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Abstract
This paper is concerned with the attraction-repulsion chemotaxis system involving logistic
source: ut = ∆u − χ∇ · (u∇υ) + ξ∇ · (u∇ω) + f(u), ρυt = ∆υ − α1υ + β1u, ρωt =
∆ω − α2ω + β2u under homogeneous Neumann boundary conditions with nonnegative
initial data (u0, υ0, ω0) ∈

(
W 1,∞ (Ω)

)3, the parameters χ, ξ, α1, α2, β1, β2 > 0, ρ ≥ 0
subject to the non-flux boundary conditions in a bounded domain Ω ⊂ RN (N ≥ 3) with
smooth boundary and f(u) ≤ au − µu2 with f(0) ≥ 0 and a ≥ 0, µ > 0 for all u > 0.
Based on the maximal Sobolev regularity and semigroup technique, it is proved that the
system admits a globally bounded classical solution provided that χ + ξ < µ

2 and there
exists a constant β∗ > 0 is sufficiently small for all β1, β2 < β∗.
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1. Introduction
We deal with the attraction-repulsion chemotaxis system with logistic source:

ut = ∆u − χ∇ · (u∇υ) + ξ∇ · (u∇ω) + f(u), (x, t) ∈ Ω × (0, T ),
ρυt = ∆υ − α1υ + β1u, (x, t) ∈ Ω × (0, T ),
ρωt = ∆ω − α2ω + β2u, (x, t) ∈ Ω × (0, T ),
∂u
∂ν = ∂υ

∂ν = ∂ω
∂ν = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0 (x) , ρυ(x, 0) = ρυ0 (x) , ρω(x, 0) = ρω0 (x) , x ∈ Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, ρ ≥ 0, ∂
∂ν is the

derivative with respect to the outer normal of ∂Ω and nonnegative initial data (u0, υ0, ω0)
satisfying suitable regularity, the parameters χ, ξ, α1, α2, β1, β2 > 0, where χ and ξ
are respectively measure the strength of the attraction and repulsion and u(x, t), υ(x, t),
ω(x, t) denote the cell density, the chemoattractant concentration, the chemorepellent
concentration, respectively and the logistic source f ∈ C∞([0, ∞)) fulfills

f(u) ≤ au − µu2 with f(0) ≥ 0, a ≥ 0, µ > 0. (1.2)
The second and the third equations in the system (1.1) state that the chemoattractant
and the chemorepellent are released by cells and undergo decay. The kinetic term f(u)
depicts cell proliferation and cell death.
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Next, we denote Lp(Ω), W 1,p (Ω), W 2,p (Ω) as usual Lebesgue and Sobolev spaces. The
norms of Lp(Ω), W 1,p (Ω) and W 2,p (Ω) are denoted by ∥u∥Lp(Ω) := ∥u∥p, ∥u∥W 1,p(Ω) :=
∥u∥1,p = ∥u∥p + ∥∇u∥p, ∥u∥W 2,p(Ω) := ∥u∥2,p = ∥u∥p + ∥∆u∥p (1 ≤ p ≤ ∞) respectively.

System (1.1) is a generalized version of the classical Keller-Segel model which represents
a biological process in which cells interact with a combination of repulsive and attractive
signal chemicals (see [12,14,15,33–35,37]).

In order to understand our paper better, we recall some papers concerning the system
(1.1). Let’s begin with ξ = 0. In this case the repulsive signal vanishes, ω is decoupled
from system (1.1), and the system becomes{

ut = ∆u − χ∇ · (u∇υ) + f(u), (x, t) ∈ Ω × (0, T ),
ρυt = ∆υ − αυ + βu, (x, t) ∈ Ω × (0, T ). (1.3)

In mathematical biology, system (1.3) is used to model the mechanism of chemotaxis,
which is a mechanism by which cells and organisms efficiently respond to chemical stimuli
in their environment, moving toward beneficial targets or environments and avoiding un-
desired ones. One of the best-known examples of chemotaxis is the action of the bacteria
Escherichia Coli (E. Coli). The chemotaxis model also known as Keller-Segel model was
introduced mathematically by Keller and Segel in [19, 20]. The research of the Keller-
Segel model has attracted and continues to attract the attention of mathematicians since
its establishment. The correlation study can be divided into two types: parabolic-elliptic
chemotaxis model i.e. ρ = 0 (see [3,39,42,47]) and parabolic-parabolic chemotaxis model
i.e. ρ ̸= 0 (see [1, 2, 17, 38, 41, 43, 46]). We refer the reader to Horstmann’s paper [16]
to have general knowledge about the Keller-Segel model. In [16], Horstmann summarized
the results in the literature for some general forms of the classical Keller-Segel model and
presented possible generalizations for more comprehensive models.

