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ABSTRACT  
  
This study simulate and optimize the yield and yield parameters of tomato using AquaCrop model and 

genetic algorthm (GA) respectively. The AquaCrop model was firstly calibrated using the data obtained from 

the field and was later used to simulate the observed yield, water productivity and biomass of tomato. The 

Root Mean Square Error (RMSE), Coefficient of Residual Mass (CRM) Normalized Root Mean Square Error 

(NRMSE) and Modelling efficiency (EF) were used to compare the observed and simulated values. The 

governing equation of AquaCrop simulation software was then optimized using the evolutionary 

optimization method of GA with MATLAB programming software. All the statistical indices except CRM 

used in comparing the simulated and observed values indicated good agreement. The CRM values of -0.11, 

-0.06 and -0.20 were obtained for the yield, biomass and water productivity of tomato which indicated a very 

slight over-estimation of the observed results by the AquaCrop model. The optimization algorithm 

terminated when the optimal values of yield and biomass were 4.496 𝑡𝑜𝑛 ℎ𝑎−1 and 4.90 𝑡𝑜𝑛 ℎ𝑎−1 respectively. 

The GA revealed that the yield and biomass of tomato can be increased by 57% and 23% respectively if the 

optimized parameters were either attained on the field experiment or used during simulation. Thus, the 

study ascertained that crop simulation models such as AquaCrop and optimization algorithms can be used 

to identify optimal parameters that if maintained on the field could improve the yield of crops such as 

tomato. 
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INTRODUCTION  

 

Sustainable agricultural production of food with the aim to meet the ever-increasing 

population could be achieved when more food is produced with less water. This can 

be realized through an optimal irrigation water management (Shanono et al., 2022). 

In irrigation practice, crop models are important tools developed to improve the 

efficiency of irrigation systems through water saving and improved water delivery, 

reduce the operating and labour costs and ensure sustainable agricultural production 

that will enhance the food security and socio-economic status of the farmers and 

nation (Shanono et al., 2014; Perea et al., 2017). These models simulate the 

physiological processes of a given crop growth parameter, and matter and water 

transport, predict yield, and yield components (leaves, roots, and stems) of crop 

(Seidel, 2012). 

Different crop simulation models have been developed some decades ago coupled 

with the advances achieved in crop sciences and computing technologies to improve 

crop productivity (Shanono, 2019; Reynolds et al., 2018; Singels et al., 2013). Some 

of these crops simulation models include the soil vegetation–atmosphere transfer 

(SVAT) model, AquaCrop model, decision support systems for agrotechnology 

transfer (DSSAT), the agricultural production systems simulator (APSIM), and 

Environmental Policy Integrated Climate model (EPIC). These crop simulation 

models offer the opportunity to investigate the effects of cultivar potential for new 

areas, droughts and other factors affecting the yield and crop production which will 

save the energy, water, time and other resources required for experiments                

(Kephe et al., 2021; Kloss et al., 2014; Shanono et al., 2012). DSSAT is one of the 

irrigation simulation models developed to enhance crop water use efficiency. The use 

of DSSAT in agriculture has increased across the world during the last three decades. 

The DSSAT has been applied for balancing the water allocation for irrigation and in 

minimizing pollution while adding value to nutrient-use efficiency (Ara et al., 2021). 

Ko et al. (2009) applied EPIC simulation model in Texas to assess the effect of 

water consumption variables including crop evapotranspiration (ETc) and crop 

water-use efficiency (WUE) on the yield of maize and cotton. The EPIC was applied 

to simulate the response of crop yield to various irrigation levels and the results prove 

EPIC to be a remarkable decision support tool. Walser et al. (2011) used Soil–

Vegetation–Atmosphere Transfer (SVAT) models were used to simulate a rain-out 

experimental field of wheat and barley to maximize water productivity. The SVAT 

performed remarkably well to a slightly water-stressed crop. The AquaCrop model 

stands to be the most popularly known and widely used crop simulation model due 

to its ease of operation, and high accuracy (Raes et al., 2022). AquaCrop incorporates 

the effects of various crop production factors including water-stress, salinity, climate, 

field management and does not consider nutrients cycle or balances to determine soil 

fertility stress but its expected effects on crop biomass production                                   

(Gaelen et al., 2015). AquaCrop has been used widely by different researchers under 

different climatic and soil conditions and has been confirmed to accurately simulate 

plant yield, biomass and water productivity (Bitri et al., 2014).  

In addition, optimization algorithms are also effective tools for solving problems 

of irrigation water management (Jiang et al., 2016). The optimization tool describes 
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and generalizes the irrigation process using a series of mathematical expressions and 

optimization algorithms to obtain the best results (Li et al., 2020; Singh, 2012). 

