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INTRODUCTION  

Oximes are very important building blocks in synthetic organic chemistry because they 

are capable of undergoing numerous transformations. Oximes are widely used to protect, 

purify and characterize aldehydes and ketones. In addition, oximes can successfully be 

converted into amides (1), nitriles (2,3), amines (4,5), hydroxyamines (6), hydroxyamine 

O-ethers (7), nitroalkanes (8), 1,3-oxazoles, thiazoles and diazoles (9), etc. The 

products, as starting compounds, are proven to be biologically active amino acids (10), 

alkoxyimino esters and alkoxyamino amides (11) and derivatives of pyrrole skeleton 

(12). Moreover, oxime groups could be transferred into water-soluble compounds. 

Through its oxime and oxime ether, limonin is rendered water soluble as being an anti-

inflammatory and analgesic agent (13). 

Recently, oxime esters and related compounds are shown to possess bioactivities, thus 

being attractive to researchers, especially working with agrochemicals and medicinal 

compounds. Fungicidal (14), insecticidal (15,16), antitumor (17,18), herbicidal (19,20), 

antineoplastic (21) and antiviral (22,23) activities were introduced for oxime esters. It 

has been about fifty years since the synthesis and biological activities of oxime esters 

were shown in a large number of researches. In a previous study, the synthesis of 

biologically active hydroxyimino-, methoxyimino- and benzyloxyiminotetradecanoic acid 

methyl esters were reported and their DNA-binding, antimicrobial and antifungal 

activities were investigated (24).  

Being capable of coordinating to metal ions, oxime ligands have been interesting due to 

their variable geometries (25-28) and fine tuning of their substitutients (29,30). Oxime 

ligands are known to serve as analytical reagents (31,32) and also employed as models 

for Vitamin B12 and dioxygen carrier systems (33), as well as catalysts in chemical 

processes (34-37).  

In this study, it was aimed to obtain pure γ- and δ- oxime esters numbered as 2a-2j as 

compounds for reference purposes. In the previous paper, Imoto et al. reported the 4-

hydroxyimino-4-phenyl-butyric acid methyl ester 2a and 5-hydroxyimino-5-phenyl-

pentanoic acid methyl ester 2f and they used these compounds as intermadiates in the 

synthesis of oxyiminoalcanoic acids (38). Besides, 2a was obtained as intermadiates 

compound for use in the Beckmann rearrengement (39). In the another study, 2e was 

used as starting materials for synthesis of aliphatic amino acids (40). In this work, seven 

novel compounds containing aryl, substituted aryl and heteroaryl groups ( 2b-2d, 2g-2j) 

were synthesized. Their structures were elucidated with 1H NMR, 13C NMR, elemental 

analysis and mass spectrometry.  
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MATERIALS AND METHODS  

 

Unless otherwise stated, all reagents were obtained from commercial suppliers. 

Hydroxylamine hydrochloride (HONH2.HCl) was purchased from Sigma Aldrich. γ- and δ-

keto esters as starting materials were synthesized by Friedel-Crafts acylation (41,42). 

The reactions of 2 were checked for completion on silica gel on aluminum plates. They 

were purified by flash column chromatography on silica gel (Merck; 230-400 mesh) and 

ethyl acetate and hexane (7:3, v:v) was used as eluent.  

Proton nuclear magnetic resonance spectroscopy was obtained at 500 MHz and carbon 

nuclear magnetic resonance spectroscopy was recorded at 125 MHz. As an internal 

standard, tetramethylsilane in deuteriochloroform (CDCl3) was employed. A Shimadzu 

QP2010 Plus was used as the GC/MS spectrometer. Fourier transform infrared spectra 

were recorded on a Mattson 1000 spectrometer. A Büchi melting point B-540 apparatus 

was used for melting point determinations. The chemical yields are expressed with the 

pure isolated substances. 