In general, because of the chemical molecules are much smaller than cells in size, chem-
icals diffuse much faster than cells. Hence the attraction-repulsion chemotaxis model
(1.1) can be approximated by setting ρ = 0. In particular, when f(u) = 0 (the logistic
source vanishes), whether or not solutions of system (1.3) blow-up in finite time has been
researched. In summary, in case ρ ≥ 0, when N = 1 Nagai [29] and Osaki et al. [31] ob-
tained that the solution of the system (1.3) never blows up whereas there exists finite-time
or infinite-time blow-up of the solution to the system (1.3) when N ≥ 3 (see [16, 29, 44]).
For the case N = 2, if the initial data and the domain have radial symmetry, whether will
or not blow-up depends on the size of the initial data (see [29,30]). System (1.3) has been
studied by many authors with logistic source f(u) ̸= 0 (see [32, 39, 43]). In particular,
if the logistic source f(u) ≤ a − bu2 with some a ≥ 0 and b > 0, Tello and Winkler
[39] obtained an unique global bounded classical solution of the system (1.3) posed on a
bounded domain. The damping power τ = 2 in the logistic term f(u) ≤ au − buτ plays
an important role in many works. For example, in [53], when ρ = 1, the authors dealt
with the system (1.3) with logistic term f(u) = au − µu2 with the parameters a ∈ R,
µ > 0. The authors proved that if µ > 0, then the system (1.3) has a global weak solu-

tion, and if µ > (N−2)+
N χC

1
N
2 +1

N
2 +1 where C

1
N
2 +1

N
2 +1 > 0 is a constant which is corresponding to

the maximal Sobolev regularity, then there is a bounded global classical solution of the

system (1.3). Moreover, the authors also showed that if a = 0 and µ > (N−2)+
N χC

1
N
2 +1

N
2 +1 ,

then both u(·, t) and υ(·, t) functions decay to zero with respect to the norm in L∞(Ω)
as t → ∞. When ρ = 0, Winkler [42] studied the the system (1.3) in a smooth bounded
domain Ω under the assumption that the generalizes the logistic function f(u) = au − buτ

with a ≥ 0, b > 0. The author introduced concept of very weak solutions to system (1.3),
and obtained the existence of global solutions for any nonnegative initial data u0 ∈ L1(Ω)
under the assumption that τ > 2 − 1

N , (N ≥ 2). Moreover, the boundedness properties
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of the constructed solutions are studied. In addition to these, the author showed that the
solution is globally bounded if b is sufficiently large and u0 ∈ L∞(Ω) has small norm in
Lγ(Ω) for some γ > N

2 . More recently, in [13] Ei et al. considered the Keller-Segel system
with a logistic growth term from the spatio-temporal-oscillation point of view and showed
that there are two different types of spatio-temporal oscillations of the system in certain
distinct parameter regimes (see also [43,49]).

When there is a repulsive signal, i.e. ξ ̸= 0, Luca et al. [26] used the system (1.1) to
identify the aggregation of microglia observed in Alzheimer’s disease and Painter and Hillen
[33] used the system (1.1) to address the quorum effect in the chemotactic process. For the
case N = 1, when f(u) = 0 and ρ = 1, Jin [18], Liu and Wang [24] studied the existence
of global solutions and of non-trivial steady states to system (1.1). Then in [36], Tao and
Wang showed that if repulsion prevails over attraction in the sense that ξβ2 −χβ1 > 0
then system (1.1) with ρ = 0 is globally well posed in the high dimensions (N > 2), and
if repulsion dominates over attraction in the sense that ξβ2 − χβ1 > 0 that the system
(1.1) with ρ = 1 is globally well-posed in two dimensions (N = 2). In [23], under the
critical condition that χβ1 − ξβ2 = 0 the authors proved that the system (1.1) with ρ = 1
possesses a unique global solution, which is uniformly bounded in the physical domain
Ω ⊂ RN (N = 2, 3) (see also [25, 40, 50]). Recently, Liu et al. [24] studied analytically
and numerically the pattern formation of the system (1.1) with ρ = 1. There are some
papers that have also been studied under suitable conditions with related to the logistics
source. In [41], when ρ = 1, the authors studied the global boundedness of solutions to
the fully parabolic (parabolic-parabolic-parabolic) attraction-repulsion chemotaxis system
(1.1) with logistic source f(u) = a − buθ for all u ≥ 0 with a ≥ 0, b > 0 and θ ≥ 1. It
was shown that when the attraction cancels the repulsion (i.e. χβ1 = ξβ2), the solution is
globally bounded if N ≤ 3, or θ > θN := min

{
N+2

4 , N
√

N2+6N+17−N2−3N+4
4

}
with N ≥ 2.

