𝑡

2
)

𝜕𝑥2
𝑚−1
𝑟=0

𝜕𝑤𝑟(
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤𝑚−1(𝑥,𝑡)

𝜕𝑥
                  

 

−𝑤𝑚−1(𝑥, 𝑡)].                                                                                                                                                                    (47) 

 

On applying inverse conformable Laplace transform to Eq. (46), then we have  

 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎℒ𝛼
−1{ℛ𝑚[𝑤⃗⃗ 𝑚−1]}.                                                                                         (48) 

 

By the use of initial condition, then we get 

 

𝑤0(𝑥, 𝑡) = 𝑥2.                                                                                                                                                                   (49)                                                                                                                                               

 

To find the value of 𝑤1(𝑥, 𝑡), putting 𝑚 = 1 in Eq. (48), then we obtain  

 

𝑤1(𝑥, 𝑡) = ℎ𝑥2 𝑡𝛼

𝛼
.                                                                                                                                                           (50)                                                                                                                                          

 

In the same way, if we put 𝑚 = 2 in Eq. (48), we can obtain the value of 𝑤2(𝑥, 𝑡) 

 

𝑤2(𝑥, 𝑡) = (𝑛 + ℎ) (ℎ𝑥2 𝑡𝛼

𝛼
) − ℎ2 (

𝑥

2.2𝛼 −
𝑥

4
− 𝑥2)

𝑡2𝛼

2𝛼2 .                                                                                         (51)                                                                                   

 

In this way, the other terms can be found. So, the Cq-HATM solution of the equaiton is given by 

 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 .                                                                                                     (52) 

 

If we put 𝛼 = 1, 𝑛 = 1, ℎ = −1 in Eq. (52), then the obtained results ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑀
𝑚=1 converges to the 

exact solution 𝑤(𝑥, 𝑡) = 𝑥2𝑒−𝑡 of the equation when 𝑀 → ∞.  
 

Case (ii) CSHPM solution 

 

Applying the conformable Shehu transform to Eq. (42) and using Eq. (43), then we get  

 

𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] =
𝑢

𝑠
𝑥2 +

𝑢

𝑠
𝑆𝛼𝑐 [

𝜕2𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡)].                                                                (53)                                                                  

 

Applying the inverse conformable Shehu transform to Eq (53), then we obtain  

 

𝑤(𝑥, 𝑡) = 𝑥2 + ( 𝑆𝛼𝑐 )
−1

{
𝑢

𝑠
𝑆𝛼𝑐 [

𝜕2𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤(
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡)]}.                                                        (54)                                                    

 

Now HPM is applied, then we have  

 

∑ 𝑝𝑚𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝑥2 + 𝑝 [( 𝑆𝛼𝑐 )
−1

{
𝑢

𝑠
𝑆𝛼𝑐 [∑ 𝑝𝑚𝐻𝑚(𝑤)

∞

𝑚=0

 

 

−
1

8
∑ 𝑝𝑚 𝜕𝑤𝑚(𝑥,𝑡)

𝜕𝑥
∞
𝑚=0 −∑ 𝑝𝑚𝑤𝑚(𝑥, 𝑡)∞

𝑚=0 ]}]                     (55) 

 

We get to the first few components of 𝐻𝑚(𝑤) by  

 

𝐻0(𝑤) =
𝜕2𝑤0(

𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤0(
𝑥

2
,
𝑡

2
)

𝜕𝑥
,                                                                                                                                            (56)                                                                                                 
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𝐻1(𝑤) =
𝜕2𝑤0(

𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤1(
𝑥

2
,
𝑡

2
)

𝜕𝑥
+

𝜕2𝑤1(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤0(
𝑥

2
,
𝑡

2
)

𝜕𝑥
,                                                                                                         (57)                                                                          

 

𝐻2(𝑤) =
𝜕2𝑤0(

𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤2(
𝑥

2
,
𝑡

2
)

𝜕𝑥
+

𝜕2𝑤1(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤1(
𝑥

2
,
𝑡

2
)

𝜕𝑥
+

𝜕2𝑤2(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤0(
𝑥

2
,
𝑡

2
)

𝜕𝑥
,                                                   (58)                                    

 

⋮                                                                                                                                                                         (59) 

 

Comparing the coefficients of the same powers of 𝑝, then we have  

 

𝑝0: 𝑤0(𝑥, 𝑡) = 𝑥2, 𝐻0(𝑤) =
𝑥

4
,                                                                                                                         (60) 

 

𝑝1: 𝑤1(𝑥, 𝑡) = −𝑥2 𝑡𝛼

𝛼
, 𝐻1(𝑤) =

−𝑥𝑡𝛼

2𝛼2𝛼,                                                                                                            (61) 