According to Seidel (2012), efficient irrigation water management can further be 

sustained by optimizing the operational parameters such as irrigation threshold and 

amount of irrigation water. Water-sharing or scheduling optimization models have 

been developed, using optimization techniques such as genetic algorithms, and 

dynamic, linear and non-linear programming (Li et al., 2020). Optimization can 

change conventional irrigation systems to optimal ones while maintaining high crop 

yields and ensuring little or no water is lost by deep percolation. Genetic algorithms 

(GA) is a popular optimization tool used for searching optimum decision results 

thereby solving diverse challenges that relate to the planning, design and 

management of resources (Whitley, 2001). GA is a form of Evolutionary algorithm 

(EA) that is a well-known device for the effective optimization of irrigation water. 

Evolutionary algorithms search for the optimum results from the population in 

parallel but not from a single point (Ikudayisi and Adeyemo, 2015).  

An improved irrigation system that will minimise the inputs while maximizing 

the output can be best achieved by linking simulation models with optimization 

algorithms thereby searching optimal results. Studies related to the development 

and usage of the simulation-optimization approach to the management of drip 

irrigation are still few (Akbari et al., 2018; McCarthy et al., 2013). Most of the 

experiments carried out to improve water productivity in irrigation systems focused 

on either simulating or optimizing the system separately but rarely integrate 

simulation with optimization modelling for crop and water productivity.  To this end, 

this study intends to employ a simulation-optimisation approach to simulate and 

optimize yield and yield components of tomato for optimum production. Such a study 

is particularly important for addressing water scarcity in the semi-arid area of 

northwestern Nigeria which occasionally experiences climatic uncertainties such as 

drought and erratic rainfall.  

 

MATERIALS and METHODS 

 

Study Location and Experimental Set-up 

Study location  

This study was conducted at the training farm of the Department of Agricultural and 

Environmental Engineering, Bayero University, Kano. Kano is located in the 

northwestern part of Nigeria and lies between latitude 12° 0' 0.0000'' N and longitude 

8° 31' 0.0012'' E and it is 472.45 m amsl. Kano is situated in a semi-arid zone with 

an average yearly rainfall of 898 mm which is below the average evaporation of      

1560 mm. The average maximum and minimum temperatures are 32°C and 26°C 

respectively (Ahmad and Haie, 2018; Lawal and Shanono, 2022). 

 

Experimental set-up 

The field study was carried out from 24th February to 31st May 2022 on a 3 m × 15 m 

experimental plot which was divided into two units (UA and UB). The drip system is 

a gravity-driven irrigation method which consists of 2000 litres (2 𝑚3) tank capacity 

mounted 2 m above the ground connected to the main pipeline which was also 

connected to the submarine pipeline. The submarine pipeline has 20 junctions and 
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each junction was connected to a lateral, and the laterals were spaced at 0.75 m apart 

as recommended row spacing of the tomato crop. Each lateral has a length of 3 m and 

9 emitters that are spaced 0.3 m apart based on the recommended crop spacing of 

the tomato crop. Figure 1 shows the schematic of the experimental plot. 

 

 
Figure 1. The layout of the experimental plot. 

 

Soil Analysis of the Experimental Site 

The soil analyses of the experimental field show that the soil has a textural class of 

sandy loam (82.4% sand, 4% silt and 13.76% clay) and an average bulk density of 

1.65 g cm−3. The average soil moisture at saturation, field capacity and the 

permanent wilting point was found to be 30.09%, 17.77% and 7.48% respectively. The 

NPK: 15-15-15 fertilizer was applied at the rate of 250 kg ha−1 as recommended by 

Isah et al. (2014). The pesticide and fungicide chemicals were applied based on the 

advice of the experts in the study area. The weeding was also conducted based on the 

advice of the experienced local farmers in the study area. All other standard 

agronomic procedures were strictly followed.  

 

Soil Water Retention Curve for the Experimental Sites 

The automatic tensiometer was installed in the experimental plot at a depth of           

15 cm and set at -15 kPa and -10 kPa as the lower and upper soil moisture limits 

respectively for sandy loam soils (Thompson and Gallardo, 2005). The automatic 

tensiometer was connected to an irrigation controller that is also connected to the 

solenoid valve which was installed at the mainline of the experimental field. The 

manual tensiometer was also installed at depth of 15 cm in the field to serve as a 

control.  Both automatic and manual tensiometers were calibrated by determining 

the soil moisture using a gravimetric method of the sample taken at the exact depth 
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of the ceramic tips of the sensors and the results were related to the soil-water 

characteristic curve of the experimental site. The soil moisture characteristic curve 

of the experimental site is shown in Figure 2. 