When f(u) ̸= 0, we refer to [48,51].
In addition to these, in the past decades, scholars have conducted extensive studies on

the behavior of predator-prey models with different effects involving chemotaxis. Com-
pared with the traditional diffusion progress (random movement), the ecological models are
more realistic when involving chemotaxis. In [11], the author investigated the spatiotem
poral inhomogeneous pattern phenomenon of a predator–prey model with chemotaxis and
time delay. Interested readers may refer to [7–10, 27, 28] and the references therein for
more interesting results concerning the pattern formation of the reaction–diffusion models
with chemotaxis.

In this paper when N ≥ 3, we obtain a globally bounded classical solution of the system
(1.1) by using the maximal Sobolev regularity and semigroup technique with χ + ξ < µ

2
and β∗ > 0 is sufficiently small for all β1, β2 < β∗.

The main result of our this paper for ρ = 1 is expressed in Theorem 1.1 as follows.

Theorem 1.1. Assume that Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary,
the parametrs χ, ξ, α1, α2, β1, β2 > 0 and ρ = 1. Moreover, assume that the logistic
source f ∈ C∞([0, ∞)) satisfies f(u) ≤ au − µu2 with f(0) ≥ 0 and a ≥ 0, µ > 0. If

χ + ξ <
µ

2
, (1.4)

there exists a constant β∗ > 0 is sufficiently small with β1, β2 < β∗, then for any nonneg-
ative (u0, υ0, ω0) ∈

(
W 1,∞ (Ω)

)3, the system (1.1) has a globally bounded classical solution
(u, υ, ω) which is uniformly bounded in Ω × (0, ∞) in the sense that there is a constant
C > 0 such that

∥u (·, t)∥∞ + ∥υ (·, t)∥1,∞ + ∥ω (·, t)∥1,∞ ≤ C for all t > 0.

Remark 1.2. Li and Xiang [22], studied the system (1.1) in Ω ⊂ RN (N ≥ 1) a bounded
domain with smooth boundary, when logistic source f(u) ≤ a−buτ for all u > 0, with some
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a ≥ 0, b > 0, and ρ, χ, ξ, χ ≥ 0, αi > 0 and βi > 0 (i = 1, 2). The authors showed that
when the repulsion prevails over the attraction in the sense that ξβ2 −χβ1 > 0, there exist
global bounded classical solutions for any logistic damping τ ≥ 1. When the attraction
dominates the repulsion in the sense that ξβ2 −χβ1 < 0, the classical solutions are still
global and bounded provided that the logistic damping is strong. For the case ρ > 0, the
authors investigated the similar problem for N = 1 and N = 2. In a recent preprint Li
[21], studied the system (1.1) for N = 2, ρ = 1 when logistic source f(u) ≤ au − buτ+1

with a > 0, b > 0, τ > 0 and χ, ξ > 0, αi > 0, βi > 0 (i = 1, 2). Li proved that the global
solution is bounded by using a different method. For the general case τ ≥ 1 or N ≥ 3,
however, the global existence of classical solutions for the parabolic-parabolic system (1.1)
is still open. When N ≥ 3, Zheng et al. [54] solved this problem partly (i.e. for α1 = α2)
under the condition χβ1+ξβ2

µ < θ0 for some θ0 > 0.

When N ≥ 3, we generalize and develop the results obtained by Li and Xiang [22],
Zheng et al. [54] by getting α1 ̸= α2 in the system (1.1).

The rest of the paper is organized as follows. We introduce the local existence of classical
solution to the system (1.1) and necessary preliminary lemmas which play very important
role in the proof of Theorem 1.1 as preliminaries in Section 2. In Section 3, we deal with
the global boundedness of solution to prove Theorem 1.1

2. Preliminaries
We can obtain the local existence of a classical solution to the system (1.1) for sufficiently

smooth initial data by using standard parabolic regularity theory in a suitable fixed point
framework. In fact, a sufficient condition can be derived for the extensibility of a given
local-in-time solution (see [5, 43]).

