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Abstract. The structures of symmetric connectedness and dually, antisym-

metric connectedness were described and studied before, especially in terms
of graph theory as the corresponding counterparts of the connectedness of a

graph and the connectedness of its complementary graph. By taking into con-

sideration the deficiencies of topological density in the context of symmetric
and antisymmetric connectedness, two special kinds of density in the theory

of non-metric T0-quasi-metrics were introduced in the previous studies under

the names symmetric density and antisymmetric density. In this paper, some
crucial and useful properties of these two types of density are investigated with

the help of the major results and (counter)examples peculiar to the asymmetric

environment. Besides these, many further observations about the structures
of symmetric and antisymmetric-density are dealt with, especially in the sense

of their combinations such as products and unions through various theorems

in the context of T0-quasi-metrics. Also, we examine the question of under
what kind of quasi-metric mapping these structures will be preserved.

1. Introduction

In [11], symmetrically connected and dually, antisymmetrically connected T0-
quasi-metric spaces were described and studied in detail. These theories were espe-
cially discussed in the sense of the notions peculiar to graph theory [1,4,10] as the
suitable counterparts of the connectedness for a graph and complementary graph
of it, respectively. In particular, it was shown that there were natural relationships
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between the theory of symmetrically connected - antisymmetrically connected T0-
quasi-metric spaces and the theory of connected graphs - connected complementary
graphs.

Following these theories, some new types of density specific to T0-quasi-metric
subspaces in the asymmetric environment due to the apparent inadequacy of topo-
logical density in the transfer of properties symmetric and antisymmetric connected-
ness to the subspaces or superspaces are described in [9] under the names symmetric
density and antisymmetric density.

As for the subject of this study, we observed some combinations of symmetrically
/ antisymmetrically-dense subspaces such as products, unions and intersections in
the context of T0-quasi-metrics. With this viewpoint, it is also natural to inquire
whether the images of symmetrically / antisymmetrically-dense subspaces under an
isometric isomorphism have the same property or not. Hereby, we will also obtain
some crucial and useful results within this framework.

In the light of all these considerations, the content of paper is as follows:

Some necessary background material for the remaining of paper is presented in
Section 2. After recalling the preliminary information, as one of the purposes of
the paper, in Section 3 we discussed some properties and new (counter)examples of
the symmetric density theory in the context of asymmetric topology. In addition,
we presented some observations about the products, unions, intersections... of the
symmetrically-dense T0-quasi-metric subspaces and their preservation under the
specific mappings peculiar to quasi-metrics.

Following these, in Section 4 some future properties and asymmetric aspects of
antisymmetrically-dense subspaces are investigated with the help of many useful
(counter)examples. The remainder of this section is devoted to discussing preser-
vation of antisymmetric density under the specific mappings in the context of
quasi-metrics as well as some combinations such as unions, products,... of the
antisymmetrically-dense T0-quasi-metric subspaces.

Consequently, Section 5 as the last part of the paper gives a conclusion about
the whole of the work.

2. Background

This section will present some background material on T0-quasi-metrics and par-
ticularly, it consists of the required information related to the theories of symmet-
rically connected and antisymmetrically connected spaces as well as antisymmetric
spaces which are a kind of opposite to metric spaces.

All preliminary information presented in this section is taken from the references
[3, 5–8,12].

T0-quasi-metrics:
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Definition 1. Let X be a set and d : X × X → [0,∞) be a function. Then d is
called a T0-quasi-metric on X if

(a) d(x, x) = 0
(b) d(x, y) = 0 = d(y, x) ⇒ x = y
(c) d(x, z) ≤ d(x, y) + d(y, z)

whenever x, y, z ∈ X. Thus, (X, d) is called T0-quasi-metric space.

Here the notation τds will be used to denote the topology induced by the sym-
metrization metric ds = d ∨ d−1 where d−1(x, y) = d(y, x).

Example 1. On R, take
u(x, y) = max{x− y, 0}

whenever x, y ∈ R.
It is easy to prove that u satisfies the conditions of Definition 1, and u is called

the standard T0-quasi-metric on R.

Now, let us recall some important notions and (counter)examples related to the
theories constructed in [11]:

Symmetrically connected spaces:

Definition 2. Let (X, d) be a T0-quasi-metric space.

i) A pair (x, y) ∈ X ×X is called symmetric pair if d(x, y) = d(y, x).
ii) A finite sequence of points in X, starting at x and ending with y, is called

a (finite) symmetric path Px,y = (x = x0, x1, . . . , xn−1, xn = y) (where
n ∈ N) from x to y provided that all the pairs (xi, xi+1) are symmetric
where i ∈ {0, . . . , n− 1}.

