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Bigeometric Laplace integral Doniisiimii Uzerine

Sinem KAYMAK, Numan YALCIN"
OZET:

Bu ¢alismanin amact, klasik analizin integral dontistim metotlarindan biri olan Laplace integral
doniisiimiiniin temel tamm ve teoremleri kullanilarak, Newtonyen olmayan analizlerden biri
olan bigeometrik analizde Laplace integral doniisiimiinii tanimlamaktir. Oncelikli olarak
Newtonyen olmayan analizlerin temelini olusturan {istel aritmetik kavrami verilmistir. Klasik
analizde oldugu gibi bigeometrik analizde de bigeometrik limit, bigeometrik siireklilik,
bigeometrik tlirev ve bigeometrik integral kavramlarimin tanimlari verilmistir. Ardindan,
bigeometrik Laplace integral doniisiimiiniin tanim1 yapilmigtir. Sonra, bigeometrik Laplace
integral doniisimiiniin bazi temel kavramlar1 ve teoremleri verilmistir. Bunun igin bigeometrik
analizde yer alan bigeometrik tiirev, bigeometrik belirsiz integral ve bigeometrik belirli integral
kavramlarinin tammlart ve bu kavramlarin 6zellikleri kullanilmistir. Ayrica, bigeometrik
Laplace integral doniisimiiniin 6zellikleri incelenmistir. Son olarak bigeometrik Laplace
integral doniisiimii  yardimiyla bigeometrik lineer diferansiyel denklemlerin ¢dziimleri
arastirilmistir.

On Bigeometric Laplace Integral Transform
ABSTRACT:

The purpose of this study is to mention the Laplace integral transform in bigeometric analysis,
which is one of the non-Newtonian analysis by using the fundamental definitions and theorems
of the Laplace integral transform, which is one of the integral transform methods of classical
analysis. First of all, the concept of exponential arithmetic, which forms the basis of non-
Newtonian analysis, is given. As in classical analysis, definitions of the concepts of bigeometric
limit, bigeometric continuity, bigeometric derivative and bigeometric integral are given in
bigeometric analysis. Here, the definition of the bigeometric Laplace integral transform in
bigeometric analysis is given. Then, some basic concepts and theorems of the bigeometric
Laplace integral transform are given. For this purpose, the definitions of the concepts of
bigeometric derivative and bigeometric indefinite integral and bigeometric definite integral in
bigeometric analysis and the properties of these concepts are used. In addition, the properties of
the bigeometric Laplace integral transform are investigated. Finally, solutions of bigeometric
linear differential equations are investigated with the help of the bigeometric Laplace integral
transform.
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INTRODUCTION

It is seen that integral transforms started to be used in the first half of the 19th century. However,
it was G. W. Leibniz (1646-1716) who first introduced the idea of symbolic transform. Later, J. L.
Lagrange (1736-1813) and P. S. Laplace (1749-1827) worked on this transform.

The importance of integral transform methods has emerged with Laplace and Fourier transforms.
Sumudu and other integral transforms are based on Laplace and Fourier integral transforms. The Laplace
transform is an integral transform; it has an important place in physics, mechanics, engineering,
telecommunications, mathematics and other applied sciences. It was described by the French
mathematician and astronomer P. S. Laplace (1749 - 1827). This transform, provides great convenience
in solving differential equations and is also used in mathematical methods of physics.

With the help of different arithmetic operations, new analysis that differ from the classical analysis
has been defined. American scientists Michael Grossman and Robert Katz defined Non-Newtonian
analysis from 1967 to 1970. They defined classical analysis, geometric analysis, harmonic analysis and
quadratic analysis in July 1967, and then bigeometric analysis, anageometric analysis, biharmonic
analysis, anaharmonic analysis, biquadratic analysis and anaquadratic analysis in August 1970. They
used the adjective "non-Newtonian" to distinguish these new analysis from classical analysis.