Lemma 2.1. Let Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary, the
parameters χ, ξ, α1, α2, β1, β2 > 0. Assume that the nonnegative initial data satisfy
(u0, υ0, ω0) ∈

(
W 1,∞ (Ω)

)3 and f(u) ≤ au − µu2 with a ≥ 0, µ > 0. Then there is a
maximal existence time Tmax ∈ (0, ∞] and a unique triple (u, υ, ω) of nonnegative bounded
functions belong to C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)) with ρ = 1 which is a classical
solution of system (1.1) in Ω × (0, Tmax)). Moreover, if Tmax < ∞, then

lim
t→Tmax

(
∥u(·, t)∥∞ + ∥υ (·, t)∥1,∞ + ∥ω (·, t)∥1,∞

)
= ∞.

We will use the following property, referred to as a variation of the Maximal Sobolev
Regularity property associated with the second equation in (1.1), which will use in the
proof of our main result.

Lemma 2.2. [6, 52]. Take r ∈ (1, ∞), µ, η > 0 and U ∈ Lr((0, T ); Lr(Ω)), T ∈ (0, ∞].
Let Z be the unique strong solution of the following initial boundary value problem

Zt = ∆Z − µZ + ηU, (x, t) ∈ Ω × (0, T ),
∂Z
∂ν = 0, (x, t) ∈ ∂Ω × (0, T ),
Z(x, 0) = Z0 (x) , x ∈ Ω,

then there exists Cr > 0 depends on r and Ω, such that if s0 ∈ [0, T ), satisfies Z(·, s0) ∈
W 2,r(Ω), r > N with ∂Z(·,s0)

∂ν = 0 on ∂Ω, and∫ T

s0

∫
Ω

eµrs |∆Z|r dxds

≤ Crηr
∫ T

s0

∫
Ω

eµrsU rdxds + Creµrs0 (∥Z (·, s0)∥r
r + ∥∆Z (·, s0)∥r

r) . (2.1)
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Now, we give some knowledge about the Laplacian in Ω, which is equipped with homo-
geneous Neumann boundary conditions, which are used in the proof of L∞-boundedness
of solutions for (1.1). For the proofs, please see [17,44,45].

We next give some properties of the Neumann heat semigroup which will be used later.
For the proof, see Lemma 2.1 in [4] and Lemma 1.3 in [44].

Lemma 2.3. Assume that (et∆)t ≥ 0 is the Neumann heat semigroup in Ω, and let µ1 > 0
denote the first nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions. Then
there are k1, k2, k3 > 0 which only depend on Ω and have the following properties:

(i) If 1 ≤ q ≤ p ≤ ∞, then∥∥∥et∆z
∥∥∥

p
≤ k1t

− N
2 ( 1

q
− 1

p
)
e−µ1t ∥z∥q , ∀t > 0

holds for all z ∈ Lq(Ω) satisfying
∫

Ω z = 0.
(ii) If 1 ≤ q ≤ p ≤ ∞, then∥∥∥∇et∆z

∥∥∥
p

≤ k2

(
1 + t

− 1
2 − N

2 ( 1
q

− 1
p

)
)

e−µ1t ∥z∥q , ∀t > 0

is true for each z ∈ Lq(Ω).
(iii) If 1 < q ≤ p < ∞, then∥∥∥et∆∇ · z

∥∥∥
p

≤ k3

(
1 + t

− 1
2 − N

2 ( 1
q

− 1
p

)
)

e−µ1t ∥z∥q , ∀t > 0 (2.2)

is valid for any z ∈ (C∞
0 (Ω))N , where et∆∇· is the extension of the operator et∆∇· on

(C∞
0 (Ω))N to (Lq(Ω))N . Consequently, for all t > 0 the operator et∆∇· possesses a

uniquely determined extension to an operator from Lq(Ω) into Lp(Ω), with norm con-
trolled according to (2.2) .