For a T0-quasi-metric space (X, d), we take

Zd = {(x, y) ∈ X ×X : d(x, y) = d(y, x)}
as the set of symmetric pairs in (X, d). Note that this relation is reflexive and
symmetric.

Incidentally, note that

ds(x, y) = d(x, y) = d−1(x, y)

for (x, y) ∈ Zd.

Also,
Zd(x) = {y ∈ X | (x, y) ∈ Zd}

is called symmetry set of x ∈ X.

Definition 3. If (X, d) is a T0-quasi-metric space and x, y ∈ X then x ∈ X
is symmetrically connected to y ∈ X whenever there is a symmetric path Px,y,
starting at the point x and ending at the point y.
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Clearly, “symmetric connectedness” is an equivalence relation on X, by defini-
tion.

Definition 4. The equivalence class of a point x ∈ X with respect to the symmetric
connectedness relation is called the symmetry component of x.

More clearly, if Cd denotes the symmetric connectedness relation then the sym-
metry component of x ∈ X is

Cd(x) = {y ∈ X : there is a symmetric path from x to y}.

We are now in a position to recall the following crucial notion:

Definition 5. A T0-quasi-metric space (X, d) such that Cd(x) = X for all x ∈ X,
is called symmetrically connected.

Therefore, (X, d) is symmetrically connected if and only if for all x, y ∈ X, x
and y are symmetrically connected by Definition 3, obviously.

At this stage, we will turn our attention to the dual counterparts of some notions
described above.

Antisymmetrically connected spaces:

Definition 6. Let (X, d) be a T0-quasi-metric space, and x, y ∈ X. Then

i) (x, y) ∈ X ×X is called antisymmetric pair if d(x, y) ̸= d(y, x)
ii) A finite sequence of points in X, starting at x and ending with y, is called

a (finite) antisymmetric path Px,y = (x = x0, x1, . . . , xn−1, xn = y) (where
n ∈ N) from x to y provided that all the pairs (xi, xi+1) are antisymmetric
where i ∈ {0, . . . , n− 1}.

Definition 7. In a T0-quasi-metric space (X, d), two points x, y ∈ X are called an-
tisymmetrically connected if there is an antisymmetric path Px,y = (x = x0, x1, . . . , xn−1, xn =
y), or x = y.

Now, if we consider the relation

Td := {(x, y) ∈ X ×X : x and y are antisymmetrically connected in (X, d)}
then Td describes an equivalence relation on X, trivially.

Let us recall some other notions from [11]:

Definition 8. i) The equivalence class of a point x ∈ X with respect to Td

is called the antisymmetry component and it is denoted by

Td(x) = {y ∈ X : there is an antisymmetric path from x to y}.
ii) If Td(x) = X for each x ∈ X, then the space (X, d) is called antisymmet-

rically connected.

Hence, (X, d) is antisymmetrically connected if and only if for all x, y ∈ X, x
and y are antisymmetrically connected by Definition 7.
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Example 2. The T0-quasi-metric space (R, u) given in Example 1 is antisymmet-
rically connected but not symmetrically connected.

Antisymmetric spaces:

The following notion is described in [11] as opposite to that of “metric” :

Definition 9. [11] A T0-quasi-metric space (X, d) is called antisymmetric if Zd =
{(x, x) : x ∈ X} = ∆X , that is, if d(x, y) = d(y, x) then x = y, for all x, y ∈ X.

Symmetric-Antisymmetric points:

Definition 10. Let (X, d) be a T0-quasi-metric space and x ∈ X.

i) x is called symmetric point if d(x, y) = d(y, x) for each y ∈ X.
ii) x is called antisymmetric point if d(x, y) ̸= d(y, x) for each y ∈ X \ {x}.

According to the above descriptions, the next statements will be obvious:

Proposition 1. a) A T0-quasi-metric space which has a symmetric point will
be symmetrically connected and not an antisymmetric space.

b) A T0-quasi-metric space which has an antisymmetric point will be anti-
symmetrically connected and not a metric space.

3. Some Further Properties and Examples of Symmetric Density

Firstly, let us recall the following notion from [9].

Definition 11. Let (X, d) be a T0-quasi-metric space and A ⊆ X. If for x ∈ X \A,
there exists ax ∈ A such that d(x, ax) = d(ax, x) then A is called symmetrically-
dense in (X, d).