 

𝑝2: 𝑤2(𝑥, 𝑡) = −ℎ2 (
𝑥

2.2𝛼 −
𝑥

4
− 𝑥2)

𝑡2𝛼

2𝛼2 , 𝐻2(𝑤) = −
ℎ2

2
(

1

42∝ −
1

8
−

𝑥

2
)

𝑡2𝛼

.22𝛼+1𝛼2 +
𝑥𝑡2𝛼

.22𝛼+2𝛼2 +
ℎ2

2

𝑥𝑡2𝛼

.22𝛼+3𝛼2 ,   (62)                                                                         

 

 

As a result, the solution to Eq. (42) for CSHPM is given by 

 

𝑤(𝑥, 𝑡) = 𝑥2−𝑥2 𝑡𝛼

𝛼
− ℎ2 (

𝑥

2.2𝛼 −
𝑥

4
− 𝑥2)

𝑡2𝛼

2𝛼2 .                                                                                                         (63)   

 

Figure 1 shows the graphs of Cq-HATM, exact solution and absolute error. 

 

 

 
 

Figure 1. (a) Nature of Cq-HATM solution (b) Nature of exact solution (c) 

Nature of absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑞−𝐻𝐴𝑇𝑀| at h = −1, n =

1, 𝛼 = 1. 
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The graphs of Cq-HATM, exact solution, and absolute error are depicted in Figure 2 

 

 

 
 

Figure 2. (a) Nature of CSHPM solution (b) Nature of exact solution (c) Nature of absolute 

error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑆𝐻𝑃𝑀| at 𝛼 = 1. 
 

Figure 3 depicts comparison plots of Cq-HATM, CSHPM, and exact solutions for distinct 𝛼 values. 
 

 
 

Figure 3. The comparison of the Cq-HATM solutions and exact solution (b) The comparison of 

the CSHPM solutions and exact solution at h = −1, n = 1, 𝑡 = 0.5 with different 𝛼. 
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Table 1. Comparison of absolute error between Cq-HATM, CSHPM, and FVIM (Singh & Kumar, 2017) 

for Eq. (42) with 𝛼 = 1. 
 

𝒙 𝒕 

𝟎. 𝟎𝟐𝟓 𝟎. 𝟎𝟓𝟎 𝟎. 𝟎𝟕𝟓 𝟎. 𝟏 

Cq-HATM 𝟎. 𝟐𝟓 1.0 × 10−9 1.6 × 10−8 8.1 × 10−8 2.5 × 10−7 

CSHPM  1.0 × 10−9 1.6 × 10−8 8.1 × 10−8 2.5 × 10−7 

FVIM  5.8 × 10−5 2.3 × 10−4 5.3 × 10−4 9.4 × 10−4 

Cq-HATM 𝟎. 𝟓𝟎 4.0 × 10−9 6.4 × 10−6 3.2 × 10−7 1.0 × 10−6 

CSHPM  4.0 × 10−9 6.4 × 10−6 3.2 × 10−7 1.0 × 10−6 

FVIM  2.3 × 10−4 9.4 × 10−4 2.1 × 10−3 3.7 × 10−3 

Cq-HATM 𝟎. 𝟕𝟓 9.1 × 10−9 1.4 × 10−7 7.3 × 10−7 2.2 × 10−6 

CSHPM  9.1 × 10−9 1.4 × 10−7 7.3 × 10−7 2.2 × 10−6 

FVIM  5.2 × 10−4 2.1 × 10−3 4.7 × 10−3 8.5 × 10−3 

 

5. Results and discussion 

 

Table 1 evaluates the absolute error comparison between Cq-HATM, CSHPM, and FVIM for Eq. (42) with 

𝛼 = 1 for the conformable time-fractional generalized Burgers equation (CTFGBE) with proportional delay. 

The 3D graphs of Cq-HATM, exact solution, and absolute error are depicted in Figure 1. Figure 2 depicts 3D 

graphs of Cq-HATM, exact solution, and absolute error. Figure 3 depicts a comparison of Cq-HATM, CSHPM, 

and exact solutions in 2D plots for various 𝛼 values. It was observed that the proposed methods outlined in 

Table 1 yielded the same and even better outcomes than FVIM. 

 

6. Conclusion  

 

Conformable time-fractional partial differential equations with proportional delay are analyzed with Cq-

HATM and CSHPM in this paper. In addition, graphs of the solutions to this equation for various values of 

have been generated using the MAPLE program. The general structure of the surface graphs generated by the 

Maple software for Equation (42) is observed to vary. It is possible to conclude that the recently proposed 

methods for solving nonlinear conforming time-fractional partial differential equations with proportional delay 

are both advantageous and effective. 
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