3. Proof of main result

In this section, we study the proof of Theorem 1.1. We will use the maximal Sobolev
regularity and semigroup technique to obtain a globally bounded classical solution of
the system (1.1) under suitable conditions. The regularity obtained in (2.1) requires
that the initial data satisfy homogeneous Neumann boundary conditions. Therefore, we
will perform a small time shift and thus use any positive time as the “initial time” to
guarantee that the respective boundary condition is satisfied naturally. Specifically, given
any s0 ∈ (0, Tmax) such that s0 ≤ 1, from the regularity principle asserted by Lemma 2.1
we know that (u(·, s0), υ(·, s0), ω(·, s0)) ∈

(
C2(Ω)

)3
with ∂υ(·,s0)

∂ν = 0 on ∂Ω so that in
particular we can pick M > 0 such that

sup
0≤s≤s0

∥u(·, s)∥∞ ≤ M, sup
0≤s≤s0

∥υ(·, s)∥∞ ≤ M, ∥∆υ(·, s0)∥∞ ≤ M (3.1)

as well
sup

0≤s≤s0

∥ω(·, s)∥∞ ≤ M, ∥∆ω(·, s0)∥∞ ≤ M.

Now, we give the lemmas to be used to prove Theorem 1.1.

Lemma 3.1. Under the assumptions of Theorem 1 .1 , let (u, υ, ω) be a solution to (1.1)
on t ∈ (0, Tmax). Then we have

∥u(·, t)∥k ≤ C for all t ∈ (s0, Tmax)
for all k > 1 and C = C (k, a, α1, α2, µ, |Ω|) > 0.
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Proof. For any k > 1 multiplying the first equation in (1.1) with uk−1 and using condition
(1.2), integrating by parts, we have

1
k

d

dt

∫
Ω

ukdx

≤ − (k − 1)
∫

Ω
uk−2 |∇u|2 dx + χ (k − 1)

∫
Ω

uk−1∇u · ∇υdx

−ξ (k − 1)
∫

Ω
uk−1∇u · ∇ωdx + a

∫
Ω

ukdx − µ

∫
Ω

uk+1dx

≤ −χ (k − 1)
k

∫
Ω

uk∆υdx + ξ (k − 1)
k

∫
Ω

uk∆ωdx

+a

∫
Ω

ukdx − µ

∫
Ω

uk+1dx

= −χ (k − 1)
k

∫
Ω

uk∆υdx + ξ (k − 1)
k

∫
Ω

uk∆ωdx

+
(

a + α (k + 1)
k

)∫
Ω

ukdx − α (k + 1)
k

∫
Ω

ukdx − µ

∫
Ω

uk+1dx (3.2)

for all t ∈ (0, Tmax), where α = max {α1, α2}. From the following inequality

a0ξi0 − b0ξj0 ≤ a0

(
a0
b0

) i0
j0−i0

, ∀ξ > 0, (3.3)

where a0 ≥ 0, b0 > 0 and 0 ≤ i0 < j0, we see that

(
a + α (k + 1)

k

)∫
Ω

ukdx − µ

2

∫
Ω

uk+1dx ≤ B0, (3.4)

where B0 =
(

ak+α(k+1)
k

) (
2(ak+α(k+1))

kµ

)k
|Ω| > 0. On the other hand, Young’s inequality

also implies that

−χ (k − 1)
k

∫
Ω

uk∆υdx ≤ χ

∫
Ω

uk |∆υ| dx

≤ χk

k + 1

∫
Ω

uk+1dx + χ

k + 1

∫
Ω

|∆υ|k+1 dx, (3.5)

and

ξ (k − 1)
k

∫
Ω

uk∆ωdx ≤ ξk

k + 1

∫
Ω

uk+1dx + ξ

k + 1

∫
Ω

|∆ω|k+1 dx. (3.6)

Then by (3.2), (3.4), (3.5) and (3.6), we have

1
k

d

dt

∫
Ω

ukdx + α (k + 1)
k

∫
Ω

ukdx ≤ 1
k + 1

(
χ

∫
Ω

|∆υ|k+1 dx + ξ

∫
Ω

|∆ω|k+1 dx

)
−
(

µ

2
− k (χ + ξ)

k + 1

)∫
Ω

uk+1dx + B0 (3.7)
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with µ
2 − k(χ+ξ)

k+1 > 0 (by the condition (1.4)). By applying the variation-of-constants
formula to (3.7), we have

1
k

∫
Ω

ukdx

≤ 1
k + 1

∫ t

s0
e−α(k+1)(t−s)

(
χ

∫
Ω

|∆υ|k+1 dx + ξ

∫
Ω

|∆ω|k+1 dx

)
ds

−
(

µ

2
− k (χ + ξ)

k + 1

)∫ t

s0
e−α(k+1)(t−s)

∫
Ω

uk+1dxds + B1

≤ 1
k + 1

e−α(k+1)t
(

χ

∫ t

s0

∫
Ω

eα(k+1)s |∆υ|k+1 dxds + ξ

∫ t

s0

∫
Ω

eα(k+1)s |∆ω|k+1 dxds

)
−
(

µ

2
− k (χ + ξ)

k + 1

)
e−α(k+1)t

∫ t

s0

∫
Ω

eα(k+1)suk+1dxds + B1, (3.8)

where

B1 = max
t>s0

(1
k

e−α(k+1)(t−s0)
∫

Ω
uk (·, s0) dx + B0

∫ t

s0
e−α(k+1)(t−s)ds

)
.