Example 3. Let us define a T0-quasi-metric p on the set X = {1, 2, 3} via the
matrix

P =

 0 9 8
9 0 1
10 1 0

 .

That is, P = (pij) where p(i, j) = pij for i, j ∈ X. It is easy to prove that p is a
T0-quasi-metric on X. Specifically, now we will check the triangle inequality:

p(1, 2) = 9 ≤ 8 + 1 = p(1, 3) + p(3, 2), p(3, 1) = 10 ≤ 1 + 9 = p(3, 2) + p(2, 1)
p(1, 3) = 8 ≤ 9 + 1 = p(1, 2) + p(2, 3), p(2, 1) = 9 ≤ 1 + 10 = p(2, 3) + p(3, 1)
p(2, 3) = 1 ≤ 9 + 8 = p(2, 1) + p(1, 3), p(3, 2) = 1 ≤ 10 + 9 = p(3, 1) + p(1, 2).

Thus p satisfies the triangle inequality.
Here also note that p(1, 2) = p(2, 1). Therefore, the subset A = {2, 3} of X is

symmetrically-dense in X. In addition, the subset B = {1} is not symmetrically-
dense since p(3, 1) ̸= p(1, 3).
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Proposition 2. Let (X, d) be a T0-quasi-metric space with at least two-elements
and let x ∈ X be an antisymmetric point. Thus, the subsets {x} and X \ {x} are
not symmetrically-dense in X.

Proof. By Definition 10 ii), we have d(x, y) ̸= d(y, x) whenever y ∈ X \ {x}. Then,
{x} is not symmetrically-dense in X. Similarly, y = x whenever y ∈ X \ (X \ {x})
and since x is antisymmetric point, d(x, a) ̸= d(a, x) for a ∈ X \ {x}. That is,
X \ {x} is not symmetrically-dense. □

Example 4. Let Y = {0} ∪ { 1
2n : n ∈ N} and define f : Y → [0,∞) as follows:

f(x, y) =

 |x− y| ; x < y and (x, y) ̸= ( 1
2n+1 ,

1
2n ), ∀n ∈ N

2|x− y| ; otherwise

for x, y ∈ Y .

The fact that f is a T0-quasi-metric on Y is proved in [5].

Also, because of the inequality f(a, 0) ̸= f(0, a) for each a ∈ Y \{0} the point 0 is
antisymmetric point. Thus (Y, f) is antisymmetrically connected by Proposition 1.
Additionally, the space (Y, f) has symmetrically-dense subsets Tf (

1
2 ), Tf (

1
4 )... since

they are antisymmetry components.

At this stage, we can compute Cf (
1
2 ): For each n ∈ N, we have that 1

2n ∈ Cf (
1
2 ),

since ( 1
2n , . . . ,

1
2 ) is a symmetric path in (Y, f) from 1

2n to 1
2 . But 0 /∈ Cf (

1
2 ), since

f(0, 1
2k
) = 1

2k
, f( 1

2k
, 0) = 1

2(k+1) , for all k ∈ N. Thus, Cf (
1
2 ) = Y \ {0} = V ,

and so (Y, f) is not symmetrically connected. A similar argument shows that in V ,
CfV (x) = V for every x ∈ V , and so (V, fV ) will be symmetrically connected.

Moreover, the subsets {0} and V are not symmetrically-dense from Proposition 2.

Incidentally, we can recall from [9] the following characterization of the metrics
via symmetric density, in the context of T0-quasi-metrics:

Proposition 3. Each nonempty subset of a T0-quasi-metric space (X, d) is sym-
metrically-dense in X if and only if d is metric.

As a result of Proposition 3 the next corollary is obvious.

Corollary 1. Let (X, d) be a T0-quasi-metric space. If each nonempty subset of
(X, d) is symmetrically-dense in X then (X, d) is symmetrically connected.

The converse of Corollary 1 may not be true by virtue of the following space.

Example 5. Consider the Star Space (X, d) constructed in [5, Example 2.12], as
follows:

On X = [0,∞), take

d (x, y) =

{
x− y ; x ≥ y
x+ y ; x < y
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for each x, y ∈ X. Trivially, 0 is symmetric point since d(x, 0) = d(0, x) for
all x ∈ X, according to Definition 10. Thus, (X, d) is symmetrically connected
by Proposition 1. Now consider the subset B = {1} of X. Then it is easy to
verify that B is not symmetrically-dense. Indeed, take 2 ∈ X \ B, and note that
d(1, 2) = 3 ̸= 1 = d(2, 1).

