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Abstract 

 

Nonlinear fractional Wazwaz -Benjamin-Bona-Mahony (WBBM) 
equations play an important role in physics. The equations form an 

important model for studying the approximately unidirectional 

propagation of small amplitude long waves in certain nonlinear 
distribution systems as an alternative to Kortweg and de Vries 

(KDV). In this study, the fractional 3D-WBBM equations are solved 

by using the Improved Bernoulli Sub-Equation Function (IBSEF) 
method. 3D, 2D and contour plots are given to show the physical 

properties of the solutions.  The main aim of this method is to clarify 

obvious the exact solutions to the equations. Moreover, the 
effectiveness of the method is demonstrated by the findings 

presented in this paper. 

 
Keywords: Exact solution, fractional derivative, WBBM equations. 

Öz 

 

Lineer olmayan kesirli Wazwaz-Benjamin-Bona-Mahony (WBBM) 
denklemleri fizikte önemli bir rol oynar. Bu denklemler, Kortweg 

ve de Vries'e (KDV) alternatif olarak belirli doğrusal olmayan 

dağıtım sistemlerinde küçük genlikli uzun dalgaların yaklaşık olarak 
tek yönlü yayılmasını incelemek için önemli bir model oluşturur. 

Çalışmada, kesirli 3D-WBBM denklemleri, Geliştirilmiş Bernoulli 

Alt Denklem Fonksiyonu (IBSEF) yöntemi kullanılarak 
çözülmüştür. Çözümlerin fiziksel özelliklerinin gösterilmesi için 

3D, 2D ve kontur çizimleri verilmiştir. Bu yöntemin temel amacı, 

bu denklemlerin kesin çözümlerini açıklığa kavuşturmaktır. Ayrıca 
yöntemin etkinliği, bu makalede sunulan bulgularla 

gösterilmektedir. 

 

Anahtar Kelimeler: Kesirli türev, WBBM denklemleri, tam 

çözüm. .
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1. INTRODUCTION 

 

Nonlinear partial differential equations (PDEs) are important for modeling many daily life 

problems in fields of optical fibers, biology, chemical physics, plasma physics, quantum 

mechanics and so on. It is difficult to understand these complex structures used in non-linear 

branches such as engineering, physics and mathematics. For this reason, many mathematical 

methods have been developed in this field. So, many exact solution methods are used to understand 

the physical behavior of equations. Some of these methods are the dynamical system method by 

(Fu & Lie, 2017), the Hirota’s direct method (Wazwaz, 2018), the generalized bilinear 

transformation method (Ma, 2011),  the  improved Bernoulli sub-equation function method (Ala 

et al., 2021), the double (G'/G,1/G)-expansion method (Ünal & Ekici, 2021), the rational (G′/G)-

expansion method ( Ekici &Ünal, 2022), the (m+1/ G′) -expansion  method (Atas et al., 2022), the 

extended (G′/G)-expansion method (Roshid et al., 2014), the Sine-Gordon expansion method 

(Baskonuş et al., 2019), the Ricatti-Bernoulli sub-ODE method (Yusuf et al., 2019), the  modified 

exponential function method (Aktürk & Kudali, 2022), and so on.  

 

The Benjamin-Bona-Mahony (BBM) equation is defined in (Benjamin et al.,1972) by:                 

 

𝜐𝑥 + 𝜐𝑡 + 𝜐𝜐𝑥 − 𝜐𝑥𝑥𝑡 = 0.                                                        

 

This equation has a boundless diffusion relationship with the KDV equation. So, it is a powerful  

alternative to the KDV equation.  

 

Also, various modifications of the BBM equations have been studied by many researchers.  

Wazwaz developed a novel model which is called Wazwaz -Benjamin-Bona-Mahony (WBBM) 

equations  in (Wazwaz, 2017) as:          

 

𝜐𝑥 + 𝜐𝑡 + 𝜐
2𝜐𝑦 − 𝜐𝑥𝑧𝑡 = 0,                                         

    

𝜐𝑧 + 𝜐𝑡 + 𝜐
2𝜐𝑥 − 𝜐𝑥𝑦𝑡 = 0,                                             

                         

𝜐𝑦 + 𝜐𝑡 + 𝜐
2𝜐𝑧 − 𝜐𝑥𝑥𝑡 = 0.                                                                        

 