By Lemma 2.2 to first term of last inequality in (3.8), we know that there exists a Ck+1
> 0 such that

χ

k + 1
e−α(k+1)t

∫ t

s0

∫
Ω

eα(k+1)s |∆υ|k+1 dxds

≤ χ

k + 1
Ck+1βk+1

1 e−α(k+1)t
∫ t

s0

∫
Ω

eα(k+1)suk+1dxds + B2, (3.9)

where

B2 = χ

k + 1
Ck+1 max

t>s0
e−α(k+1)(t−s0) ∥υ (·, s0)∥k+1

2,k+1 ,

and

ξ

k + 1
e−α(k+1)t

∫ t

s0

∫
Ω

eα(k+1)s |∆ω|k+1 dxds

≤ ξ

k + 1
Ck+1βk+1

2 e−α(k+1)t
∫ t

s0

∫
Ω

eα(k+1)suk+1dxds + B3, (3.10)

where

B3 = ξ

k + 1
Ck+1 max

t>s0
e−α(k+1)(t−s0) ∥ω (·, s0)∥k+1

2,k+1 .

Then, from (3.9) and (3.10), we can write

1
k + 1

e−α(k+1)t
∫ t

s0

(
χ

∫
Ω

eα(k+1)s |∆υ|k+1 dx + ξ

∫
Ω

eα(k+1)s |∆ω|k+1 dx

)
ds

≤
Ck+1

(
βk+1

1 + βk+1
2

)
k + 1

(χ + ξ) e−α(k+1)t
∫ t

s0

∫
Ω

eα(k+1)suk+1dxds + B4, (3.11)

where B4 = B2 + B3. Let Ck+1 > 0 be a constant which is corresponding to the Maximal
Sobolev Regularity denoted in Lemma 2.2 for k ∈ (1, ∞). Now we can find β∗ > 0 small
enough such that

Ck+1
(
βk+1

1 + βk+1
2

)
≤ 1 (3.12)
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for all β1, β2 < β∗. Inserting (3.11) into (3.8), we derive
1
k

∫
Ω

ukdx

≤ −

µ

2
−

Ck+1
(
βk+1

1 + βk+1
2

)
+ k

k + 1
(χ + ξ)

 e−α(k+1)t
∫ t

s0

∫
Ω

eα(k+1)suk+1dxds + B5

= − (χ + ξ)

 µ

2 (χ + ξ)
−

Ck+1
(
βk+1

1 + βk+1
2

)
+ k

k + 1

 e−α(k+1)t
∫ t

s0

∫
Ω

eα(k+1)suk+1dxds + B5,

where

B5 = max
t>s0

(1
k

e−α(k+1)(t−s0)
∫

Ω
uk (·, s0) dx + B0

∫ t

s0
e−α(k+1)(t−s)ds

)
+ Ck+1

k + 1
max
t>s0

e−α(k+1)(t−s0)
(
χ ∥υ (·, s0)∥k+1

2,k+1 + ξ ∥ω (·, s0)∥k+1
2,k+1

)
> 0

for all t ∈ (0, Tmax). By the conditions (3.12) and (1.4), we see that µ
2(χ+ξ)−Ck+1(βk+1

1 +βk+1
2 )+k

k+1 >

0 for all k > 1. Therefore, we have ∫
Ω

ukdx ≤ C

for all t ∈ (0, Tmax) and k > 1, where C = kB5. The proof of Lemma 3.1 is completed. □

Next, we give the following L∞ (Ω)-estimates for ∇υ and ∇ω.
Firstly, we show that there exists a constant D > 0 such that ∥u (t)∥1 ≤ D for all t > 0.