Incidentally, the fact that any subspace of an antisymmetric T0-quasi-metric
space is antisymmetric is trivial by Definition 9. Nevertheless, a T0-quasi-metric
space (X, d) may not be antisymmetric even though (X, d) has a symmetrically-
dense and antisymmetric subspace, as the following example shows:

Example 6. It can be easily shown that Star Space (X, d) given in Example 5 is
not antisymmetric by the fact that d(1, 0) = d(0, 1). It is also easy to see X \ {0}
is symmetrically dense since 0 is a symmetric point. Moreover, X \ {0} is an
antisymmetric subspace since x = y whenever d(x, y) = d(y, x) for all x, y ∈ (0,∞).

We are now in a position to recall a T0-quasi-metric function described on the
product of two T0-quasi-metric spaces:

Remark 1. Let (X, d) and (Y, q) be T0-quasi-metric spaces. The function defined
by

D((x, y), (a, b)) = d(x, a) ∨ q(y, b)

for each (x, y), (a, b) ∈ X × Y gives a T0-quasi-metric on the product set X × Y .

The fact that D is a T0-quasi-metric can be verified since d and q are T0-quasi-
metrics.

Proposition 4. Let (X, d), (Y, q) be T0-quasi-metric spaces and A ⊆ X, B ⊆ Y .
If A is symmetrically-dense in X and B is symmetrically- dense in Y then A×B
is symmetrically-dense in X × Y .

Proof. Take (x, y) ∈ (X × Y ) \ (A × B). Since A is symmetrically-dense in (X, d)
and B is symmetrically-dense in (Y, q), respectively there exist a ∈ A and b ∈ B
such that d(x, a) = d(a, x) and q(y, b) = q(b, y). Now by the definition of product
T0-quasi-metric D on X × Y , we have

D((x, y), (a, b)) = d(x, a) ∨ q(y, b) = d(a, x) ∨ q(b, y) = D((a, b), (x, y))

that is A×B is symmetrically-dense in X × Y . □

The following result will be trivial via induction by Proposition 4.

Corollary 2. For a T0-quasi-metric space (X, d), the finite product of symmetrically-
dense subsets of X is symmetrically-dense.

Even though Proposition 4, we have the following example which states that if
A is symmetrically-dense and B is not symmetrically-dense then A×B may not be
symmetrically-dense.
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Example 7. Let us consider Star Space (X, d) from Example 5. Clearly the
set A = {0} is symmetrically-dense, and the set B = {1} is not symmetrically-
dense in (X, d). If we take the product T0-quasi-metric D given in Remark 1 as
D((x, y), (a, b)) = d(x, a) ∨ d(y, b) on X × X then the product set A × B is not
symmetrically-dense since D((3, 5), (0, 1)) ̸= D((0, 1), (3, 5)) for (3, 5) ∈ (X ×X) \
(A×B) and (0, 1) ∈ A×B.

At this stage, let us turn our attention to the following natural question:

Under which mappings is the symmetric density property preserved in the context
of T0-quasi-metric spaces ?

Proposition 5. Let (X, d), (Y, e) be T0-quasi-metric spaces and f : X → Y an
isometric isomorphism. In this case, A ⊆ X is symmetrically-dense in X if and
only if f(A) is symmetrically-dense in Y .

Proof. Take y ∈ Y \ f(A). So we have x ∈ X \ A such that f(x) = y since f is
onto. By considering the symmetric density of A in X, there exists a ∈ A such that
d(x, a) = d(a, x). Clearly, f(a) ∈ f(A). Also, we have e(f(x), f(a)) = d(x, a) =
d(a, x) = e(f(a), f(x)) since f is an isometry. Thus, f(A) is symmetrically-dense
in Y .

Conversely, if a ∈ X \ A then f(a) /∈ f(A) as f is one-to-one. In this case,
there exists b ∈ f(A) satisfying the equality e(b, f(a)) = e(f(a), b) since f(A) is
symmetrically-dense. Thus, there exists z ∈ A such that f(z) = b via the fact
that f is onto. Now, by considering the isometry property of f the expression
d(z, a) = d(a, z) is obtained. This shows that A is symmetrically-dense. □

Proposition 6. Let (X, d) be a T0-quasi-metric space. If A is symmetrically dense
in X and B ⊆ X then A ∪B is symmetrically-dense in X.