These three recently derived equations are redefined by Wazwaz, and the resulting version of 

these 3D fractional WBBM equations is considered in this article (Mamun et al., 2020): 

 

𝐷𝑡
𝜂
𝜐 + 𝐷𝑥

𝜂
𝜐 + 𝐷𝑦

𝜂
𝜐3 − 𝐷𝑥𝑧𝑡

3𝜂
𝜐 = 0,      𝑡 ≥ 0, 0 < 𝜂 ≤ 1,                                                            (1) 

 

𝐷𝑡
𝜂
𝜐 + 𝐷𝑧

𝜂
𝜐 + 𝐷𝑥

𝜂
𝜐3−𝐷𝑥𝑦𝑡

3𝜂
𝜐 = 0,        𝑡 ≥ 0, 0 < 𝜂 ≤ 1,                                                            (2) 

 

𝐷𝑡
𝜂
𝜐 + 𝐷𝑦

𝜂
𝜐 + 𝐷𝑧

𝜂
𝜐3−𝐷𝑥𝑥𝑡

3𝜂
𝜐 = 0,        𝑡 ≥ 0, 0 < 𝜂 ≤ 1,                                                            (3) 

 

where 𝜐(𝑥, 𝑦, 𝑧, 𝑡) is differentiable functions in the Eq. (1)-(3) in which independent variables  

𝑥, 𝑦, 𝑧, and 𝑡, 𝐷𝑡
𝜂
, 𝐷𝑥

𝜂
 , 𝐷𝑦

𝜂
 and  𝐷𝑧

𝜂
 represent the conformable fractional derivative of order 𝜂.  

 

Various methods have been used to arrive at different solutions for the family (1)-(3); for example, 

the modified extended tanh-function method yields hyperbolic and trigonometric function 

solutions (Mamun et al., 2020),  the tanh–coth method is utilized to derive singular, shock, 

periodic, and bell-shaped soliton solutions as presented (Mamun et al., 2022a), the Sine-Gordon 

expansion method yields hyperbolic function solutions (Mamun et al., 2022b), the improved 
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modified extended tanh-function method is used to obtain bright solitons, dark solitons, bright-

dark solitons, single solitons, and multiple solitons (Mamun et al., 2022c).    

 

This article is structured as follows: Sect. 1 is dedicated to the introduction. Sect. 2 includes the 

basic definitions of fractional derivatives and describes the proposed method. In Sect. 3, the 

applications of the IBSEF method to Eqs. (1)-(3) are presented. Sect. 4 provides graphical 

representations of the solutions. Finally, Sect. 5 presents the main conclusions.  

 

 

2. MATERIALS AND METHODS 

 

2.1. Conformable Fractional Derivative 

 

This part covers the basic concepts of the conformable fractional derivative discussed in this study. 

 

Definition: Let be a function 𝜐 = 𝜐(𝜉): [0,∞) → ℝ.  The conformable derivative of order 𝜂 is 

defined by (Khalil et al., 2014) :                       

 

𝐷𝑡
𝜂
(𝜐(𝑡)) = lim

𝜏→∞

𝜐(𝑡+𝜏𝑡1−𝜂)−𝜐(𝑡)

𝜏
 ,  

 

for all 𝑡 > 0, 𝜂𝜖(0,1].  
 

Theorem 1. Suppose that 𝜐 = 𝜐(𝑡) and 𝜔 = 𝜔(𝑡) are 𝜂𝜖(0,1] −differentiable.  Then  

i. 𝐷𝑡
𝜂(𝑘1𝜐 + 𝑘2𝜔) = 𝑘1𝐷𝑡

𝜂(𝜐) + 𝑘2𝐷𝑡
𝜂(𝜔),     ∀𝑘1, 𝑘2𝜖ℝ.  

ii. 𝐷𝑡
𝜂(𝑡𝑘) = 𝑘𝑡𝑘−𝜂 , 𝑘𝜖ℝ.     

iii. 𝐷𝑡
𝜂(𝛼) = 0, for all constant function 𝜐(𝜉) = 𝛼. 

iv. 𝐷𝑡
𝜂(𝜐𝜔) = 𝜐𝐷𝑡

𝜂(𝜔) + 𝜔𝐷𝑡
𝜂(𝜐).  

v.  𝐷𝑡
𝜂
(
𝜐

𝜔
) =

𝜔𝑇𝑡
𝜂(𝜐)−𝜐𝑇𝑡

𝜂(𝜔)

𝜔2
, 𝜔 ≠ 0, 

for all positive 𝑡.   
 