 

 
Figure 2. Soil water retention curves of the experimental site. 

 

The automatic tensiometer signals the irrigation controller to trigger or 

interrupt/stop irrigation events based on the set limits and the controller will either 

open or close the solenoid valve to initiate or suspend the irrigation events. Figure 3, 

4, 5 and 6 show the automatic sensor, irrigation controller, solenoid valve and 

manual tensiometer installed in the experimental plot. 

 

  

 Figure 3. Automatic tensiometer.   Figure 4. Irrigation controller. 
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Figure 5. Solenoid valve       Figure 6. Manual tensiometer 

Yield Measured in the Experimental Site  

The yield from the experimental plot (Ye) was measured in both its fresh and dry 

state. The fresh yield was determined by weighing all the harvested tomato using a 

weighing scale and divided by the experimental field area (kg m−2or ton ha−1). 

Measurement of dry yields and aboveground biomass were carried out from the 

plants selected from four laterals of each unit. In each of the selected laterals, three 

plants were randomly selected and their yields and aboveground biomass were oven-

dried at 70℃ for 24 hours. The water productivity (WPe) was computed as the ratio 

of yield (ton ha−1) to the amount of water applied (m3). 

 

Simulation of Yield and Yield Components of Tomato using AquaCrop 

The AquaCrop  

The AquaCrop simulation model was used for the simulation. The model estimates 

crop yield, crop water requirement, and crop water use efficiency (WUE) in water-

stressed conditions. It has also been used under supplementary irrigation and 

rainfed farming (Heng et al., 2009; Hadebe et al., 2017).  

 

Calibration of the AquaCrop Model 

The AquaCrop model was calibration to account for adjustment of the local varieties 

or local environmental and management conditions. The parameters for AquaCrop 

calibrations were divided into two and include crop parameters and non-conservative 

parameters. The conservative crop parameters include crop growth, transpiration, 

yield formation, water stresses, biomass and temperature stress. Generally and in 

principle, the conservative variables do not require adjustment to the local situations 

and can be used in simulations  (Steduto et al., 2012).   

The FAO has calibrated crop parameters for several crops including tomato which 

is the test crop for this study. In this study, the crop variables used in calibrating the 

AquaCrop are summarized in Table 1 and they include transplanting, emergence, 

flowering and maturity dates, initial canopy and maximum canopy cover, harvested 

index, plant density and the effective rooting depth of the plants. The meteorological 

data that include the wind speed, rainfall, solar radiation and minimum and 

maximum temperature were obtained from the Centre for Dryland Agriculture, 

Bayero University, Kano which is in proximity to the study area. 
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Table 1. Field parameters for calibration of AquaCrop model. 

S/No. Parameter Value 

1 Transplanting 24th February, 2022 

2 Emergence  3rd March, 2022 

3 Maximum Canopy cover 25th April, 2022 

4 Maturity 10th May, 2022 

5 Flowering  5th April, 2022 

6 Time to start of canopy senescence 7th May, 2022 

7 End of flowering 11th May, 2022 

8 Maximum Canopy cover 0.80 

9 Harvested Index, HI 51.40 % 

10 Initial Canopy cover 0.25% 

11 Plant density (plant m−2) 4 plant m−2 

12 Effective rooting depth (mm) 0.6 m 

 

Field and Climatic Data for Simulation 

The input parameters used in simulating the yield, water productivity and biomass 

of tomato in the AquaCrop model are shown in Table 2 and they include soil 

parameters, crop parameters, amount of irrigation water applied and climatic data. 

All the input parameters except climatic data were obtained from the study area 

while the climatic data which include the rainfall, wind speed, maximum and 

minimum temperature and solar radiation were obtained from the Centre for 

Dryland Agriculture, Bayero University, Kano which is in proximity to the study. 

 
Table 2. The AquaCrop model input data.  

S/No. Parameters Value  

1 Saturated hydraulic conductivity, 𝐾𝑆𝑎𝑡(𝑚𝑚 ℎ−1)   41.5 𝑚𝑚 ℎ−1 

2 Saturation (%) 30.09 % 

3 Field capacity, FC (%) 17.77 %   

4 Permanent wilting point, PWP (%) 7.48 % 

5 Soil texture Sandy loam (82.4% sand,       

4% silt and 13.76% clay) 

6 Plant density (plant m−2) 4 plant m−2 

7 Harvest index 50.20 % 

8 Effective rooting depth (mm) 0.6 m 

9 Flowering time (days) 40 days 

10 Maturity time (days) 75 days 

11 Irrigation method Drip 

12 Amount of irrigation water applied (𝑚3) 20.847 𝑚3  

 

Comparison Between the Observed and Simulated Tomato Yield and Yield 

Component  

The comparison between experimental (observed - O) and simulated (predicted - P) 

results of the yield and yield components of tomato were carried out using four 

statistical indices;  

 

i) The Root Mean Square Error (RMSE) 

This is to measure the precision of the outcomes. If RMSE tends towards 0, the 

measure of precision between the predicted and measured values increase. 
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𝑅𝑀𝑆𝑅 = [
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1 ]
0.5

                                                                                 (1) 

 

Where 𝑃𝑖 = simulated value, 𝑂𝑖 = observed value, n = number of the observation. 