Integrating the first equation in (1.1) with respect to x ∈ Ω, we have
d

dt

∫
Ω

udx ≤ a

∫
Ω

udx − µ

∫
Ω

u2dx. (3.13)

From the (3.3) inequality, we have

au − µ

2
u2 ≤ D0 (3.14)

with D0 = a
(

2a
µ

)
> 0. Then by (3.13) and (3.14), we obtain

d

dt

∫
Ω

udx ≤ −µ

2

∫
Ω

u2dx + D0 |Ω| . (3.15)

Making use of Hölder’s inequality, we obtain∫
Ω

u2dx ≥ CΩ

(∫
Ω

udx

)2
,

for some CΩ > 0. Combining this inequality with (3.15) gives

d

dt

∫
Ω

udx + µCΩ
2

(∫
Ω

udx

)2
≤ D0 |Ω| .

Then standard ODE theory implies that∫
Ω

udx ≤ D for all t > 0.

Lemma 3.2. Let the conditions of Theorem 1 .1 hold. Then there is C > 0 such that

∥∇υ∥∞ ≤ C and ∥∇ω∥∞ ≤ C

for all t ∈ (s0, Tmax).
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Proof. For some given k > k0 > N , then there exist β∗ > 0 and C0 > 0 such that (by
Lemma 3.1)

∥u(·, t)∥k0
≤ C0

for all t ∈ (s0, Tmax). First, it follows from the variation-of-constants formula to the second
equation in (1.1), we obtain

υ(·, t) ≤ e(∆−1)tυ(·, s0) +
∫ t

s0
e(∆−1)(t−s) (u(·, s) − υ(·, s)) ds

for all t ∈ (s0, Tmax). By the standard estimate for Neumann semigroup (see [17]) to the
second and third equations in (1.1) and since u, υ and ω ≥ 0, by using Lemma 2.3 we
have

∥∇υ(·, t)∥∞

≤
∥∥∥∇e(∆−α1)tυ(·, s0)

∥∥∥
∞

+ β1

∫ t

s0

∥∥∥∇e(∆−α1)(t−s)u(·, s)
∥∥∥

∞
ds

≤ e−α1t ∥∇υ(·, s0)∥∞ + β1C1

∫ t

s0

(
1 + (t − s)− 1

2 − N
2k0

)
e−α1(t−s) ∥u(·, s)∥k0

ds

≤ e−α1t ∥∇υ(·, s0)∥∞ + β1C1C3

∫ t

s0

(
1 + (t − s)− 1

2 − N
2k0

)
e−α1(t−s)ds

≤ C,

and similarly it follows from the variation-of-constants formula to the third equation in
(1.1), we have

ω(·, t) ≤ e(∆−1)tω(·, s0) +
∫ t

s0
e(∆−1)(t−s) (u(·, s) − ω(·, s)) ds,

and

∥∇ω(·, t)∥∞

≤
∥∥∥∇e(∆−α2)tω(·, s0)

∥∥∥
∞

+ β2

∫ t

s0

∥∥∥∇e(∆−α2)(t−s)u(·, s)
∥∥∥

∞
ds

≤ e−α2t ∥∇ω(·, s0)∥∞ + β2C2

∫ t

s0

(
1 + (t − s)− 1

2 − N
2k0

)
e−α2(t−s) ∥u(·, s)∥k0

ds

≤ e−α2t ∥∇ω(·, s0)∥∞ + β2C2C3

∫ t

s0

(
1 + (t − s)− 1

2 − N
2k0

)
e−α2(t−s)ds

≤ C

with C2 > 0 and C3 > 0, for all t ∈ (s0, Tmax). The proof of Lemma 3.2 is completed. □

Lemma 3.3. Let the conditions of Theorem 1 .1 hold. Then there is C0 > 0 such that

∥u(·, t)∥∞ ≤ C0

for all t ∈ (0, Tmax).
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Proof. The variation-of-constants formula associated with the first equation in (1.1) rep-
resents u as

u(·, t)

= et(△−1)u(·, s0) − χ

∫ t

s0
e(t−s)(△−1)∇ · (u(·, s)∇υ(·, s)) ds

+ξ

∫ t

s0
e(t−s)(△−1)∇ · (u(·, s)∇ω(·, s)) ds

+
∫ t

s0
e(t−s)(△−1)

(
au(·, s) − µu2(·, s)

)
ds

= I1(·, t) + I2(·, t) + I3(·, t) + I4(·, t).