Theorem 2. Let  υ = υ(t) be an η − conformable differentiable function and assume that ω is 

differentiable and defined in the range of 𝜐. Then,   

 

𝐷𝑡
𝜂(𝜐𝜊𝜔) = 𝑡1−𝜂𝜔′(𝑡)𝜐′(𝜔(𝑡)). 

 

For the proofs, see (Atangana et al., 2015; Abdeljawad, 2015). 

 

2.2. Description of the Proposed Method 

 

In this part, we give outline the steps for the method to be used (Başkonuş & Bulut, 2015). 

 

Step 1. To start with, we consider the  conformable fractional PDE equation given by 

 

𝑄(𝜐, 𝜐𝑥, 𝐷𝑡
𝜂
𝜐, 𝜐𝑥𝑥, … ) = 0,       0 < 𝜂 ≤ 1,                                                                                    (4) 

 

where 𝐷𝑡
𝜂
 is the conformable derivative operator, 𝜂 is fractional order. We define a transformation 

                     

𝜐(𝑥, 𝑡) = 𝑉(𝜉), 𝜉 = (𝑥 − 𝑐𝑡𝜂𝜂−1),                                                                                              (5) 
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where 𝑐 is an arbitrary constant and not zero. Then substituting Equation (5) into Eq.(4), gives the 

following of ordinary differential equation 

 

𝑁(𝑉, 𝑉′, 𝑉′′, … ) = 0,                                                                                                                          (6) 

 

where 𝑁 is function of  𝑉, 𝑉′, 𝑉′′and its derivatives with respect to 𝜉. We assume that the solution 

of (6) can be represented as: 

 

𝑉(𝜉) =
∑ 𝑎𝑖𝐻

𝑖(𝜉)𝑛
𝑖=0

∑ 𝑏𝑖𝐻
𝑖(𝜉)𝑚

𝑖=0

 ,                                                                                                                       (7) 

 

where 𝑎0, 𝑎1, … , 𝑎𝑛  and  𝑏0, 𝑏1, … , 𝑏𝑚 are  real or complex constants. 𝑚   and  𝑛 are calculated 

with the help of the balance principle. The form of the following Bernoulli differential equation is 

taken into account: 

 

𝐻′(𝜉) = 𝜎𝐻(𝜉) + 𝑑𝐻𝑀(𝜉),                                                                                                          (8) 

 

where 𝑑 ≠ 0, 𝜎 ≠ 0,𝑀 𝜖 ℝ\{0,1,2}  and 𝐻(𝜉) is polynomial. 

 

Step 2: 𝑚, 𝑛,𝑀 is found by balance principle and different from zero.  Balance princple is both 

nonlinear term and the highest order derivative term of Eq. (4). Considering  Eqs. (7) , (8) in (6), 

we get                         

 

Θ(𝐻(𝜉)) = 𝜌𝑠𝐻(𝜉)
𝑠 +⋯+ 𝜌1𝐻(𝜉) + 𝜌0 = 0,                                                                           (9) 

 

the coefficients  𝜌𝑖, 𝑖 = 0, 𝑠̅̅ ̅̅  will be determined later. The coefficients of  Θ(𝐻(𝜉)) which will give 

us a system of algebraic equations, whole be zero.  

 

Step 3. The function  𝐻(𝜉)  is a solution of the Bernoulli differential Eq. (8). Therefore, 𝐻(𝜉)  is 

given by  

 

a) For 𝑑 ≠ 𝜎, 𝜀 𝜖 ℝ,                                               

 

𝐻(𝜉) = [
−𝑑𝑒𝜎(𝜀−1)+𝜀𝜎

𝜎𝑒𝜎(𝜀−1)𝜉
]

1

1−𝜀
.                                                                                                           (10) 

 

b) For 𝑑 = 𝜎, 𝜀 𝜖 ℝ,               

 

𝐻(𝜉) = [
(𝜀−1)+(𝜀+1) tanh(𝜎(𝜀−1)

𝜉

2
)

1−tanh(𝜎(𝜀−1)
𝜉

2
)

].                                                                                              (11)  

 

With the solving of this algebraic equation system, the values of the constants used in the solution 

function and the soliton solutions of (4) are obtained via Mathematica.  
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3. IMPLEMENTATION 

 

3.1.The First  Fractional WBBM Equation and Its Solitons 

 

In this section, using the IBSEF method,  we will realize the exact  solutions in terms of some 

variables for  Eq. (1). 