The most popular non-Newtonian analysis are geometric multiplicative analysis and bigeometric
analysis. There are many applications of these two analysis in the literature; multiplicative analysis has
a wide range of applications, both geometrically and bigeometrically (Boruah and Hazarika, 2021a,b:
Boruah and Hazarika, 2022; Erdogan and Duyar, 2018; Giingor, 2021). Multiplicative analysis has
applications in many fields such as science, engineering and mathematics. Some of those; interest rates,
elasticity in economics (Elasticity) theory, blood viscosity, computer science including image processing
and artificial intelligence, biology, differential equations and probability theory (Bashirov vd. 2011; Filip
vd. 2014; Cérdova-Lepe, 2006). Also, Rybaczuk and Stopel explored fractal growth in materials science
with the help of multiplicative analysis (Rybaczuk and Stopel, 2000). Bashirov et al. defined the basic
concepts of multiplicative analysis and gave some applications (Bashirov vd. 2008). Florak and Assen
used multiplicative analysis in biomedical image analysis (Florak and Assen, 2012). Cakmak and Basar
studied double integrals in multiplicative analysis (Cakmak and Basar, 2014). Kadak and Ozliik
generalized the Runge-Kutta method for ordinary differential equations in multiplicative analysis.
(Kadak and Ozliik, 2014). Cérdova-Lepe worked on the measurement of elasticity in the economy with
the help of multiplicative analysis (Cordova-Lepe, 2015). Yalcin et al. worked on multiplicative linear
differential equations (Yal¢in, 2016; Yalgin and Celik, 2018; Yal¢in vd., 2016; Yalgin, 2019; Yalgin,
2021; Yal¢in and Dedetiirk, 2021; Yal¢in and Dedetiirk, 2022).

In this study, the definition of the bigeometric Laplace integral transform in the sense of
bigeometric analysis is made and some properties are given by using the Laplace integral transform
known from classical analysis. In addition, solutions of bigeometric linear differential equations are
made with the help of the bigeometric Laplace integral transform.

MATERIALS AND METHODS

In this section, the basic definitions and theorems of bigeometric analysis will be discussed
(Grossman and Katz, 1972; Grossman, 1983; Boruah and Hazarika, 2018 a,b).

Basic Definitions and Theorems of Bigeometric Analysis
Let us first give the concept of exponential arithmetic, which forms the basis of non-Newtonian
analysis. (Tirkmen and Basar, 2012; Cakmak and Basar, 2012; Boruah and Hazarika, 2018 a,b)
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Definition 1. Exponential sets of numbers are defined as follows:

a) The set of exponential real numbers: R,,, = {e’|t € R} 1)
b) The set of exponential positive real numbers: RZ,,, = {ef|t € R, t > 0} = (1,) (2)
c) The set of exponential negative real numbers: Rz, = {e‘|t € R, t <0} = (0,1) (3)
d) The set of exponential integers: Z,,, = {e‘| t € Z} 4)

Definition 2. The operations of exponential addition, exponential subtraction, exponential
multiplication and exponential division are defined as follows (Cakmak and Basar, 2012) : Vu, v € R,y

a) u@uv= eln+n() — 4, . ¢ (5)
b) uBv= eln(u)—ln(v) U (6)
v
C) u @ v = eln(u)~ln(v) — uln(v) (7)
In(w) 1
DuQ@Qv = e® =y®», (v # 1) (8)
Definition 3. The function | - [.: Ry, — R:;C% which is given by
|t|. = exp|In(t)| = e/ 9)

is called multiplicative (geometric) absolute value function (Tirkmen and Basar, 2012).

Definition 4. Multiplicative (geometric) absolute value function satisfies the identities
below.(Grossman and Katz, 1972; Grossman 1983; Tirkmen and Basar, 2012; Boruah and Hazarika,
2018a,b).

t,lst, t,lSt,
ltl*_{et,0<t<1:>|t|*_{%,0<t<1. (10)

Here, the inverse of t € R,,,, with respect to exponential addition (multiplication in the classical

sense) is represented by “© t”.
Definition 5. Let A be a subset of R,,,,. A function fz;: A = R,,, is called a bigeometric function.
Definition 6. (Bigeometric Limit)
Let f:A S Reyxp = Reyp be a bigeometric function and a be an accumulation point of the set A

according to geometric (exponential) neighbourhood. The bg (bigeometric) function f has the
bigeometric limit at the point a € R,,,, and it is a unique exponential number L € R,,,, if and only if

for all € > 1 there exists an exponential number § = §(¢) > 1 such that f(t) e L © e LPe) =
(é L- e) whenevert € (a & 6,a ® 6) \ {a} = (g a- 6) \ {a} (Grossman and Katz, 1972; Grossman
1983; Boruah and Hazarika, 2018a).