 

ii) Normalized Root Mean Square Error (NRMSE) 

This is a statistical index that facilitates the comparison between the models of 

different scales. The NRMSE classified the comparison into excellent, good, 

acceptable and poor based NRMSE percentage. The value of 𝑁𝑅𝑀𝑆𝐸 < 10%  is 

termed as Excellent, 𝑁𝑅𝑀𝑆𝐸 10% 𝑡𝑜 20% is Good, 𝑁𝑅𝑀𝑆𝐸 20% 𝑡𝑜 30%, is Acceptable 

and 𝑁𝑅𝑀𝑆𝐸 > 30%  is poor. Equation 2 shows the formula for computing NRMSE.   

                          

 𝑁𝑅𝑀𝑆𝐸 = 100 ×  
√[

1

𝑛
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1 ]

𝑂𝑚
                                                                                               (2) 

 

Where 𝑃𝑖 = simulated value, 𝑂𝑖 = observed value and 𝑂𝑚 = mean of the observed 

values. 

 

iii) Modelling Efficiency (EF) 

This is also known as the Coefficient of Nash-Sutcliffe (Nash and Sutcliffe, 1970), 

which is used to measure the fitness between the measured and predicted values and 

it ranges from -∞ to 1. When EF is 0 shows results are as good as the mean value of 

the measured data, while an EF of less than 0, implies that the measured value is  

better than the simulated. But when EF is 1 indicates a perfect match of the 

predicted to the measured data. 

 

  𝐸𝐹 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂𝑚)2𝑛
𝑖=1

                                                                                                                       (3) 

 

iv) Coefficient of Residual Mass (CRM) 

This is the measure if the model under or over-predict measured values. A given 

value of zero (0) shows a perfect model, a negative value reveals overestimation 

whereas a positive value indicates underestimation.  

 

 𝐶𝑅𝑀 =  
∑ 𝑂𝑖

𝑛
𝑖=1 −∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

                                                                                                                         (4) 

 

Where; Oi = observed value, Pi = model predicted value, Om = mean of measured 

values and n = number of data. 

 

Optimization of the Simulated Parameters using Genetic Algorithm 

The dry yield, aboveground biomass and crop water productivity of tomato crops were 

simulated using AquaCrop model. The simulated AquaCrop model was then 

optimized using the evolutionary optimization method of genetic algorithm (GA).  

The general procedures for solving any optimization problem using genetic 

algorithms include the initialization process, mutation, crossover and selection. 
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Firstly, populations of individuals as potential solutions are randomly generated. 

Fitness function is used to assess each generated solution. During each iteration 

process, a selection process is then applied to generate a new population which is 

more optimum compared to the previous population. The solutions will then pass 

through mutation and crossover and this is to mimic the natural evolution process. 

Such a process of iteration will continue until a stoppage criterion is reached           

(Eiben and Smith, 2015). The Operational framework of the genetic algorithm is 

summarised in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Operational framework of genetic algorithm. 

 

The operational principle of the coupled simulation-optimization model of tomato 

production under a sensor-based drip irrigation system via genetic algorithm is 

shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Operational framework of the simulation-optimization model via 
AquaCrop-Genetic Algorithm. 
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The parameterizations and ranges of the parameters affecting the model are 

shown in Table 3 below.  

 
Table 3. Optimization parameters and ranges.  

S/No. Parameter Symbol Ranges 

1 Soil fertility stress 𝐾𝑠𝑤𝑝 0 - 1 

2 Yield  𝑌𝑒𝑥𝑝𝑡 3000 - 200000 kg ha−1 

3 Crop transpiration ET 4000 - 8000 m3ha−1season−1 

4 Daily transpiration 𝑇𝑟𝑖 4.0 - 8.0 mm day−1  

5 Daily reference evapotranspiration 𝐸𝑇𝑂𝑖 4.0 - 9.0 mm day−1  

6 Total Fresh plant weight 𝑇𝐹𝑃𝑊 1.28 - 29.8 ton ha−1 

7 Marketable yield 𝑀𝑌 2.7 - 18 ton ha−1 

8 Non-marketable yield 𝑁𝑀𝑌 0 - 2.7 ton ha−1 

The objective function of the optimization is the governing equation of the 

AquaCrop simulation model is stated in Equation 5.                                      

    𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒, 𝑌 = 𝐾𝑠𝑤𝑝
𝑌(𝑒𝑥𝑝𝑡)

𝐸𝑇
∑ (

𝑇𝑟𝑖

𝐸𝑇𝑜𝑖
) ×

𝑀𝑌

𝐹𝑃𝑊+𝑀𝑌+𝑁𝑀𝑌
                                                   (5) 

 

Where;  𝑌 =optimised yield (ton ℎ𝑎−1), 𝑀𝑌=marketable yield, 𝐹𝑃𝑊 =fresh plant 

weight, 𝑁𝑀𝑌 = non-marketable yield, 𝐾𝑠𝑤𝑝 = coefficient of soil fertility stress, 

𝑌(𝑒𝑥𝑝𝑡) = expected yield. 

 

RESULTS AND DISCUSSION  

 

Dry Yield, Water Productivity and Dry Biomass of Tomato from AquaCrop  

Simulated yield, and yield components of tomato  

Table 4 shows the simulated dry yield, water productivity and dry biomass of tomato 

using the AquaCrop model. The AquaCrop simulation results show an average dry 

yield of 2.10 and 1.76 ton ha−1 for units A and B respectively. The average value of 

the yield for the whole experiment is 1.93 ton ha−1. The values of the simulated dry 

biomass for units A and B are 3.65 and 4.00 ton ha−1 averaging 3.83 ton ha−1 for the 

study. The water productivity obtained from the simulation is 0.7 and 0.5 kg m−3 for 

units A and B respectively. The average value of water productivity of the simulated 

result is 0.60 kg m−3.   

 

Table 4. Simulated yield, water productivity and dry biomass of tomato. 

Unit Dry Yield  

(𝒕𝒐𝒏 𝒉𝒂−𝟏) 

Water Productivity 

(𝒌𝒈 𝒎−𝟑) 

Dry Biomass  (𝒕𝒐𝒏 𝒉𝒂−𝟏) 

Unit A 2.10 0.70 3.65 

Unit B 1.76 0.50 4.00 

Average 1.93 0.60 3.83 

 

Observed Dry Yield, Dry Biomass and Water Productivity of Tomato  

Table 5 shows the observed dry yield, dry biomass and water productivity of tomato 

from the field. The average observed dry yields for units A and B are 1.95 and           
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1.52 ton ha−1 respectively. The average value of the observed dry yield for the whole 

experiment is 1.74  ton ha−1. The values of observed dry biomass for units A and B 

are 3.40 and 3.85 ton ha−1 averaging 3.63 ton ha−1 for the study. The water 

productivity obtained from the simulation is 0.65 and 0.35 kg m−3 for units A and B 

respectively. The average value of water productivity of the observed dry yield is    

0.50 kg m−3.  

 

Table 5. Observed dry yield, water productivity and dry biomass of tomato. 

Unit Observed dry yield  

(𝐭𝐨𝐧 𝐡𝐚−𝟏) 

Observed water 

productivity (𝐤𝐠 𝐦−𝟑) 

Observed dry biomass  

(𝐭𝐨𝐧 𝐡𝐚−𝟏) 

Unit A 1.95 0.65 3.40 

Unit B 1.52 0.35 3.85 

Average 1.74 0.50 3.63 

 

Simulated and Observed Dry Yield, Water Productivity and Biomass of Tomato 

Simulated and observed dry yield of tomato 

Figure 9 showed the simulated and observed dry yield of tomato. The figure 

represents the average yield of the simulated and observed values for units A and B 

and the average yield of the observed and simulated value for the whole study. The 

values of the average simulated dry yield for units A and B are 2.10 and 1.76 ton ha−1 

respectively. The average dry simulated yield for the study is 1.93 ton ha−1. The 

average observed dry yield for units A and B are 1.95 and 1.52 ton ha−1 averaging 

1.74 ton ha−1 for the whole experiment.  

 
Figure 9. Simulated and observed dry yield of tomato. 
 

Simulated and observed water productivity of tomato 

Figure 10 showed the simulated and observed water productivity of tomato. The 

figure represents the average values of the observed and simulated water 

productivity of tomato for units A and B and the average simulated and observed 

water productivity for the whole study. The average simulated water productivity for 

units A and B are 0.7 and 0.5  kg m−3 respectively. The average simulated water 

productivity for the study is 0.6 kg m−3. The average observed water productivity for 

unit A and B are 0.65 and 0.35 kg m−3 respectively. The average observed water 

productivity for the whole experiment is 0.5 kg m−3.  