Proof. If x ∈ X \ (A ∪B) then there exists a ∈ A such that d(x, a) = d(a, x) since
A is symmetrically-dense in X. Thus, A ∪B is also symmetrically-dense in X due
to A ⊆ A ∪B. □

As the consequence of Proposition 6 the following fact will be trivial.

Corollary 3. The union of all subsets of a T0-quasi-metric space which has at least
one symmetrically-dense subset is symmetrically-dense.

Despite the above fact, we have:

Remark 2. The intersection of two symmetrically-dense subsets of a T0-quasi-
metric space may not be symmetrically-dense.

Example 8. On the set X = { 1
2 , 1, 2, 3} consider the Sorgenfrey (bounded) T0-

quasi-metric b : R× R −→ [0,∞) as

b(x, y) =

{
min{1, x− y} ; x ≥ y
1 ; x < y

.
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Now let us take A = { 1
2 , 1} ⊆ X. In this case, since b(x, 1) = b(1, x) for each

x ∈ X \ A the set A is symmetrically-dense in X. Similarly, b(x, 3) = b(3, x) for
each x ∈ X \B where B = { 1

2 , 3} ⊆ X, and so the set B is symmetrically-dense in

X. But the intersection set A ∩ B = { 1
2} is not symmetrically-dense in X because

of the facts that b(1, 1
2 ) ̸= b( 12 , 1) and 1 ∈ X \ (A ∩B).

4. Some Further Properties and Examples of Antisymmetric Density

Definition 12. [9] Let (X, d) be a T0-quasi-metric space and A ⊆ X. If for
x ∈ X \ A, there exists ax ∈ A such that d(x, ax) ̸= d(ax, x) then A is called
antisymmetrically-dense in (X, d).

Example 9. Consider a T0-quasi-metric on the set Y = {1, 2, 3, 4} by the matrix

Q =


0 8 4 1
9 0 6 7
4 6 0 5
3 7 5 0

 .

That is, Q = (qij) where q(i, j) = qij for i, j ∈ Y . The function q will be a
T0-quasi-metric on Y . Indeed, it satisfies the other conditions of Definition 1, so
we will prove just the triangle inequality:

q(1, 2) = 8 ≤ 4 + 6 = q(1, 3) + q(3, 2), q(1, 2) = 8 ≤ 1 + 7 = q(1, 4) + q(4, 2)
q(1, 3) = 4 ≤ 8 + 6 = q(1, 2) + q(2, 3), q(1, 3) = 4 ≤ 1 + 5 = q(1, 4) + q(4, 3)
q(1, 4) = 1 ≤ 8 + 7 = q(1, 2) + q(2, 4), q(1, 4) = 1 ≤ 4 + 5 = q(1, 3) + q(3, 4)
q(2, 3) = 6 ≤ 9 + 4 = q(2, 1) + q(1, 3), q(2, 3) = 6 ≤ 7 + 5 = q(2, 4) + q(4, 3)
q(2, 4) = 7 ≤ 9 + 1 = q(2, 1) + q(1, 4), q(2, 4) = 7 ≤ 6 + 5 = q(2, 3) + q(3, 4)
.
.
.

Other cases can be shown in a similar way.

Now, let us consider the subset B = {1, 2, 3} of Y . It is easy to verify that B is
antisymmetrically-dense in Y : For each y ∈ Y \ B we must find b ∈ B such that
q(y, b) ̸= q(b, y). Here, if y ∈ Y \ B then y = 4, and clearly q(1, 4) ̸= q(4, 1) for
1 ∈ B.

Proposition 7. Let (X, d) be a T0-quasi-metric space with at least two-elements
and x ∈ X a symmetric point. Then the subsets {x} and X \ {x} cannot be
antisymmetrically-dense in X.

Proof. By the definition of symmetric point (see Definition 10 i)), d(x, y) = d(y, x)
whenever y ∈ X\{x}. Then, {x} cannot be antisymmetrically-dense inX. In a sim-
ilar way, clearly y = x whenever y ∈ X \(X \{x}). Thus, d(x, a) = d(a, x) whenever
a ∈ X \ {x} since x is symmetric point. That is, X \ {x} is not antisymmetrically-
dense. □
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The following proposition will be very useful in this context.

Proposition 8. Let (X, d) be a T0-quasi-metric space. If each nonempty subset
of (X, d) is antisymmetrically-dense in X then (X, d) will be an antisymmetrically
connected space.