The bigeometric limit of a function is denoted as below.
nli_r}rcllf(t) = Lor f(t) SifortSa

Definition 7. (Bigeometric One-Sided Limit)

Let f:A S R,y = R,y be a bigeometric function and a € A. The bigeometric right and bigeometric
left limits of the function f at the point a are defined for € > 1, respectively, as follows.

f(ab9t) = nlirrllf(e ), (11)
E—
bg—\ — : a
f(abo7) = mlim f (£), (12)
If the function f has the bigeometric limit at the point a, the following equation is valid.
mlim f(¢) = f(a¥*) = f(a*97). (13)
-a
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Definition 8. (Bigeometric Continuity)

Let f:A S Ry, = Reyp, be a bigeometric function and a € A. The function f is said to be
bigeometric continuous at the point a € A if for all ¢ > 1 there exists an exponential number § = §(¢) >
1 such that |f(t) © f(a)|. < € whenever |t © al, < §.

If a bigeometric function f(t) is continuous at the point t = a then we have
mlim £(¢) = f(a). (14)

Definition 9. (Bigeometric Uniform Discontinuity Point)

Let f:A S R,y = R.y, be a bigeometric function and a € A. If the bigeometric right and
bigeometric left limits of the bigeometric function f at the point a have finite values and f is not
bigeometric continuous at the point a, then the point a is called a bigeometric uniform discontinuity
point of f function.

Definition 10. (Bigeometric Piecewise Continuous Function)

A bigeometric function that is bigeometric continuous in an interval [a,b] except for a finite
number of bigeometric uniform discontinuity points is said to be bigeometric piecewise continuous
function in that interval.

Definition 11. (Bigeometric Derivative)

Let f: Rexp = Reyp, be a bigeometric function. If the limit

1
. [fla+h)t]] /n
}33%[ @ (15)
or the bigeometric limit
1
. [f(h©)] /inn
“}L”i[f(t) (16)

exists then this limit (bigeometric limit) value is called the bigeometric derivative of fand it is
denoted by
L (1) = fr(e) = lim (L) 17)
dat™ h—0 JiO)
(Grossman and Katz, 1972; Grossman 1983; Boruah and Hazarika, 2018a,b).

Remark 1. The bigeometric derivative defined above can also be expressed by,

7@ = lim{[f (@) © fFO1 O [9 © t]} = lim 1)

/ln p-Int
f (t)] (18)

with the help of exponential arithmetic.
If the limit above exists then it is represented by f™(t) and it is called the bigeometric derivative
of f at the point t. Also the bigeometric derivative f™: R,,, = R, can be given by the formula below

Yin
() =nlimlf (¢ ® W) © f(O] @ h = wlim [T2] ™ (19)
(Grossman and Katz, 1972; Grossman 1983; Boruah and Hazarika, 2018a,b).
Remark 2. From the definition of bigeometric derivative we have the following equality.
- _ JHO) et-(nef)'(®)
fr() =exp|t- o . (20)

This gives the relation between bigeometric derivative and classical derivative.

Definition 12. As first order bigeometric derivative is f™, taking one more time bigeometric
derivative we get the second order bigeometric derivative which is denoted by f™*. According to this
the second order bigeometric derivative can be given as below (Giingor, 2020);

) = S5 = o (5 f©) = eIl O M O fFOI O h. (21)
2045
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Similarly the nt"* order bigeometric derivative of f is denoted by ™™ and it is written as (Giingor,
2020);

fr () =

Theorem 1. Let f, h: (a, b) € R,,, = R,,, be two bg differentiable bg function. For a constant
k € R,,, the following equalities hold (Riza and Eminaga, 2014).