 

General procedure : preparation of oxime esters (43,44) 

As a general procedure, the keto ester (1.0 eq) 1a-j was dissolved in ethanol. 

Hydroxylamine hydrochloride (2.0 eq) was introduced into the reaction medium and the 

mixture was stirred overnight. Saturated ammonium chloride was used to dilute the 

mixture and it was extracted with ethyl acetate. Combined organic layers were washed 

with water and brine and dried over sodium sulfate. The solvent was evaporated and the 

crude product was subjected to column chromatography on silica gel and as eluent “(n-

hexane:ethyl acetate 7:3)” to yield the oximes 2a-j.  

 

4-Hydroxyimino-4-phenyl-butyric acid methyl ester 2a 

Yield: 90%; colorless oil. Anal. calcd. for C11H13NO3: C, 63.76; H, 6.32; N, 6.76  Found: 

C, 63.50; H, 6.42; N, 6.66.  IR (neat, cm–1) ν 3450 (OH stretching), 3030 (CH stretching 

of aromatic rings), 2953 (-CH2- stretching), 1738 (C=O stretching of COOCH3 group), 

1680 (C=N stretching),1500, 1453 (C=C- stretching of aromatic rings), 1261(CH 

stretching in aliphatic plane), 1076 (C-O stretching), 769 (out-of-plane bending CH of 

aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.51-7.49 (m, 2H), 7.28-7.27 (m, 3H), 3.55 

(s, 3H, COOCH3), 3.04 (t, J = 7.5 Hz, 2H), 2.53 (t, J = 7.5 Hz, 2H). 13C NMR (150MHz, 

CDCl3) δ 173.4 (C=O), 158.2 (C=N), 135.4 ( C of aromatic ring), 129.6, 128.9, 126.5 (-
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CH of aromatic ring), 52.0 (COOCH3), 30.6 (CH2), 22.3 (CH2).  MS (m/z): 51, 77, 104, 

117, 130, 158, 176, 206 (M+ -1). 

 

4-(4-Chloro-phenyl)-4-hydroxyimino-butyric acid methyl ester 2b 

Yield: 88%; White crystal; mp:45-46°C. Anal. Calcd. for C11H12ClNO3 C, 54.67; H, 5.00; 

Cl, 14.67; N, 5.80. Found: C, 54.73; H, 5.30; Cl, 14.55; N, 5,72. IR (neat, cm–1) ν 3447 

(OH stretching), 3099 (CH stretching of aromatic rings), 2961 (-CH2- stretching), 1734 

(C=O stretching of COOCH3 group), 1680 (C=N stretching),1503, 1456 (C=C- stretching 

of aromatic rings), 1263 (CH stretching in aliphatic plane), 1094 (C-O stretching), 939, 

831 (out-of-plane bending CH of aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.45 (d, J 

= 10.0 Hz, 2H), 7.24 (d, J = 10.0 Hz, 2H), 3.55 (s, 3H, COOCH3), 3.04 (t, J = 7.5 Hz, 

2H), 2.53 (t, J = 7.5 Hz, 2H). 13C NMR (150MHz, CDCl3) δ 172.9 (C=O), 157.3 (C=N), 

135.6 (C of aromatic ring), 139.0, 129.7, 127.8 (-CH of aromatic ring), 51.9 (COOCH3), 

30.8 (CH2), 22.1 (CH2).  MS (m/z): 55, 75, 111, 138, 153, 164, 182, 206, 240(M+ -1). 