Proof. Assume that each nonempty subset of (X, d) is antisymmetrically-dense in
X. Now we can prove that (X, d) is indeed an antisymmetrically connnected space
by showing that, for x ∈ X, if y ∈ X and y /∈ Td(x) then y ∈ X \ Td(x) and
y ̸= x. Thus there exists a ∈ Td(x) such that d(y, a) ̸= d(a, y) since Td(x) is
antisymmetrically-dense in X. Now, if a = x then d(y, x) ̸= d(x, y), that is y ∈
Td(x) contradiction. If a ̸= x then x ∈ X \ {a}. Also, note that the subset {a}
is antisymmetrically-dense by the hypothesis. Thus d(x, a) ̸= d(a, x). In this case,
Px,y = (x, a, y) will be an antisymmetric path from x to y. That is, y ∈ Td(x)
which is a contradiction. Finally, Td(x) = X, so (X, d) will be antisymmetrically
connected. □

The converse of Proposition 8 is not true always. Example 10 below is a
counterexample. For it, first of all let us recall the notion asymmetric norm by
Cobzaş [2].

Definition 13. Let X be a real vector space equipped with a given map ∥ · | : X →
[0,∞) satisfying the conditions:

(a) ∥x| = ∥ − x| = 0 if and only if x = 0.
(b) ∥λx| = λ∥x| whenever λ ≥ 0 and x ∈ X.
(c) ∥x+ y| ≤ ∥x|+ ∥y| whenever x, y ∈ X.

Then ∥· | is called an asymmetric norm and (X, ∥· |) is said to be an asymmetrically
normed real vector space. (Here, 0 denotes the zero vector of the vector space X.)

Obviously, an asymmetric norm induces a T0-quasi-metric onX with the equality
d∥·|(x, y) = ∥x− y| for each x, y ∈ X, where (X, ∥ · |) is an asymmetrically normed
real vector space. But, naturally some T0-quasi-metrics may not be induced by an
asymmetric norm.

Note also that each norm is an asymmetric norm. However, the function ∥ · |
described by the equality ∥(x1, x2)| = x1∨x2∨0 on R2, satisfies the above conditions
and thus, it is an asymmetric norm which is not a norm.

Example 10. Consider the plane R2 with the T0-quasi-metric d induced by the
maximum asymmetric norm ∥(x, y)| = x ∨ y ∨ 0. It is easy to see that for each
(a1, a2) ∈ R2 the symmetry component Cd((a1, a2)) = {(x+a1,−x+a2) | x ∈ R} ≠
R2 where d = d∥·| and so the space (R2, d) is not symmetrically connected by Defi-

nition 5. In this case, (R2, d) is antisymmetrically connected from [11, Proposition
58] which states the fact that a T0-quasi-metric space is symmetrically connected or
antisymmetrically connected by virtue of graph theory.
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Now take the subset G = {(x,−x) | x ∈ R} ⊆ R2. Clearly, the subspace (G, dC)
is a metric space, and so symmetrically connected. But it is not antisymmetrically
connected. On the other hand, G is antisymmetrically-dense: if (x, y) ∈ R2 \ G
then (x, y) /∈ G and so y ̸= −x, that is x + y ̸= 0. Now, let us consider the point
(x,−x) ∈ G. In this case d((x,−x), (x, y)) = (x−x)∨(−x−y)∨0 = −(x+y)∨0 and
d((x, y), (x,−x)) = (x− x)∨ (x+ y)∨ 0, thus d((x,−x), (x, y)) ̸= d((x, y), (x,−x)).

In addition, note that the point (0, 0) is neither symmetric point nor antisym-
metric point. Morover, the singleton set {(0, 0)} is neither symmetrically-dense nor
antisymmetrically-dense in R2.

It is well-known that any subspace of an antisymmetric space is antisymmetric.
Nevertheless, a T0-quasi-metric space (X, d) may not be antisymmetric even though
(X, d) has an antisymmetrically-dense and antisymmetric subspace, as the following
example shows:

Example 11. Let us define a T0-quasi-metric on the set X = {1, 2, 3} via the
matrix

W =

 0 9 8
7 0 1
6 1 0

 .

That is, W = (wij) where w(i, j) = wij for i, j ∈ X. It is easy to prove that
w is a T0-quasi-metric on X. Because of the fact that w(2, 3) = w(3, 2), the space
(X,w) is not antisymmetric. Consider the subset B = {1, 3} of X. It is easy to
show that B is antisymmetric subspace w.r.t the induced T0-quasi-metric wB on B.
In addition, B is antisymmetrically-dense: If take x ∈ X \ B then x = 2. In this
case, for 1 ∈ B we have w(1, 2) = 9 and w(2, 1) = 7. That is, w(1, 2) ̸= w(2, 1).