AEDO=1O gy pypyr= e om0 (1) © ="
Q) (f - () = £7© - B0 ©) (£7)(©) = 1 OMD - FO© A (oY @) = (T TAONFO

L0 = () = m il @ O W] Oh (@)

d at™

Now, we will give the bigeometric derivatives of some bg functions (Grossman and Katz, 1972;
Grossman 1983; Boruah and Hazarika, 2018a,b);

ar art . . dar
a) ﬁ(c) =1 b) dt_”(sm t) = etcott c) dt_n(COtt) — p—t'sectesct
d L (et) = et ar = e~ ltant ar _ pttant
) am (€D =e e) = (cost) =e ) L (sect)=e
dm dr o ogm
0) ﬁ(tn) =e" h) dt_”(tan t) = etsectesct i) dt_"(csc t) = e~teott

Definition 13. (Bigeometric Antiderivative)

Let f(t) be a bigeometric function. If there exists a bigeometric function F satisfying the relation
F™(t) = f(t), then F is called an antiderivative of f.

Theorem 2. Let F be an antiderivative of f, F™(t) = f(t), on the open interval I = (a,b) C
R.xp- Each bigeometric antiderivative of f on the open interval I is in the form
G(t) =C-F(t). (23)

Here C € R,,, is an arbitrary exponential constant In other words, the ratio between two bg
antiderivatives is constant.

Definition 14. (Bigeometric Indefinite Integral)

Let £(t) be a bigeometric function and F(t) be an bigeometric antiderivative of f(t). Then, the
most general bigeometric antiderivative of f(t) is called the bigeometric indefinite integral of f(¢t) and
it is denoted by
[ f(t)dt™ = C - F(t) (24)

where C € R, is an arbitrary exponential constant.

This integral is also called = —integral (Grossman and Katz, 1972; Grossman 1983; Boruah and
Hazarika, 2018 b). The bg indefinite integral of f(t) can be calculated by the following formula

m J f&)dt™ = exp (f LD de). (25)
Now, we will give the bigeometric integrals of some bg functions (Boruah and Hazarika, 2018 b);
a) [ 1dt™ =C b) m [ etcottdt™ = C - sint C) m[etsectesclgtm = C .
cott
nin?t —ttant j+m —_ ., ttant Jym — .,
d) 7 [trdem =C e e)ymfe dt™ = C - cost fy mfe dt™ = C - sect
9) mf[edt™ =C-t" h)  [etsectesctde®™ = C-tant i) m[e tCtdt™ = C - csct
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Definition 15. (Bigeometric Definite Integral)

Let f be a bg continuous function in the interval [a, b] € R,,,. Then the bigeometric definite
integral of f(t) on the interval [a, b] is given by

. b (nef)(®
n [y f(Bdem = exp ([, PO ar) = efe=a e, (26)

t
(Grossman and Katz, 1972; Grossman 1983; Boruah and Hazarika, 2018 b).
Lemma 2. The following equality holds for bg integral of a bg function f.

n [} f(O)dt™ = exp ([ 77 (n o f)(e7) dr). (27)

T

Proof: From the bg definite integral definition we know

b b b
njf(t)dt” = exp f(lno—tf)(t)dt = exp f(lnof)(t)d(lnt) .

By changing variable T = Int, (t = e) we get
b In(b)
ﬂjf(t)dt” = exp f (Ineo f)(e®)dr |.
a 7=In(a)
Theorem 3. Let f, h two bg functions which are integrable in the interval [a,b] € R,,,. For a
constant k € R, we have the following rules (Grossman and Katz, 1972; Grossman 1983; Boruah and
Hazarika, 2018 b);

) [T =[x [ F(©y dem] (28)

b) @ [ [f(©) - (D1 dt™ = m [ F(t) dt™ - 7 [, h(E) de™, (29)
bIFO] yop _ T Je f(DALT

o nf, [F5dr = roa (30)

d) nf) f©dt™ =[S f©)de™ 7 [ f(©)dt™, (a<c<b). (31)

Theorem 4. (First Fundamental Theorem of Bigeometric Analysis)
Let f be a bg continuous function in the interval [a, b] € R,,,. Also let h(t) be a bg function

defined on [a, b] by

h(e) = [ f(s) ds™. (32)
Then for the interval [a, b] the following equality is valid:
h(6) = £ (©). (33)

(Grossman and Katz, 1972; Grossman 1983).
Theorem 5. (Second Fundamental Theorem of Bigeometric Analysis)
Let f™ be a bg function which is bg continuos in the interval [a,b] < R,,,. Then the following

equality holds

b .» o _ fb
m [ fT(t)dt —%. (34)