 

Let’s consider the traveling wave  transformation by 

 

𝜐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑉(𝜉), 𝜉 = 𝛼 (
𝑥𝜂

𝜂
) + 𝛽 (

𝑦𝜂

𝜂
) + 𝛾 (

𝑧𝜂

𝜂
) − 𝜅 (

𝑡𝜂

𝜂
).                                                       (12) 

 

Using the basic properties fractional derivative and substituting Eqs. (12)  into (1), it  becomes:  

 

 (−𝜅 + 𝛼)𝑉′ + 𝛽(𝑉3)′ + 𝛼𝛾𝜅𝑉′′′ = 0. 
 

Integrating above the equations concerning 𝜉, we get ordinary differential equation (ODE) as: 

 

(−𝜅 + 𝛼)𝑉 + 𝛽𝑉3 + 𝛼𝛾𝜅𝑉′′ + 𝑐0 = 0,                                                                                        (13) 

 

where 𝑐0 is the integrating constant and 𝑐0 = 0 is chosen for simplicity.  Considering that the 

nonlinear term of the highest algebraic power is 𝑉3 and the highest derivative term is  𝑉′′, we 

obtain the relation 

 

𝑀 +𝑚 = 𝑛 + 1.     
 

This relationship of 𝑚, 𝑛 and 𝑀 give us different types of the solutions of Eq. (13). Using 

homogeneous balance principle,  𝑀 = 𝑛 = 3 and 𝑚 = 1 are chosen. Therefore we get,         

 

𝑉(𝜉) =
∑ 𝑎𝑖𝐻

𝑖(𝜉)3
𝑖=0

∑ 𝑏𝑖𝐻
𝑖(𝜉)1

𝑖=0

=
𝛼0+𝑎1𝐻(𝜉)+𝑎2𝐻

2(𝜉)+𝑎3𝐻
3(𝜉)

𝑏0+𝑏1𝐻(𝜉)
=
𝜓(𝜉)

𝜑(𝜉)
,                                                            (14) 

 

𝑉′(𝜉) =
𝜓′(𝜉)𝜑(𝜉)−𝜓(𝜉)𝜑′(𝜉)

𝜑2(𝜉)
,      

 

𝑉′′(𝜉) =
𝜓′(𝜉)𝜑(𝜉)−𝜓(𝜉)𝜑′(𝜉)

𝜑2(𝜉)
−
[𝜓(𝜉)𝜑′(𝜉)]

′
𝜑2(𝜉)−2𝜓(𝜉)[𝜑′]

2
𝜑(𝜉)

𝜑4(𝜉)
.                                                      (15) 

 

Substituting Eqs. (15) along with (14) into (13) as well as equating the like power of  𝐻 and solving 

the algebraic system as:  

 

𝐻0: 𝛽𝑎0
3 + 𝛼𝑎0𝑏0

2 − 𝜅𝑎0𝑏0
2 = 0, 

 

𝐻1: 3𝛽𝑎0
2𝑎1 + 𝛼𝑎1𝑏0

2 − 𝜅𝑎1𝑏0
2 + 𝛼𝛾𝜅𝜎2𝑎1𝑏0

2 + 2𝛼𝑎0𝑏0𝑏1 − 2𝜅𝑎0𝑏0𝑏1 − 𝛼𝛾𝜅𝜎
2𝑎0𝑏0𝑏1 = 0 , 

 

𝐻2: 3𝛽𝑎0𝑎1
2 + 3𝛽𝑎0

2𝑎2 + 𝛼𝑎2𝑏0
2 − 𝜅𝑎2𝑏0

2 + 4𝛼𝛾𝜅𝜎2𝑎2𝑏0
2 + 2𝛼𝑎1𝑏0𝑏1 − 2𝜅𝑎1𝑏0𝑏1 −

𝛼𝛾𝜅𝜎2𝑎1𝑏0𝑏1 + 𝛼𝑎0𝑏1
2 − 𝜅𝑎0𝑏1

2 + 𝛼𝛾𝜅𝜎2𝑎0𝑏1
2 = 0, 

 