0,0

0,5

1,0

1,5

2,0

2,5

Unit A Unit B Average

D
ry

 y
ie

ld
 o

f 
to

m
at

o

Observed Dry Yield Simulated Dry Yield



SHANONO et al / Turk J. Agr Eng Res (TURKAGER), 2023, 4(1), 104-124                                       115 

  

 

 

 
Figure 10. Observed and simulated water productivity of tomato. 

 

Simulated and observed dry biomass of tomato 

Figure 11 showed the simulated and observed biomass. The figure represents the 

average dry observed and simulated biomass of tomato for units A and B and the 

average biomass of the simulated and observed value for the whole study. The 

averages simulated dry biomass for units A and B are 3.65 and 4.00 ton ha−1, 

respectively. The average dry simulated aboveground biomass for the whole study is 

3.83 ton ha−1. The average observed dry biomass for units A and B are 3.4 and 3.85 

ton ha−1respectively. The average observed dry biomass for the whole experiment is 

3.63 ton ha−1. 

 
Figure 11. Observed and simulated dry biomass of tomato. 
 

Statistical Comparison Between Simulated and Observed Results 

The observed and simulated results were subjected to comparison using four 

statistical indices to determine the accuracy of AquaCrop simulation model.  
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Comparing Observed and Simulated Dry Yield of Tomato 

The results of statistical indices (RMSE=0.2, EF= 0.13, CRM=-0.11, NRMSE=11%) 

used in comparing the simulated and observed dry yields of tomato revealed good 

agreement between the observed and simulated values. The value of the normalized 

root means square error, NRMSE of 11% is classified as good (10 to 20%)  and is 

similar to what has been established by Takács et al. (2021) who obtained an NRMSE 

value of 13.6% for comparing the observed-field and AquaCrop simulated yields of 

tomato.  The value of NRMSE of 11% obtained for the comparison contradicts the 

works of Vegu et al. (2018); Hendy et al. (2019); Thangaraju (2020);                                 

Farrokhi et al. (2021) and Ebrahimipak et al. (2022), whose when compared between 

the AquaCrop simulated and the observed yield of tomato recorded an excellent value 

of NRMSE (< 10%) of 3.1%, 9.5%, 3.76 %, 9.97% and 0.07%, respectively.   

The value of the root means square error, RMSE of 0.20 obtained for the 

comparison is similar to the works of Sang (2020); Thangaraju (2020);                              

Cheng et al. (2022); Muroyiwa et al. (2022); Ebrahimipak et al. (2022) who used 

AquaCrop to simulate tomato yield and obtained RMSE values of 0.13, 0.40, 0.34, 

0.34, and 0.42 respectively for comparison between the observed and simulated 

yields. This revealed a strong relationship between simulated and observed yield as 

the degree of precision of the comparison increase as the RMSE tends toward zero. 

The value of modeling efficiency, EF between the simulated and observed dry yields 

of tomato is 0.13 which is in line with the work of Ebrahimipak et al. (2022) whose 

studies recorded an EF value of 0.41 for comparing AquaCrop simulated and the 

observed dry yield of tomato. The modeling efficiency ranges from -∞ to 1 with an EF 

value of 1 corresponding to a perfect match of the predicted to the observed value. 

The closer the efficiency approximation is to 1, the better the model's values. 

The coefficient of residual mass, CRM between the observed and the simulated result 

is -0.11 which indicated that AquaCrop slightly overestimated the dry yield and this 

is consistent works of Rinaldi et al. (2011) and Jadhav et al. (2022) who obtained 

CRM values of -0.31 and -0.06 for comparing the observed and simulated yields.               

The CRM values range from -∞ to 1 with an optimum value of 0. A CRM value greater 

than 0 indicates underestimation. A negative value revealed an overestimation of the 

model. The observed and simulated results for the dry yield of tomato are presented 

in Figure 12. 

 

 
Figure 12. Observed and simulated comparative results for the dry yield of tomato. 
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In addition to statistical indices used to compare the simulated and observed 

yields, the t-test was also conducted with the aim to determine if there is a significant 

difference between the simulated and observed yields and the result of the t-test     

(p> 0.05) reveals no significant difference between the simulated and observed 

tomato yield.  