(Grossman and Katz, 1972; Grossman 1983).
RESULTS AND DISCUSSION

In this section we will define bigeometric Laplace integral transform (BGLIT) in bigeometric
calculus based on Laplace integral transform in Newtonian calculus. Also some fundamental properties
of this new transformation will be given.
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Definition 16. (Improper Bigeometric Integral)
Let f: RZ,, — Ry, be a bigeometric function which is bigeometric continuous on [a, b] © R,
for each exponential positive real number b > a. The bg limit

. b
T gl_)rglo T fa f(t)de™ (35)
is called improper bg integral of type 1 of the function f on [a, ) and is denoted by
m [ f(t)dem, (36)

If the bg limit exists and equals to an exponential number L € R,,,, then it is said that the improper
bg integral is bigeometric convergent. If the bg limit does not exist or equals to oo or 0, then it is said
that the improper bg integral is divergent (Duyar and Erdogan, 2018).

Definition 17. (The Bigeometric Laplace Integral Transform)

Let f: RZ,, = Ry, be a bigeometric function. Then the bigeometric Laplace integral transform

of f(t) is defined by

Le{f(©)} = Fae(s) =n[” f(£) © e©90tq¢m, (37)
Here Fpg:R.yp = R,y IS @ bigeometric function.
Lemma 3. Let f:R{,, = R,,, be a bigeometric function. For the bigeometric Laplace integral

transform of f(t) the following equality holds (t = e%)

Lpe{f (D} = exp{[Z,(In o f)(e7) - s - dt}. (38)
Proof: First note that

(O5) Ot = MO = on(E) IO _ - in)n® = [eln(s)]_ln(t) _ ¢-ln(®

and

f(©) ©e®I0r = f(t) O exp[(©5) O t]
= e (Inef)(t)-(Inoexp)[(Ss) Ot]

— o (Inof)(D)-[(©5)01]
= [enen®](E90H
= [f(£)]I(©901]

f(©) © e©90t = [£()](").

Now let us use the last equality in the definition of the bigeometric Laplace integral transform.

Lyglf (D} =n f £(6) © e(©90t gy

=r | FOE" g,
|

Now we will use the formula

b In(b) In(b)
nf h(t)dt™ = exp f (Ino h)(e®) dt ; = exp f In[h(e?)] dt
a t=In(a) t=In(a)
to express the bigeometric integral by using the classical integral. Here T = In't.
In(b)
Lol @) =expdim [ n[rent" )] ar
7=In(1)
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= exp{ f In[f(e™)¢7] dr}.
Thus we get -
Lpe{f ()} = eXp{ j (Ine f)(e?) - S_Td‘[}.
=0

Lemma4. Let f: (0,0) —» R, f(7) be afunctionand F(o) be its classical Laplace transform, i.e.
L{f (1)} = F(0). Thenfor t = e” and s = e?the following equality holds:

Lpc{(expo foIn)(t)} = (exp o F o In)(s). (39)
Proof:
By using the equality (38), we have

Lpe{(expo foln)(t)} =exp; j(ln oexp o foln)(e?) s - dr}
7=0
=expy | f(o)-s7"- dr}
)

= eXp<

\8

f(T) . e—rlns . d‘[}
=0
= exp{F(Ins)}

Lps{(expo foln)(t)} = (exp o F o In)(s).

The equality above can also be expressed as
LBG{ef(lnt)} — eF(ns)
According to this the bigeometric Laplace integral transforms of some bg functions
are written in the table below.

f(@ L{f(v)} = F(o) e/Und) Lgc{efn} = eFns)
0 £{0} = 0 1 Lpeil} =1
1 L1} =1/o e Lycle} = ems

lna,  (@>0) f{ng)="¢ a (@€ Rexp) £, {a} = ams

e Liet} = ﬁ . (e>1 el Lpgle'} = eﬁ

e, (@a€R) [fea} = ﬁ (0 >a) e, (a €ER) Lpe{e®} = em

o (nEN) £} = U:—i—l [ 6)] Log{elmor} = eﬁ
cos(ar), (a € R)  L{cos(an)} = 7 ecosin@) (g € R) Lpelecosin@) = v
sin(ar), (@ €R)  Lfsin(an)} = S, (@ER)  p fosinGn(e)) = pimoter

Definition 18. Let f:RZ,, — R.,, be a bigeometric function defined on (1, o). If there exists
to € Rixp, K € Reyp, @ € Ry, CONstants such that for t > ¢,
IF©]. < K™,

Then the bg function f is said to be of @« —bigeometric exponential order for t > t,.