𝐻3: 𝛽𝑎1
3 + 6𝛽𝑎0𝑎1𝑎2 + 3𝛽𝑎0

2𝑎3 + 4𝑑𝛼𝛾𝜅𝜎𝑎1𝑏0
2 + 𝛼𝑎3𝑏0

2 − 𝜅𝑎3𝑏0
2 + 9𝛼𝛾𝜅𝜎2𝑎3𝑏0

2

− 4𝑑𝛼𝛾𝜅𝜎𝑎0𝑏0𝑏1 + 2𝛼𝑎2𝑏0𝑏1 − 2𝜅𝑎2𝑏0𝑏1 + 3𝛼𝛾𝜅𝜎
2𝑎2𝑏0𝑏1 + 𝛼𝑎1𝑏1

2 − 𝜅𝑎1𝑏1
2

= 0, 
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𝐻4: 3𝛽𝑎1
2𝑎2 + 3𝛽𝑎0𝑎2

2 + 6𝛽𝑎0𝑎1𝑎3 + 12𝑑𝛼𝛾𝜅𝜎𝑎2𝑏0
2 + 2𝛼𝑎3𝑏0𝑏1 − 2𝜅𝑎3𝑏0𝑏1

+ 11𝛼𝛾𝜅𝜎2𝑎3𝑏0𝑏1 + 𝛼𝑎2𝑏1
2 − 𝜅𝑎2𝑏1

2 + 𝛼𝛾𝜅𝜎2𝑎2𝑏1
2 = 0, 

 

𝐻5: 3𝛽𝑎1𝑎2
2 + 3𝛽𝑎1

2𝑎3 + 6𝛽𝑎0𝑎2𝑎3 + 3𝑑
2𝛼𝛾𝜅𝑎1𝑏0

2 + 24𝑑𝛼𝛾𝜅𝜎𝑎3𝑏0
2 − 3𝑑2𝛼𝛾𝜅𝑎0𝑏0𝑏1

+ 12𝑑𝛼𝛾𝜅𝜎𝑎2𝑏0𝑏1 + 𝛼𝑎3𝑏1
2 − 𝜅𝑎3𝑏1

2 + 4𝛼𝛾𝜅𝜎2𝑎3𝑏1
2 = 0, 

 

𝐻6: 𝛽𝑎2
3 + 6𝛽𝑎1𝑎2𝑎3 + 3𝛽𝑎0𝑎3

2 + 8𝑑2𝛼𝛾𝜅𝑎2𝑏0
2 + 𝑑2𝛼𝛾𝜅𝑎1𝑏0𝑏1 + 32𝑑𝛼𝛾𝜅𝜎𝑎3𝑏0𝑏1 −

  𝑑2𝛼𝛾𝜅𝑎0𝑏1
2 + 4𝑑𝛼𝛾𝜅𝜎𝑎2𝑏1

2 = 0, 

 

𝐻7: 3𝛽𝑎2
2𝑎3 + 3𝛽𝑎1𝑎3

2 + 15𝑑2𝛼𝛾𝜅𝑎3𝑏0
2 + 9𝑑2𝛼𝛾𝜅𝑎2𝑏0𝑏1 + 12𝑑𝛼𝛾𝜅𝜎𝑎3𝑏1

2 = 0, 
 

𝐻8: 3𝛽𝑎2𝑎3
2 + 21𝑑2𝛼𝛾𝜅𝑎3𝑏0𝑏1 + 3𝑑

2𝛼𝛾𝜅𝑎2𝑏1
2 = 0, 

 

𝐻9: 𝑞𝛽𝑎3
3 + 8𝑑2𝛼𝛾𝜅𝑎3𝑏1

2 = 0. 
 

The above algebraic equations yield the following coefficients: 

 

Result 1. 

 

𝑎0 = −
𝑖√𝛼 − 𝜅𝑏0

√𝛽
; 𝑎1 = −

𝑖√𝛼 − 𝜅𝑏1

√𝛽
; 𝑎2 = −

2𝑖𝑑√𝛼 − 𝜅𝑏0

√𝛽𝜎
; 

𝑎3 = −
2𝑖𝑑√𝛼−𝜅𝑏1

√𝛽𝜎
;     𝛾 =

𝛼−𝜅

2𝛼𝜅𝜎2
.  