Since u is nonnegative, we derive

∥u(·, t)∥∞ ≤ ∥I1(·, t)∥∞ + ∥I2(·, t)∥∞ + ∥I3(·, t)∥∞ + ∥I4(·, t)∥∞ (3.16)

for all t ∈ (s0, Tmax). Thanks to the boundedness of u, υ and ω in Ω ×(1, ∞), we employ
the smoothing Neumann heat semigroup estimates and the fact that eδ(△−1) (δ > 0) is
order preserving, we have

∥I1(·, t)∥∞ =
∥∥∥et(△−1)u(·, s0)

∥∥∥
k

≤ ∥u(·, s0)∥k ≤ C0 (3.17)

for all t ∈ (s0, Tmax) with C0 > 0.
We set

M := sup
t∈[s0,T ]

∥u(·, t)∥∞

for any T ∈ (s0, Tmax). Use Lemma 2.3 with p = ∞, q = k0, which leads to

∥I2(·, t)∥∞

≤ C4

∫ t

s0

(
1 + (t − s)− 1

2 − N
2k0

)
e−µ1(t−s) ∥u(·, s)∇υ(·, s)∥k0

ds (3.18)

with C4 > 0. Let’s evaluate the expression ∥u(·, s)∇υ(·, s)∥k0
. Here, we may assume that

N
2 < σ0 < N , and then we can fix k0 > N such that 1 − (N−σ0)k0

Nσ0
> 0, which enables us

to pick θ ∈ (1, ∞) fulfilling
1
θ

< 1 − (N − σ0)k0
Nσ0

,

that is, k0θ
θ−1 < Nσ0

N−σ0
. Then by Hölder’s inequality, we can estimate

∥u(·, s)∇υ(·, s)∥k0
≤ ∥u(·, s)∥θk0

∥∇υ(·, s)∥ θk0
θ−1

≤ C5 ∥u(·, s)∥θk0
∥∇υ(·, s)∥ Nσ0

N−σ0
(3.19)

for all s ∈ (s0, Tmax), with some C5 > 0. The Sobolev embedding theorem and elliptic
regularity theory applied to the second equation in (1.1) tell us that ∥υ(·, s)∥1,

Nσ0
N−σ0

≤

C6 ∥υ(·, s)∥2,σ0
≤ C7 with some C6, C7 > 0. Thus by interpolation inequality to (3.19), we

obtain

∥u(·, s)∇υ(·, s)∥k0
≤ C5C7 ∥u(·, s)∥θk0

≤ C8 ∥u(·, s)∥1−θ0
1 ∥u(·, s)∥θ0

∞

≤ C8D1−θ0 ∥u(·, s)∥θ0
∞
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with some θ0 ∈ (0, 1) and ∥u(·, s)∥1 ≤ D. Hence, combining this estimate and (3.18), we
infer

∥I2(·, t)∥∞ ≤ C4

∫ t

s0

(
1 + (t − s)− 1

2 − N
2k0

)
e−µ1(t−s) ∥u(·, s)∥k0

ds

≤ C4C8 sup
t∈[s0,T ]

∥u(·, t)∥θ0
∞ ds = C4C8M θ0 = C9

for any T ∈ (s0, Tmax), where C8 = C7χ

(
1 + µ

N
2k0

− 1
2

1
∫∞

0 r
− 1

2 − N
2k0 e−rdr

)
> 0 is finite,

because −1
2 − N

2k0
> −1. By the similar way, there exists a positive C10 > 0 such that

∥I3(·, t)∥∞ ≤ C10 (3.20)

for all t ∈ (s0, Tmax). By the inequality (3.3), we see that

au(·, s) − µu2(·, s) ≤ a

(
a

µ

)
= C11 > 0.

Then there exist positive constants C12 and ϵ such that

∥I4(·, t)∥∞ ≤ C11

∫ t

s0
e(t−s)(△−1)ds ≤ C12

∫ t

s0
e−ϵ(t−s)ds ≤ C12

ϵ
(3.21)

for all t ∈ (s0, Tmax). Hence, collecting (3.16) − (3.21) it is easy to see that ∥u(·, t)∥∞ ≤ C
for all t ∈ (s0, Tmax). By means of (3.1), we derive that ∥u(·, t)∥∞ ≤ C for all t ∈ (0, Tmax).
Thus the Lemma 3.3 is proved. □

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. The statement of global classical solvability and boundedness
is a straightforward consequence of Lemmas 2.1 and 3.3. The proof of Theorem 1.1 is
completed. □

Acknowledgment. The author would like to thank Prof. Rabil AYAZOGLU for his
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