(40)
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Theorem 6. (Existence of Bigeometric Laplace Integral Transform)

Let a bigeometric function f: Rf,, — R, be of a —bigeometric exponential order for t > t,
and be piecewise bg continuous. Then Lz, {f (t)} exists for s > a.

Proof. As f is of @ —bigeometric exponential order there exist K € R},,, (K = e*, k € R*) and
a € R,y such that
F@®)l. < k@™

for t > t,. Without loss of generality we will take t, = 1. Using a change of variables t = e”,
(r € R) the inequality
|f(t)| < K(alnt) lnt

can be wrltten as
If(eD)]. < eF".

Since In|f (e")|. = |In f(e")|, taking natural logarithm of both sides we see that
Inf(e®)| <k-a’.

From the definition of bigeometric Laplace transform for ¢ = e, s € R,,,, we know that
Lag{f (D)} = efmolns(€Ds7ar

Let us define the above integral as I = f::oln f(e®) - s~"dz. If the integral I is convergent then
Lpe{f ()} = e’. Now, consider the following inequality regarding the integral I.

=T
j Inf(e®) s~ %dr| < fllnf(ef)l cs7Tdt < J- k-a®-sTdr =k f (2) dt < oo.
=0 =0 =0 =0

We see that the integral I is convergent for s > a. Thus Lz, {f (t)} exists for s > a.

Theorem 7. (Bigeometric Linearity Property)

Bigeometric Laplace integral transform is an exponentially linear transform. In other words, let
k1, k, be arbitrary real constants and f; (t), f>(t) be two bigeometric functions which have bg Laplace
transforms. Then, the following equality holds
LA - [(®O]%2} = {Lpc [ - {Lp[f2(D)]}*2 (41)

Proof. From the definition of bigeometric Laplace transform we have

LAl O - [f(O)]F2} = eXp*f In([f;(eD)]¥ - [fo(eT)]*2) - s‘fdr}

= exp f ki -Infi(e®) + k, - Infy(e™)] -s‘TdTI

= expik; - f Inf;(e®) s "dt + k, - f In £, (et) 'S_TdT}
0 0

kq

{expf In f;(e") - s‘Tdr} -{expf Inf,(e") - S_TdT}

0 0

LA - [(®O)]%2} = {Lpc [ - {Lp[f2(D)]}*2.
Theorem 8. (Bigeometric First Shifting Property)
Let f:RZ,, = Rey, be a bigeometric function and Fgs(s) = Lps{f(t)} be its bigeometric

Laplace transform. Then the following equality holds

k2
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Lpg {f(t)(alnt)} = Fpe G) (42)
for a € Rexp-
Proof. Using the definition of bigeometric Laplace transform we get

Loe {f(O)@™)} = exp j In|f (e’)(“lnef)] -s-fdr}

0

= exp fln[f(ef)](af) : S_Td‘[}
0

= exp f Inf(e®) -a"- S_Td‘[}

0
o’

= exp«f Inf(e?) - (2)_T dr}

0
n S
Lpg {f(t)(al t)} = Fpe (E)
Theorem 9. (Bigeometric Second Shifting Property)

Let f:R:, = Rey, be a bigeometric function and Fps(s) = Lgs{f(t)} be its bigeometric

Laplace transform. And also let
1, 1<t<a

9(®) ={f(£) t>a.

Then the following equality is satisfied.

Lpe{g ()} = {Fa(5)}O90 = (Fys ()} ", (43)
Proof. From the definition of bigeometric Laplace transform we can write

Lpelg®)} = eXp<f Ing(e?) - S_Td‘l'}
0

= exp ] f Ing(t) -s~nt.d(ln t)}

t=

=

\

t
! ()
0

(
a [}
= exp flng(t)-s‘lnt-d(lnt)+f Ing(t) -s~mt.d(Int)
1 a

Lpcf{g®)} = exp«f lnf(é) -s~Int . d(In t)}.