 

Substituting these coefficients along with Eqs. (10) in (14), we obtain the following solution of  

(12) as follows;  

 

𝜐1(𝑥, 𝑦, 𝑧, 𝑡) = −

𝑖√𝛼−𝜅

(

 
 
1−

2𝑑

𝑑−ⅇ

(𝑧𝜂(−𝛼+𝜅)−2𝛼𝜅𝜎2(𝑥𝜂𝛼+𝑦𝜂𝛽−𝑡𝜂𝜅))𝜎

𝛼𝜅𝜎2𝜂 𝜖𝜎)

 
 

√𝛽
.                                                   (16) 

      

Result 2. 

 

𝑎0 =
√𝛼−𝛽𝑎2

2√2𝑑√𝛼√𝛾√𝜅
; 𝑎1 =

√𝛼−𝛽𝑎2𝑏1

2√2𝑑√𝛼√𝛾√𝜅𝑏0
;  𝑎3 =

𝑎2𝑏1

𝑏0
;   𝜎 =

√𝛼−𝜅

√2√𝛼√𝛾√𝜅
;  𝑞 = −

8𝑑2𝛼𝛾𝜅𝑏0
2

𝑎2
2 .          

 

If the coefficients given above are used, the following solution functions are obtained as follows: 

 

𝜐2(𝑥, 𝑦, 𝑧, 𝑡) =
(4(𝑒

−
(−1+𝑀)√𝛼−𝜅(𝑥𝜂𝛼+𝑦𝜂𝛽+𝑧𝜂𝛾−𝑡𝜂𝜅)

√2√𝛼√𝛾𝜂√𝜅 𝜖−
√2𝑑√𝛼√𝛾√𝜅

√𝛼−𝜅
)
−

2
−1+𝑀+

√2√𝛼−𝛽

𝑑√𝛼√𝛾√𝜅
)𝑎2

4𝑏0
.                             (17) 

 

3.2. The Second Fractional WBBM Equation and Its Soliton  

 

When we apply the wave transformation (12) to the second fractional WBBM equation (2), we get 

the following ODE: 

 

(−𝜅 + 𝛾)𝑉 + 𝛼𝑉3 + 𝛼𝛽𝜅𝑉′′ = 0.                                                                                                     (18) 
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Proceeding the same way as the above steps and  with the help of Mathematica, we yield the 

following values of Eq. (18):  

 

Result 1. 

 

𝑎0 = 𝑖√2√𝛽√𝜅𝜎𝑏0;          𝑎1 = 𝑖√2√𝛽√𝜅𝜎𝑏1;  𝑎2 = 2𝑖√2𝑑√𝛽√𝜅𝑏0; 
 

𝑎3 = 2𝑖√2𝑑√𝛽√𝜅𝑏1;         𝛾 = 𝜅 + 2𝛼𝛽𝜅𝜎
2.    

 

Using these solutions sets, we obtain the solutions for the Eq. (2)  

 

𝜐3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑖√2√𝛽√𝜅(
2𝑑

𝑒
−
2𝜎(𝑥𝜂𝛼+𝑦𝜂𝛽−𝑡𝜂𝜅+𝑧𝜂𝜅(1+2𝛼𝛽𝜎2))

𝜂 𝜖−
𝑑

𝜎

+ 𝜎).                                            (19) 

 

3.3. The Third Fractional WBBM Equation and Its Soliton  

 

Introducing the traveling wave transform (12) into  Eq. (3), the ODE is obtained as follows: 

 

(−𝜅 + 𝛽)𝑉 + 𝛾𝑉3 + 𝛼2𝜅𝑉′′ = 0.                                                                                                  (20) 

 

Proceeding in the same manner as the above steps, and utilizing Mathematica, we obtain the 

following values for Eq. (20): 

 

Result 1. 

 

𝑎0 =
𝜎𝑎2
2𝑑

; 𝑎1 =
𝜎𝑎2𝑏1
2𝑑𝑏0

;  𝑎3 =
𝑎2𝑏1
𝑏0

;  𝜅 = 𝛽 − 2𝛼2𝜎2;  𝛾 = −
8𝑑2𝛼2𝑏0

2

𝑎2
2 . 

