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ABSTRACT

We study a non-trivial generalized m-quasi Einstein manifold M with finite m and associated
divergence-free affine Killing vector field, and show that M reduces to an m-quasi Einstein
manifold. In addition, if M is complete, then it splits as the product of a line and an (n− 1)-
dimensional negatively Einstein manifold. Finally, we show that the same result holds for a
complete non-trivial m-quasi Einstein manifold M with finite m and associated affine Killing
vector field.
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1. Introduction

In [7], Pigola et al. defined a Ricci almost soliton as an n-dimensional smooth Riemannian manifold (M, g)
satisfying the condition

£V g + 2Ric = 2λg, (1.1)

where V is a vector field on M , Ric is the Ricci tensor of g, £ is the Lie-derivative operator, and λ is a smooth
real valued function on M . If the vector field V is the gradient of a smooth function f , up to the addition of
a Killing vector field, then (M, g, f, λ) is called a gradient Ricci almost soliton, in which case equation (1.1)
assumes the form

Ric+Hessf = λg, (1.2)

where Hessf is the Hessian of f with respect to g. For λ constant, equation (1.1) defines a Ricci soliton which
corresponds to self-similar solutions of the Ricci flow equation, and equation (1.2) is then known as a gradient
Ricci soliton. For compact Ricci almost solitons, we state the following rigidity result of Sharma.

Theorem 1.1 ([8]). If a compact Ricci almost soliton (M, g, V, λ) has divergence free soliton vector field V , then it is
Einstein and V is Killing.

We show that the same conclusion holds if compactness is waived and V is assumed to be an affine Killing
vector field. More precisely, we state this as the following proposition.

Proposition 1.1. Let (M, g, V, λ) be a Ricci almost soliton. If V is an affine Killing vector field and is divergence free,
then V is Killing and g is Einstein.

Here, we recall that, V is an affine Killing vector field (a generalization of a Killing vector field) if it satisfies the
condition

(£V ∇)(X,Y ) = 0. (1.3)
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Geodesics along with their affine parameters are preserved by an affine Killing vector field. The set of all affine
Killing vector fields on an n-Riemannian manifold forms a Lie algebra of maximum dimension n2 + n, under
the usual bracket operation for vector fields. Also, the divergence of an affine Killing vector field is constant
(Yano [10]).

As a generalization of Einstein metrics, gradient Ricci solitons, gradient Ricci almost solitons, Catino [4] defined
a generalized quasi-Einstein manifold as an n-dimensional smooth Riemannian manifold (M, g) satisfying the
equation

Ric+Hessf − µdf ⊗ df = λg, (1.4)

and showed that a complete (M, g) satisfying (1.4) with harmonic Weyl tensor and zero radial Weyl curvature
is locally a warped product with (n− 1)-dimensional Einstein fiber. In particular, if

µ =
1

m
,

for a real m such that 0 < m ≤ ∞, then (1.4) becomes

Ric+Hessf − 1

m
df ⊗ df = λg, (1.5)

where the left side is called the m-Bakry-Émery Ricci tensor denoted by Ricmf . We will call (M, g) satisfying
equation (1.5) as a generalized m-quasi Einstein manifold. We note that for m = ∞, and λ constant in (1.5), we
get a gradient Ricci soliton. For m = ∞, and λ non-constant, (1.5) gives a gradient Ricci almost soliton. If λ
is constant, then (1.5) is an m-quasi Einstein metric, further, if m is a positive integer, then (1.5) holds on the
base of a (m+ n)-dimensional Einstein warped product (Case, Shu and Wei [3], He, Petersen and Wylie [6]
and Barros and Ribeiro, Jr. [1]). An m-quasi Einstein manifold is said to be expanding, steady, or shrinking, if
λ < 0, λ = 0, or λ > 0 respectively.

Motivated by Proposition 1.1, we consider the problem of classifying a generalized m-quasi Einstein manifold
with finite m and associated affine Killing and divergence free potential vector field Df (D denotes the gradient
operator). In this context, we establish the following result.

Theorem 1.2. Let (M, g, f, λ) be an n-dimensional non-trivial generalized m-quasi Einstein manifold with finite m. If
the potential vector field Df is affine Killing and divergence free, then M reduces to an m-quasi Einstein manifold. In
addition, if M is complete, then M splits as the product of a line and an (n− 1)-dimensional complete negatively Einstein
manifold.

In the case of a non-trivial complete m-quasi Einstein manifold with associated affine Killing vector field, we
show that the result of Theorem 1.2 holds without the divergence-free condition on the potential vector field,
and prove the following result.

Theorem 1.3. Let (M, g, f, λ) be an n-dimensional (n > 2) non-trivial complete m-quasi Einstein manifold with finite
m. If the potential vector field Df is affine Killing, then M splits as the product of a line and an (n− 1)-dimensional
complete negatively Einstein manifold.