Now, using a change of variables, u = 2 (t =a-u) fora > 1 we have

[00]

Lpe{g(®)} = exp] f lnf(u)-s““<“'”)-d(ln(a-u))}-

u=1

Here, noting that
d(In(a-u)) =d(na+1Inu) =d(na) + d(nu) =0+ d(nu) = d(Inu)
we get the following equality.
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Lpcig(t)} = exp f In f(u) - s~Unatinw). d(lnu)}

u=1
- [ee]

= exp jlnf(u)-s‘l“”-d(lnu) -s‘“‘“}

-u=1

- 00 S_lna

= {exp j Inf(u)-s~ ™% . d(Inu) }

-u=1

—-lna

Lpe{g(®)} = {Fpe(s)}* .
Theorem 10. (Bigeometric Change of Scale Property)
Let f:R%, = R.y, be a bigeometric function and Fps(s) = Lps{f(t)} be its bigeometric

Laplace transform. Then the following equality holds for a € RZ,,,

1
Lgc{flaOt)}= {FBG (Sl/lna)}lna- (44)
Proof. We will replace a Ot = e"®Int = gInt py using the definition of exponential
multiplication and write

Lpc{f(a™t)}=exp] [ Inf(ame")- S_Td‘[}

T

= exp 1 f In f(a®) - S_Td‘[}.
=0

gL ——3

Here using a change of variables, u = a”, (‘L’ = ::—Z) fora > 1 we get
r _(lnu Inu
Loclr (@) = exp] [ - s70e) g (m)}
u=1

Inu . d(ln u)}

Ina

= exp 1 f Inf(w) - (s/™a)"
u=1

= exp flnf(u)-(sl/lna)_lnu-d(lnu) L}

_ o Nina
={exp flnf(u)-(sl/l““)_lnu'd(lnu) }

1
Lpo{f (@ © )} = {Fpe(sV/m)}ine.
Theorem 11. Let f:RZ,, = R,y, be a bigeometric function and Fps(s) = Lgs{f(t)} be its
bigeometric Laplace transform. Then the following equality holds

Lpa{f (O™} = [FE ()] (45)
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Proof.

Fga(s)=% exp <] (Ino f)(e*)-s7*-dt ‘
=exp|s di f (Ine f)(e*)-s7*-dt ‘

=exp|s f [fe)] (-1)-s*1-dr ‘

=exp{(-1) - f In[f(e")]"-s7"- dr}
7=0

- {exp f In [(f(e‘r))ln(ef)] .s7T . dt }

=0

= (Loc{f@O™ ™
LBG{f(t)ln t} = [Fge ()]
Theorem 12. Let f:RZ,, » R,,, be a bigeometric function and Fps(s) = Lgs{f(t)} be its
bigeometric Laplace transform. Then the following equality holds

Lpc{f()In0"} = [ Frm) (S)] , (m=12,..). (46)
Proof. We will do the proof by mathematical induction.
i) For k = 1 we know that the equality Lz {f ()"t} = [FF;(s)]™* is satisfied from Theorem 11.
il) For k = n, let us assume that the equality

Lye{f(®)no") = [FBnG(n) (S)](— )
holds.
iii) Now for k = n + 1 we write

Lio{f @) m0™) = [Fr+D (s )] pyn+a
Loe{fOWO™) = £, {[ £(e)0n t)n]lnt}
B ‘; = [Lee (FO t)“)]}
(o))
([ }

Thus, we get

Lag{F O™} = [FD(s)
fork =n+ 1. And, thls proves the theorem.
By the theorem above we can write

n+1
]( 1)
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§ " (1/FE™(s), ifnisodd,
Lp{f ()M} = |Fg™ (s)
pelf }= [ ] FXM(s), ifniseven.