 

Comparing Simulated and Observed Water Productivity of Tomato 

The values of RMSE, NRMSE, EF and CRM used in comparing the observed and the 

AquaCrop water productivity of tomato are 0.11, 22%, 0.44 and -0.20. The value of 

the RMSE of 0.11 shows good agreement the simulated is compared with the 

observed values of water productivity and has concur with the works of Sang (2020); 

Farrokhi et al. (2021) and Ebrahimipak et al. (2022) whose studies recorded RMSE 

values of 0.04, 0.23 and 0.02 respectively for comparing the simulated and observed 

values of water productivity of tomato. The NRMSE value obtained from the 

comparison is 22% which is termed acceptable (20% to 30%). This value of NRSME 

(22%) contradicts the values of NRMSE obtained by Vegu et al., (2018) and 

Ebrahimipak et al. (2022) of 3.1% and 0.03% respectively. 

The value of EF obtained is 0.44 which is considered average and is consistent 

with the value of EF obtained by Farrokhi et al. (2021) and Ebrahimipak et al. (2022) 

of 0.23 and 0.19 respectively for comparing the observed and AquaCrop simulated 

water productivity of tomato. The value of CRM obtained for the comparison is -0.20 

which shows that AquaCrop slightly overestimated the water productivity of tomato 

and this is in line with what was reported by Salemi et al. (2011) who obtained CRM 

of -0.20 for comparing the simulated and observed water productivity. The t-test was 

further conducted to determine whether there is a significant difference between the 

observed and simulated value and the result of the t-test (p > 0.05) shows that there 

is no significant difference between the simulated and observed water productivity 

of the tomato. The observed and simulated comparative results of water productivity 

of tomato are shown in Figure 13. 

 

 
 

Figure 13. Observed and simulated comparative results for the water productivity 
of tomato. 
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Comparing Observed and Simulated Dry Biomass of Tomato 

The values of the RMSE, NRMSE, EF and CRM used in comparing the observed and 

the simulated results of the aboveground dry biomass are 0.21, 5%, 0.16 and -0.06 

respectively. The simulated and observed values are approximately similar as 

indicated by the values of the statistical indices used in their comparison. The value 

of RMSE (0.21) obtained from the comparison agrees with the works of                          

Hendy et al. (2019); Takács et al. (2019); Sang (2020) and Cheng et al. (2022) whose 

comparison between the observed and simulated aboveground biomass of tomato 

recorded RMSE of 0.20, 0.45, 0.60 and 0.53 respectively. The value of NRMSE (5%) 

obtained shows that the comparison is excellent (𝑁𝑅𝑀𝑆𝐸 < 10%) and is in line with 

the works of Vegu et al. (2018); Hendy et al. (2019); Thangaraju (2020);                           

Cheng et al. (2022); Muroyiwa et al. (2022) who used AquaCrop to simulate 

aboveground biomass of tomato and obtained NRMSE value of 4.7%, 1.9%, 5.9%, 

9.7% and 5.2% respectively by comparing the simulated and observed biomass. 

However, the value of NRMSE (5%) obtained from the comparison contradicts the 

works of Takács et al. (2021) and Farrokhi et al. (2021) whose NRMSE (> 10%) 

values are 12.1% and 16.26% respectively.  

The EF value obtained from the comparison is 0.16 which is similar to the values 

obtained by Sang (2020); Cheng et al. (2022) when compared between the observed 

and AquaCrop simulated aboveground biomass of 0.16 and 0.77 respectively. The 

CRM value obtained between the results obtained from the simulated and observed 

biomass result is -0.06 which indicated a very little overestimation of the biomass by 

the AquaCrop model. The value of CRM obtained from the comparison is in 

agreement with the values of CRM obtained by Rinaldi et al. (2011) of -0.20 who also 

compared observed and simulated biomass of tomato. AquaCrop is known to 

overestimate biomass for tomato crops at the final stage of its growing season as 

reported by Katerji et al. (2013). The t-test (p> 0.05) conducted shows no significant 

difference between the simulated and observed aboveground biomass of tomato. The 

simulated and observed comparative results for the dry biomass of tomato are 

presented in Figure 14.  

 

 
Figure 14. Observed and simulated comparative results for the dry biomass of 
tomato.  
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Generally, the AquaCrop simulation model performed remarkably well in 

simulating the dry yield, dry biomass and water productivity of the tomato crop. All 

the statistical indices except CRM used in comparing the observed and simulated 

values revealed a good agreement between the simulated and observed values. The 

CRM value of -0.11, -0.06 and -0.20 was obtained for the dry yield, dry biomass and 

water productivity although indicate a slight overestimation of the model they are 

also closer to the optimum value of 0.  More so, the t-test (p > 0.05) conducted shows 

no significant difference between thesimulated and observed dry yield, dry biomass 

and water productivity of the tomato.  

 

Optimized Yield and Yield Components of Tomato 

Table 6 presents the optimal values of the simulated dry yield (objective function) 

and the dry yield parameters obtained using the evolutionary optimization algorithm 

(genetic algorithm) using MATLAB programming software. The objective function 

set to maximise the dry yield which is the AquaCrop governing equation is expressed 

below.    