 

4-Hydroxyimino-4-(4-methoxy-phenyl)-butyric acid methyl ester 2c 

Yield: 70%; colorless oil. Anal. Calcd. for C12H15NO4 C, 60.75; H, 6.37; N, 5.90. Found: 

C, 60.90; H, 6.45; N, 5.80. IR (neat, cm–1) ν 3470 (OH stretching), 3022 (CH stretching 

of aromatic rings), 2953 (-CH2- stretching),  1734 (C=O stretching of COOCH3 group), 

1685 (C=N stretching), 1526, 1456 (C=C- stretching of aromatic rings), 1263 (CH 

stretching in aliphatic plane), 1032 (C-O stretching), 939, 847 (out-of-plane bending CH 

of aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.48 (d, J = 10.0 Hz, 2H), 6.83 (d, J = 

10.0 Hz, 2H), 3.75 (s, 3H, Ar-OCH3), 3.58 (s, 3H, COOCH3), 3.02 (t, J = 7.5 Hz, 2H), 

2.54 (t, J = 7.5 Hz, 2H). 13C NMR (150MHz, CDCl3) δ 173.3 (C=O), 160.9 (C=N), 157.7 

(C of aromatic ring), 127.9, 127.6, 114.3 (-CH of aromatic ring),  55.5 (Ar-OCH3), 52.0 

(COOCH3), 30.7 (CH2), 22.1 (CH2).  MS (m/z): 55, 77, 91, 134, 149, 178, 207, 237(M+). 

 

4-Furan-2-yl-4-hydroxyimino-butyric acid methyl ester 2d 

Yield: 60%; colorless oil. Anal. Calcd. for C9H11NO4 C, 54.82; H, 5.62; N, 7.10. Found: 

C, 55.00; H, 5.40; N, 7.45. IR (neat, cm–1) ν 3462 (OH stretching), 3138 (CH stretching 

of aromatic rings), 2953 (-CH2- stretching),1780 (C=O stretching of COOCH3 group), 

1680 (C=N stretching), 1510, 1456 (C=C- stretching of aromatic rings), 1248 (CH 

stretching in aliphatic plane), 1071 (C-O stretching),  824, 754 (out-of-plane bending CH 

of aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.39-7.33 (m, 1H), 6.62 (d, J = 5.0 Hz, 

1H), 6.36-6.35 (m, 1H), 3.61 (s, 3H, COOCH3), 2.94 (t, J = 7.5 Hz, 2H), 2.59 (t, J = 7.5 

Hz, 2H). 13C NMR (150MHz, CDCl3) δ 172.0 (C=O), 154.6 (C=N), 148.4 (C of aromatic 

ring), 141.5, 111.1, 109.6 (-CH of aromatic ring), 50.7 (COOCH3), 30.4 (CH2), 20.5 

(CH2). MS (m/z): 55, 79, 93, 107, 120,138, 148,166,180,197 (M+). 
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4-Hydroxyimino-4-thiophen-2-yl-butyric acid methyl ester 2e 

Yield: 65%; White crystal; mp:59.5-60.5°C. Anal. Calcd. for C9H11NO3S C, 50.69; H, 

5.20; N, 6.57; S, 15.04.  Found: C, 50.96; H, 5.30; N, 6.15; S, 14.97. IR (neat, cm-1) 

ν 3377 (OH stretching), 3115 (CH stretching of aromatic rings), 2953 (-CH2- stretching), 

1780 (C=O stretching of COOCH3 group), 1675 (C=N stretching), 1549, 1456 (C=C- 

stretching of aromatic rings), 1186 (CH stretching in aliphatic plane), 1032 (C-O 

stretching), 855, 716 (out-of-plane bending CH of aromatic ring). 1H NMR (500 MHz, 

CDCl3) δ 7.47-7.46 (m, 2H), 6.93 (t, J = 5.0 Hz, 1H), 3.59 (s, 3H, COOCH3), 3.02 (t, J = 

7.5 Hz, 2H), 2.61 (t, J = 7.5 Hz, 2H). 13C NMR (150MHz, CDCl3) δ 172.1 (C=O), 152.7 

(C=N), 137.8 (C of aromatic ring), 129.9, 126.3, 124.6 (-CH of aromatic ring),  50.8 

(COOCH3), 29.5 (CH2), 21.6 (CH2). MS (m/z): 55, 65, 84, 97, 110, 123,  136, 154,165, 

196, 213(M+). 