Definition 19. (Bigeometric Convolutlon Property)
Let f(t) and g(t) be two bigeometric functions. In this case, the convolution of f(t) with g(t) is
defined as follows;

(47)

O+ g@®) =nf_ f()O gt ©x)dx™ (48)
According to this definition the following equation can be written;
£ g®) = [*_ [ ™0E) - dxm, (49)

Theorem 13. Let f(t) and g(t) be two bigeometric functions. In this case, the following equation
is valid (Kaymak, 2023);
Lge{f () ™ g(0)} = Lpe{f ()} © Lpe{g(©)}- (50)
Theorem 14. Let f(t) be a bigeometric function. In this case, the following equation is valid for
t = e (Kaymak, 2023);

(lno f”(”) o exp) (1) =(Unof o exp)(”) (7). (51)
Result 1. From the theorem 13 and theorem 14 above, the following equality is satisfied,;
fr[(n)(t) — e(lnafoeXp)(n)(T)’ (t — e‘L’). (52)

Theorem 15. The bigeometric Laplace integral transform of the first-order bigeometric derivative
is given as follows (Kaymak, 2023);
Lc{fT (O} = [Fpe (]I - [F(D]. (53)
Theorem 16. The bigeometric Laplace integral transform of the nt"-order bigeometric derivative
is given as follows (Kaymak, 2023);

Lasl PO} = oo I [Ty (00 ) "] (54)

Definition 20. Fpg:R,yp = Reyp IS @ given bigeometric function and f:RZ,, = Rey, is a
bigeometric piecewise continuous function which is of @ —bigeometric exponential order such as
Lge{f ()} = Fpe(s).

Then, the bigeometric function £ (t) is called the bigeometric inverse Laplace transform of Fg (s)
and it is shown as;
f®) = L5{Fpe(s)}: (55)

Theorem 17. The bigeometric inverse Laplace transform is also bigeometrically linear. In other
words, if k,, k, are arbitrary constant exponents and f; (t) , f,(t) are two given continuous functions,
which have bigeometric Laplace transforms Lg;{fi(t)} = F;, Lge{fa(t)} = F,, respectively. Then
(Kaymak, 2023);

Lot{Ef - B2} = Lot R - L5 R e, (56)

Applications to bigeometric linear differential equations

In this section, the aim is to show how bigeometric Laplace transform is used to solve initial-value
problems for bigeometric linear differential equations (Kaymak, 2023). Bigeometric Laplace transform
is especially useful for bigeometric linear differential equations with constant exponents. The solution
is obtained by applying the bigeometric Laplace transform to both sides of such an equation.

Example 4.1. Consider the following bigeometric differential equation with the initial condition

y”(t) . [y(t)]3 — e6lnt+5’ y(l) = e.
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Here, y: RY,, = R.,, be a bigeometric function and Lp;{y(t)} = Y (s) be its bigeometric
Laplace integral transform. Taking the bigeometric Laplace transform of both sides of the bigeometric
differential equation and using the given conditions, we have

Leely™@®) - [y} = ﬁBG{e6ln t+5}
Lec{ly™ (O} - La{ly(®)]?} = e*loT+5), (r =Int)

5
Voo ()05 - [y(D] - Yoo () = €57'5, (o =Ins)
6 5
oo (I™*2 = y(1) - (e77"7)

6 .5 g2450+6
[YBG (S)]ln(s)+3 —e-edl 0 =¢ o2
In?(s) +51In(s)+6 (In(s)+2)-(In(s)+3)
[Vpg ($)]n+3 = ¢ In?(s) =e In?(s)
(In(s)+2)-(In(s)+3) 1 (In(s)+2) 1 2
YBG (S) = e 11’12(5‘) (ln(s)+3) = e ln2(s) e eln(s) . ell’lz(S)_

Now, taking the bigeometric inverse Laplace transform, we obtain

1 2
Lzi{Vse()} = L4 {eln(s) . ean(S)}
1 1 12 1 1 )2
LEE{YBG (s)} = ,CE}; eln(s) . lelnz(s)l = LE}; {eln(s)} . Lgé {elnz(s)}

y(t) =el- (e“‘t)2
y() =e- t2.
CONCLUSION

In this study, the definition of the bigeometric Laplace integral transform in bigeometric analysis
is made and some basic properties of this new transform are examined. It has been seen that the
bigeometric Laplace integral transform has properties such as linearity, first shifting, second shifting,
change of scale and bigeometric convolution. In addition, the existence of the bigeometric Laplace
transform has been proven. Then, the bigeometric Laplace transform of the bigeometric derivative of
the bigeometric function is given and the bigeometric inverse Laplace transform is defined. Finally,
solutions of some bigeometric initial-value problems are investigated with the help of bigeometric
Laplace integral transform.
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