                                                         

   𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒, 𝑌 = 𝐾𝑠𝑤𝑝
𝑌(𝑒𝑥𝑝𝑡)

𝐸𝑇
∑ (

𝑇𝑟𝑖

𝐸𝑇𝑜𝑖
) ×

𝑀𝑌

𝐹𝑃𝑊+𝑀𝑌+𝑁𝑀𝑌
 

 

The value of the optimized dry yield of 4.496 ton ha−1is higher than the simulated 

yields of 2.10 ton ha−1 and 1.76 ton ha−1 for units A and B respectively. This shows 

that the GA has maximized the simulated yields by about 53 and 61% respectively.  

The dry biomass computed from the optimal parameters is 4.90 ton ha−1 which is also 

higher than the simulated values of 3.6 ton ha−1and 4.0 ton ha−1 for units A and B 

respectively. This also indicates that dry biomass has been maximized by 27% and 

18% for units A and B. The study conforms with the work of Abdollah et al. (2022) 

who recorded an increase of 63% and 22% in water conservation and yield for 

optimizing irrigation practices. 

This study further agrees with the work of Seidel (2012) who achieved  22% and 

76% for water productivity and nitrogen use efficiency using an optimization 

framework. Saberi et al. (2020), also recorded a remarkable increase in the water use 

efficiency of 14.2% using a simulation–optimization framework. 

Table 6. Optimal values of the simulated dry yield and the optimization parameters. 

S/No. Parameters Symbol Optimal values Unit 

1 Soil fertility stress coefficient 𝐾𝑠𝑤𝑝 1  

2 Yield  𝑌𝑒𝑥𝑝𝑡 19,025.308 kg ha1 

3 Crop transpiration 𝐸𝑇 4,000.001 m3ha−1season−1 

4 Daily transpiration 𝑇𝑟𝑖 8.247 mm day−1 

5 Daily reference evapotranspiration 𝐸𝑇𝑂𝑖 8.000 mm day−1 

6 Total Fresh plant weight 𝑇𝐹𝑃𝑊 29.800 ton ha−1 

7 Marketable yield 𝑀𝑌 2.700 ton ha−1 

8 Non-marketable yield 𝑁𝑀𝑌 0.000 ton ha−1 

9 Objective function (dry yield) 𝑌 4.496 ton ha−1 
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Figure 15 shows the fitness value of the optimization result (optimal dry yield of 

tomato) after 800 iterations. The figure indicates the best function in each generation 

versus the iteration during the optimization process. Thus, the fitness value of an 

individual corresponds to the fitness function for that particular individual. The 

black dots/marks indicate the best fitness values whereas the blue dots/marks 

indicate the mean fitness values in each generation. The fitness function is a 

measure of how close a given solution is to the optimum solution of the desired 

problem and the best fitness value is equal to the objective function. The fitness value 

improves rapidly in the early generations and more slowly in later generations which 

is quite similar to the general optimization problems (Hanan et al., 2016). The 

MATLAB programming software searches for the minimum of the function and 

hence, the best fitness value for a given population is the smallest value for a given 

individual in that particular population. The best fitness value of dry yield of tomato 

was found to be -4.960 which translates to 4.960 ton ha−1ton because the objective 

function of the optimization process was to maximize the dry yield of tomato. 

 

 
 

Figure 15. Best and the mean fitness of the dry yield of tomato. 

 

CONCLUSION  
 

The AquaCrop simulation model performed remarkably well in simulating the 

observed yield, aboveground biomass and water productivity of tomato based on 

results of RMSE (0.20, 0.21 and 0.11), NRMSE (11%, 5% and 22%), EF (0.13, 0.16 

and 0.44) and CRM (-0.11,-0.06 and -0.20) used in comparing the simulated and 

observed results. All the statistical indices except CRM show good agreement 

between the observed and simulated results. The CRM value of -0.11, -0.06 and -0.20 

was obtained for yield, biomass and water productivity although indicate a very 

slight overestimation of the model they are also closer to the optimum value of                    

zero (0). The t-test (p > 0.05) conducted between the observed and simulated results 

also shows that there is no significant difference between the simulated and observed 

results.   

The result of the optimization revealed the optimal values of yield and 

aboveground biomass of 4.49 ton ha−1 and 4.90 ton ha−1 respectively. This shows that 
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the GA has maximized the simulated yields by 53% and 61% respectively for units A 

and B.  The GA has also maximized aboveground biomass by 27% and 18% for units 

A and B.  The GA has therefore proved to be an effective tool for improving the yield 

and the yield components of tomato crops. 
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