Incidentally, there is an extension space which has an antisymmetrically-dense
subspace not antisymmetrically connected even though the space itself is antisym-
metrically connected.

Example 12. Take a metric space (X,m) with at least two-elements. By [5, Corol-
lary 3.4], (X,m) has an antisymmetrically connected T0-quasi-metric one-point ex-
tension (Y, v) such that Y = X ∪{∞}, and ∞ is antisymmetric point. In this case,
if we delete the added (antisymmetric) point, then the remaining metric space is no
longer antisymmetrically connected. Moreover, X is antisymmetrically-dense in Y :
if y ∈ Y \ X then y = ∞. Also, because X ̸= ∅ there is at least a ∈ X. Clearly,
a ̸= ∞ and v(∞, a) ̸= v(a,∞) since ∞ is an antisymmetric point in Y .

Now we can turn our attention to the following natural question:

Under which mappings is the antisymmetric density property preserved in the con-
text of T0-quasi-metric spaces ?

Proposition 9. Let (X, d), (Y, e) be T0-quasi-metric spaces and f : X → Y an
isometric isomorphism. Then A ⊆ X is antisymmetrically-dense in X if and only
if f(A) is antisymmetrically-dense in Y .
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Proof. If y ∈ Y \ f(A) then there exists x ∈ X \ A such that f(x) = y since f is
onto. On the other hand, there exists a ∈ A such that d(x, a) ̸= d(a, x) since A
is antisymmetrically-dense. Clearly, f(a) ∈ f(A). Also, we have e(f(x), f(a)) =
d(x, a) ̸= d(a, x) = e(f(a), f(x)) as f is an isometry. Thus, f(A) is antisymmetrically-
dense in Y .

Conversely, if a ∈ X \ A then f(a) /∈ f(A) as f is one-to-one. In this case,
there exists b ∈ f(A) satisfying the inequality e(b, f(a)) ̸= e(f(a), b) since f(A)
is antisymmetrically-dense. Thus, there exists z ∈ A such that f(z) = b via the
fact that f is onto. Now, by considering the isometry property of f the expression
d(z, a) ̸= d(a, z) is obtained. This shows that A is antisymmetrically-dense. □

In contrast to Proposition 4, we have the following remark for antisymmetric
density:

Remark 3. For any T0-quasi-metric spaces (X, d), (Y, q), the product of any
antisymmetrically-dense subsets of X and Y may not be antisymmetrically-dense
in X × Y .

Actually, we have a counterexample:

Example 13. Consider the standard T0-quasi-metric space (R, u) where u(x, y) =
max{x − y, 0}, given in Example 1 and the T0-quasi-metric space (R, d) with the
function

d(x, y) =

{
0 ; x ≤ y
1 ; y < x

on R.
If we take the subset A = {0} of R then A is antisymmetrically dense in (R, u)

because of the fact that u(x, 0) ̸= u(0, x) whenever x ∈ R \A.

Similarly, let us take the subset B = {1} of R. Clearly, B is antisymmetrically
dense in (R, d) since the inequality d(x, 1) ̸= d(1, x) holds whenever x ∈ R \B.

On the other hand, by taking into consideration the definition of product T0-
quasi-metric D given in Definition 1 we have the following fact:

If we consider the product T0-quasi-metric space (R × R, D) then for (1, 0) ∈
(R× R) \ (A×B) we have the equality

D((1, 0), (a, b)) = u(1, a) ∨ d(0, b) = 1 ∨ 0 = 1 = u(a, 1) ∨ d(b, 0) = D((a, b), (1, 0))

whenever a ∈ A, b ∈ B, that is a = 0 and b = 1. It means that the subset A×B is
not antisymmetrically-dense in (R×R, D) even though A is antisymmetrically-dense
in (R, u) and B is antisymmetrically-dense in (R, d).

Proposition 10. Let (X, d) be a T0-quasi-metric space. If A is antisymmetrically-
dense in X and B ⊆ X then A ∪B is antisymmetrically-dense in X.
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Proof. Take x ∈ X \ (A ∪ B). So, by the antisymmetric density of A, there exists
a ∈ A such that d(x, a) ̸= d(a, x). Thus, A ∪B is antisymmetrically-dense in X as
well, since A ⊆ A ∪B. □

Hence, the following result will be trivial as a consequence of Proposition 10.