 

5-Hydroxyimino-5-phenyl-pentanoic acid methyl ester 2f 

Yield: 85%; White crystal; mp:55.5-56.5°C. Anal. Calcd. for C12H15NO3 C, 65.14; H, 

6.83; N, 6.33. Found: C, 65.10; H, 6.90; N, 6.20. IR (neat, cm–1) ν 3453 (OH 

stretching), 3023 (CH stretching of aromatic rings), 2946 (-CH2- stretching), 1738 (C=O 

stretching of COOCH3 group), 1682 (C=N stretching), 1500, 1453 (C=C- stretching of 

aromatic rings), 1246 (CH stretching in aliphatic plane), 1076 (C-O stretching), 769, 707 

(out-of-plane bending CH of aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.55-7.53 (m, 

2H), 7.31-7.29 (m, 3H), 3.57 (s, 3H, COOCH3), 2.79 (t, J = 7.5 Hz, 2H), 2.32 (t, J = 7.5 

Hz, 2H), 1.84 (q, J = 7.5 Hz, 2H). 13C NMR (150MHz, CDCl3) δ 173.9 (C=O), 158.9 

(C=N), 135.6 (C of aromatic ring), 129.5, 128.8, 126.5 (-CH of aromatic ring), 51.8 

(COOCH3), 33.8 (CH2), 25.5 (CH2), 21.8 (CH2).  MS (m/z): 51, 77, 104, 130, 144, 173, 

204, 221(M+ +1). 

 

5-(4-Chlorophenyl)-5-hydroxyimino-pentanoic acid methyl ester 2g  

Yield: 80%; White crystal; mp:51.5-52.5°C. Anal. Calcd. for C12H14ClNO3 C, 56.37; H, 

5.52; Cl, 13.87; N, 5.48. Found: : C, 56.20; H, 5.55; Cl, 13.80; N, 5,52. IR (neat, cm–1) 

ν 3454 (OH stretching), 3038 (CH stretching of aromatic rings), 2953 (-CH2- stretching), 

1734 (C=O stretching of COOCH3 group), 1680 (C=N stretching), 1503, 1456 (C=C- 

stretching of aromatic rings), 1263 (CH stretching in aliphatic plane), 1094 (C-O 

stretching), 847, 762 (out-of-plane bending CH of aromatic ring). 1H NMR (500 MHz, 

CDCl3) δ 7.49 (d, J = 5.0 Hz, 2H), 7.27 (d, J = 10.0 Hz, 2H), 3.59 (s, 3H, COOCH3), 2.76 

(t, J = 7.5 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 1.81 (q, J = 7.5 Hz, 2H). 13C NMR 

(150MHz, CDCl3) δ 173.9 (C=O), 158.1 (C=N), 135.5 (C of aromatic ring), 134.0, 129.0, 

127.7 (-CH of aromatic ring), 51.8 (COOCH3), 33.7 (CH2), 25.4 (CH2), 21.6 (CH2).  MS 

(m/z): 55, 75, 88, 102, 138, 164, 192, 224, 256(M+). 
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5-Hydroxyimino-5-(4-methoxyphenyl)-pentanoic acid methyl ester 2h 

Yield: 70%; White crystal; mp:102-103°C. Anal. Calcd. for C13H17NO4 C, 62.14; H, 

6.82; N, 5.57. Found: C, 62.04; H, 6.85; N, 5.50. IR (neat, cm–1) ν 3470 (OH 

stretching), 3015 (CH stretching of aromatic rings), 2961 (-CH2- stretching),  1753 (C=O 

stretching of COOCH3 group), 1685 (C=N stretching), 1526, 1456 (C=C- stretching of 

aromatic rings), 1256 (CH stretching in aliphatic plane), 1040 (C-O stretching), 847, 747 

(out-of-plane bending CH of aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.50 (d, J = 5.0 