 

Using these solutions sets, we obtain the solutions for the Eq. (3): 

 

𝜐4(𝑥, 𝑦, 𝑧, 𝑡) =

𝜎(
1

𝑑
−

2

𝑑−ⅇ

2𝜎(−𝑥𝜂𝛼−𝑦𝜂𝛽+𝑡𝜂(𝛽−2𝛼2𝜎2)+
8𝑑2𝑧𝜂𝛼2𝑏0

2

𝑎2
2 )

𝜂 𝜖𝜎

)𝑎2

2𝑏0
 .                                                      (21) 

 

 

4. RESULTS AND DISCUSSION 

 

In this section 3D, 2D and contour plot graphical representations of the solutions 

𝜐1(𝑥, 𝑦, 𝑧, 𝑡), 𝜐2(𝑥, 𝑦, 𝑧, 𝑡), 𝜐3(𝑥, 𝑦, 𝑧, 𝑡), and 𝜐4(𝑥, 𝑦, 𝑧, 𝑡) are given, respectively.  
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Figure1. 3D, 2D and contour plots of 𝜐1(𝑥, 𝑦, 𝑧, 𝑡) for the values 𝛼 = 0,3; 𝛽 = 0,56;  
𝜅 = 0,6; 𝜂 = 0,5; 𝜖 = 0,44; 𝛾 = 0,1;  𝜎 = 0,87; 𝑑 = 0,86;−9 < 𝑥 < 9,−17 < 𝑡 < 17 
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Figure2. 3D, 2D and contour plots of 𝜐2(𝑥, 𝑦, 𝑧, 𝑡) for the values 𝛼 = 0,5; 𝛽 = 0,2; 
 𝜅 = 0,59; 𝛾 = 0,1;  𝜂 = 0,5; 𝜖 = 0,55; 𝑑 = 0,75; 𝑎2 = 0,44; 𝑏0 = 0,21; 

−15 < 𝑥 < 15, −15 < 𝑡 < 15 

 

  

  
 

Figure3. 3D of 𝜐3(𝑥, 𝑦, 𝑧, 𝑡) for the values 𝛼 = 0,2; 𝛽 = 0,5;  𝜅 = 0,55;  𝜂 = 0,5; 𝜖 = 0,3; 𝑑 =
0,49;−9 < 𝑥 < 9,−17 < 𝑡 < 17 and 2D plots of 𝜐3(𝑥, 𝑦, 𝑧, 𝑡) for the values 𝛼 = 0,2; 𝛽 =

0,5;  𝜅 = 0,55;  𝜂 = 0,5; 𝜖 = 0,3; 𝑑 = 0,49; −15 < 𝑥 < 15 
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Figure 4. 3D of 𝜐4(𝑥, 𝑦, 𝑧, 𝑡) for the values 𝛼 = 0,5; 𝛽 = 0,32;  𝜂 = 0,5; 𝜖 = 0,1; 𝑑 = 0,4; 
𝑎2 = 0,11; 𝑏0 = 0,5;−10 < 𝑥 < 10,−10 < 𝑡 < 10 and 2D plots of 𝜐3(𝑥, 𝑦, 𝑧, 𝑡) for the 

values 𝛼 = 0,5; 𝛽 = 0,32;  𝜂 = 0,5; 𝜖 = 0,1; 𝑑 = 0,4; 𝑎2 = 0,11; 𝑏0 = 0,5; −15 < 𝑥 < 15 

 

 

5. CONCLUSION 

 

In this study, the IBSEF method was employed to obtain exact solutions for fractional 3D-

fractional WBBM equations (1)-(3). The method demonstrated its effectiveness, reliability, and 

conformability in obtaining accurate solutions for nonlinear conformable time-fractional 

derivative partial differential equations. Utilizing Wolfram Mathematica, we employed graphical 

representations such as 3D plots, 2D plots, and contour plots to visually present some of the 

solutions. The exponential function solutions, outlined in Eqs. (16), (17), (19), and (21) and 

depicted in Figs. 1, 2, 3, and 4, respectively, capture natural processes of growth and decay. These 

solutions find broad application in modeling population growth, radioactive decay, financial 

investments, and other scenarios characterized by quantities changing proportionally to their 

current values. Furthermore, within the field of quantum mechanics, exponential functions surface 

as descriptors of wave function behavior and probability amplitudes in quantum systems. So, these 

conclusions could prove important to further research into these systems in order to address the 

nonlinear problems encountered in applied sciences. 
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