Corollary 4. The union of all subsets of a T0-quasi-metric space which has at least
one antisymmetrically-dense subset is antisymmetrically-dense.

Despite the above result, we have:

Remark 4. The intersection of two antisymmetrically-dense subsets of a T0-quasi-
metric space may not be antisymmetrically-dense.

There is a counterexample:

Example 14. On the set X = {1, 2, 3, 4, 5} consider the Sorgenfrey T0-quasi-
metric as

s(x, y) =

{
x− y ; y ≤ x
1 ; y > x

.

Now let us take A = {1, 5}. In this case, since s(3, 1) ̸= s(1, 3), s(1, 4) ̸= s(4, 1)
and s(2, 5) ̸= s(5, 2), the set A is antisymmetrically-dense in X. Similarly, the set
B = {1, 4} is antisymmetrically-dense in X. But the intersection set A ∩ B = {1}
is not antisymmetrically-dense in X because of the facts that s(1, 2) = s(2, 1) and
2 ∈ X \ (A ∩B).

5. conclusion

As opposed to the negative result ( [5, Example 2.11]) which occurs in case
τds-density, a T0-quasi-metric space which has a symmetrically connected and
symmetrically-dense subspace will be symmetrically connected by [9, Theorem
2.15]. That is, it is possible to carry the symmetric connectedness of the subspace
to the space, provided that the subspace is symmetrically-dense in the space.

However, we have a counterexample in [9] showing that “any symmetrically-
dense subspace of a symmetrically connected space need not be symmetrically
connected”. Similarly, in this paper we have an example which shows that “any
antisymmetrically-dense subspace of an antisymmetrically connected space need
not be antisymmetrically connected”.

In the light of above considerations, for future work, let us state a few new
questions using the notions introduced in [6] and [12], as follows.

If (X, d) is locally symmetrically connected and it has a symmetrically-dense
subset A, then is the subspace (A, dA) locally symmetrically connected? If (X, d)
has a symmetrically-dense and locally symmetrically connected subspace then is
the space (X, d) locally symmetrically connected?
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[2] Cobzaş, Ş., Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics,

Springer, Basel, 2013.
[3] Demetriou, N., Künzi, H.-P.A., A study of quasi-pseudometrics, Hacet. J. Math. Stat., 46 (1)

(2017), 33-52. https//doi.org/10.15672/HJMS.2016.396.
[4] Hellwig, A., Volkmann, L., The connectivity of a graph and its complement, Appl. Math.,

156 (2008), 3325-3328. https//doi.org/10.1016/j.dam.2008.05.012.

[5] Javanshir, N., Yıldız, F., Symmetrically connected and antisymmetrically con-
nected T0-quasi-metric extensions, Top. and Its Appl., 276 (2020), 107179.

https://doi.org/10.1016/j.topol.2020.107179.

[6] Javanshir, N., Yıldız, F., Locally symmetrically connected T0-quasi-metric spaces, Quaest.
Math., 45 (3) (2022), 369-384. https://doi.org/10.2989/16073606.2021.1882602.

[7] Künzi, H.-P.A., An introduction to quasi-uniform spaces, in: Beyond Topology, eds. F. My-

nard and E. Pearl (Eds.), Beyond Topology, in: Contemp. Math., 486 (2009), 239-304.
[8] Künzi, H.-P. A., Yıldız, F., Extensions of T0-quasi-metrics, Acta Math. Hungar., 153 (1)

(2017), 196-215. https://doi.org/10.1007/s10474-017-0753-z.

[9] Künzi, H.-P.A., Yıldız, F., Javanshir, N., Symmetrically and antisymmetrically-dense sub-
spaces of T0-quasi-metric spaces, Top. Proc., 61 (2023), 215-231.

[10] Wilson, R. J., Introduction To Graph Theory, Oliver and Boyd, Edinburgh, 1972.
[11] Yıldız, F., Künzi, H.-P.A., Symmetric connectedness in T0-quasi-metric

spaces, Bull. Belg. Math. Soc. Simon Stevin, 26 (5) (2019), 659-679.

https://doi.org/10.36045/bbms/1579402816.
[12] Yıldız, F., Javanshir, N., On the topological locality of antisymmetric connectedness, Filomat,

37 (12) (2023), 3879-3886. https://doi.org/10.2298/FIL2312883Y.


	1. Introduction
	2. Background
	3.  Some Further Properties and Examples of Symmetric Density
	4. Some Further Properties and Examples of Antisymmetric Density
	5. conclusion
	References