Hz, 2H), 6.82 (d, J = 10.0 Hz, 2H), 3.73 (s, 3H, Ar-OCH3), 3.58 (s, 3H, COOCH3), 2.77 

(t, J = 7.5 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 1.83 (q, J = 7.5 Hz, 2H). 13C NMR 

(150MHz, CDCl3) δ 173.9 (C=O), 160.7 (C=N), 158.4 (C of aromatic ring), 128.0, 127.8, 

114.2 (-CH of aromatic ring), 55.5 (Ar-OCH3), 51.7 (COOCH3), 33.8 (CH2), 25.4 (CH2), 

21.8 (CH2).  MS (m/z) : 55, 77, 90, 103, 133, 160, 188, 205, 251(M+). 

 

5-Furan-2-yl-5-hydroxyimino-pentanoic acid methyl ester 2i 

Yield: 65%; White crystal; mp:43.5-44.5°C. Anal. Calcd. for C10H13NO4 C, 56.86; H, 

6.20; N, 6.63. Found: C, 56.95; H, 6.10; N, 6.55. IR (neat, cm–1) ν 3462 (OH 

stretching), 3138 (CH stretching of aromatic rings), 2953 (-CH2- stretching),  1742 (C=O 

stretching of COOCH3 group), 1682 (C=N stretching), 1456, 1387 (C=C- stretching of 

aromatic rings), 1256 (CH stretching in aliphatic plane), 1078 (C-O stretching), 932, 754 

(out-of-plane bending CH of aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.38-7.37 (m, 

1H), 6.60 (d, 1H), 6.36-6.35 (m, 1H), 3.60 (s, 3H, COOCH3), 2.68 (t, J = 7.5 Hz, 2H), 

2.34 (t, J = 7.5 Hz, 2H), 1.91 (q, J = 7.5 Hz, 2H). 13C NMR (150MHz, CDCl3) δ 172.7 

(C=O), 149.4 (C=N), 145.6 (C of aromatic ring), 142.6, 111.6, 109.2 (-CH of aromatic 

ring), 50.5 (COOCH3), 32.4 (CH2), 23.8 (CH2), 20.8 (CH2). MS (m/z) : 55, 85, 93, 107, 

125, 138, 162, 160, 194, 205, 211(M+). 

 

5-Hydroxyimino-5-thiophen-2-yl-pentanoic acid methyl ester 2j 

Yield: 65%; White crystal; mp:55-56°C. Anal. Calcd. for C10H13NO3S C, 52.85; H, 5.77; 

N, 6.16; S,14.11. Found: C, 52.95; H, 5.55; N, 6.20; S, 14.20.  IR (neat, cm–1) ν 3462 

(OH stretching),  3115 (CH stretching of aromatic rings), 2953 (-CH2- stretching),  1742 

(C=O stretching of COOCH3 group), 1682 (C=N stretching), 1456, 1387 (C=C- stretching 

of aromatic rings), 1256 (CH stretching in aliphatic plane), 1078 (C-O stretching), 847, 

716 (out-of-plane bending CH of aromatic ring). 1H NMR (500 MHz, CDCl3) δ 7.50-7.47 

(m, 2H), 7.03 (t, J = 5.0 Hz, 1H), 3.59 (s, 3H, COOCH3), 2.72 (t, J = 7.5 Hz, 2H), 2.37 

(t, J = 7.5 Hz, 2H), 1.97 (q, J = 7.5 Hz, 2H).  13C NMR (150MHz, CDCl3) δ 172.1 (C=O), 

152.7 (C=N), 137.8 (C of aromatic ring), 129.9, 126.3, 124.6 (-CH of aromatic ring),  

50.8 (COOCH3), 29.5 (CH2), 21.6 (CH2). MS (m/z) : 55, 84, 97, 110, 123, 136, 150, 178, 

210, 227(M+). 
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The isomeric ratios of the compounds are shown in Table 1. 

Table 1. Isomer ratios ((E)/(Z)) and yields of synthesized γ- and δ-ketoxime esters 

Entry Keto ester Product Yielda (E)/(Z)  
Ratiob 

 
1 

         

OCH3

O

O        1a              

OCH3

N

O

OH

       2a           
                                              

 
90 

 

E 

 
2 

      

OCH3

O

O
Cl       1b 

                                              
     

OCH3

N

O

OH

Cl       2b 
                                                

 
88 

 

E 

 
3 

    

OCH3

O

O
H3CO       1c 

                                                 
     

OCH3

N

O

OH

H3CO         2c 
                                                 

 
70 

 

E 

 
4 

     

OCH3

O

OO      1d 
                                                 

      

OCH3

N

O

OH

O         2d              
                                                 

 
60 

 

E 

 
5 

      

OCH3

O

OS        1e            

OCH3

N

O

OH

S             2e 
                                                 

 
65 

 
E 

 
6 

    

O

OCH3

O

       1f 
    

N

OH

OCH3

O

        2f 

 
85 

 

E 

 
7 

     

O

Cl

OCH3

O

      1g    
                                                 

     

N

OH

Cl

OCH3

O

         2g 
                                                 

 
80 

 

E 

 
8 

  

O

H3CO

OCH3

O

         1h                                             
    

N

OH

H3CO

OCH3

O

      2h                                              

 
70 

 

E 

 
9 

O

OCH3

O

O  
                                          1i                   

N

OH

OCH3

O

O             2i 
                                                 

 
65 

 

E 

 
10 

     

O

OCH3

O

S       1j   
                                                 

        

N

OH

OCH3

O

S         2j     
                                                 

 
65 

 

E 

a Isolated yield. b (E)/(Z) ratio was determined by 1H NMR. 
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RESULTS AND DISCUSSION  

We have obtained oxime esters 2a-2j with high yields and the products were synthesized 

with the reaction between aryl, substituted aryl and heteroaryl γ- and δ-keto esters 1a-

1j and hydroxyamine hydrochloride (see Scheme 1).  

NH2OH.HCl

X OCH3

O O

n X OCH3

N O

n

OH

1a ( n=2, X=Ph)
1b (n=2, X=p-Cl-C6H4 )
1c (n=2, X= p-MeO-C6H4)
1d (n=2, X= 2-Furyl )

1e (n=2, X= 2-Thienyl )

1f ( n=3, X=Ph)
1g (n=3, X=p-Cl-C6H4 )
1h (n=3, X= p-MeO-C6H4)
1i (n=3, X= 2-Furyl )

1j (n=3, X= 2-Thienyl )

2a-2j

 

Scheme 1: Synthesis of γ- and δ-ketoxime esters 

Hydroxyimino compounds are generally isolated as E isomer (45-47). In another work, 

hydroxyimino derivatives of keto esters were obtained also mainly as E isomer (24). 

According to these literatures (24, 45-48), the configuration of the synthesized 

compounds (2a-2j) in this work were determined by 1H-NMR spectrum due to the 

splitting of the methoxy signal as studied in the previous study of our group (24). Two 

methoxy signals were seen for E/Z mixture. E signal resonated at lower field than Z 

signal (24, 48). 1H-NMR spectras of the synthesized aryl-, substituted aryl- and 

heteroaryl containing γ- and δ-oxime esters 2a-2j showed only one signal for methoxy 

peak as obtained in the previous study, therefore the configuration of these keto oxime 

esters were attributed to E structure. The position of phenyl grup let these keto oxime 

esters existing in E configuration because of the interaction between phenyl and hydroxy 

proton of the oxime groups and steric hinderance of the methylen protons.  

As a conclusion, an extremely simple, suitable and efficient method was applied in this 

study for converting keto esters to their corresponding ketoxime esters of E 

configuration, which will be studied later for their biological activities. 
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