2. Proofs of the Results

Proof of Proposition 1.1 The g-trace of the Ricci almost soliton equation (1.1) and the hypothesis divV = 0
provides

r = nλ. (2.1)

Next, using the commutation formula (Yano [10]):

(£V ∇Xg −∇X£V g −∇[V,X]g)(Y,Z)

= −g((£V ∇)(X,Y ), Z)− g((£V ∇)(X,Z), Y )

and the hypothesis that V is affine Killing (i.e., £V ∇ = 0), we find that ∇X£V g = 0. Using this in the Ricci
almost soliton equation (1.1) gives

(∇XQ)Y = (Xλ)Y.
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Contracting this equation at Y and X separately, and using twice contracted Bianchi second identity: (divQ)Y =
1
2Y r provides

Dr = nDλ, Dr = 2Dλ.

As n > 2, the above equations imply that λ and r are constant. So M is a Ricci soliton with constant scalar
curvature. Using the following integrability equation (Ghosh and Sharma [5]) for a Ricci soliton:

£V r = ∆r + 2|Q|2 − 2λr,

and noting that r is constant, we get |Q|2 = λr. But |Q− r
nI|

2 = |Q|2 − r2

n . Combining the two preceding
equations yields

|Q− r

n
I|2 = − r

n
(r − nλ).

The use of equation (2.1) in the above equation immediately shows that g is Einstein and Q = λI . Consequently,
equation (1.1) implies that V is Killing and this completes the proof.

Proof of Theorem 1.2 Equation (1.5) can be written as

2Ric(Y, Z) + (£Dfg)(Y,Z)− 2

m
(Y f)(Zf) = 2λg(Y, Z),

for arbitrary smooth vector fields Y , Z on M . Covariantly differentiating the preceding equation with respect
to X gives

2(∇XRic)(Y,Z) + (∇X£Dfg)(Y,Z)− 2

m
g(∇XDf, Y )(Zf)

− 2

m
g(∇XDf,Z)(Y f) = 2(Xλ)g(Y,Z). (2.2)

Rearranging the terms yields

(∇X£Dfg)(Y, Z) = 2(Xλ)g(Y, Z) +
2

m
g(∇XDf, Y )(Zf)

+
2

m
g(∇XDf,Z)(Y f)− 2(∇XRic)(Y,Z). (2.3)

Next, using the commutation formula (Yano [10]) mentioned and used in the proof of Proposition 1.1, taking
V = Df and the fact that g is parallel with respect to ∇, along with equations (1.3) and (2.3) leads us to

2(Xλ)Y +
2

m
g(∇XDf, Y )Df +

2

m
(Y f)∇XDf − 2(∇XQ)Y = 0. (2.4)

Contracting equation (2.4) with respect to Y gives

nDλ+
2

m
∇DfDf −Dr = 0. (2.5)

Similarly, contracting equation (2.4) at X , and using the twice contracted Bianchi’s identity, we arrive at

2Dλ+
2

m
∇DfDf +

2

m
(∆f)Df −Dr = 0. (2.6)

Equations (2.5) and (2.6) along with the hypothesis that Df is divergence free, at once gives

(n− 2)Dλ = 0. (2.7)

This implies that λ is constant, i.e., M becomes an m-quasi Einstein manifold. This reduces equation (2.5) to

Dr =
2

m
∇DfDf. (2.8)

Now, equation (1.5) can be written as

∇XDf = λX −QX +
1

m
(Xf)Df. (2.9)
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Contracting (2.9) at X and using the hypothesis that Df is divergence free, we get

r = nλ+
1

m
|Df |2. (2.10)

Next, we indite Lemma 2(2) of Barros and Ribeiro, Jr. [2] for an m-quasi Einstein manifold,

1

2
Dr =

(
1− 1

m

)
QDf +

1

m
(r − (n− 1)λ)Df. (2.11)

Using equation (2.9) with X = Df , (2.8) and (2.10) in (2.11) provides

QDf = 0. (2.12)

As λ was shown to be a constant, equation (2.4) reduces to

(∇XQ)Y =
1

m
g(∇XDf, Y )Df +

1

m
(Y f)∇XDf. (2.13)

Using (2.9) and (2.13), we compute R(X,Y )Df and obtain the equation

R(X,Y )Df = 0. (2.14)

Differentiating (2.14) along an arbitrary smooth vector field Z and using (2.9) entails

(∇ZR)(X,Y )Df −R(X,Y )QZ + λR(X,Y )Z = 0.

Contracting the foregoing equation at X gives

(∇ZRic)(Y,Df)−Ric(Y,QZ) + λRic(Y, Z) = 0. (2.15)

Using (2.9) and (2.13) we find that

(∇ZRic)(Y,Df) =
1

m

[
λ < Z, Y > |Df |2 −Ric(Z, Y )|Df |2

+

(
2

m
|Df |2 + λ

)
(Zf)(Y f)

]
.

In view of (2.15), the foregoing equation takes the form

Ric(Y,QZ)− λRic(Y, Z) =
1

m

[
λ < Z, Y > |Df |2 −Ric(Z, Y )|Df |2

+

(
2

m
|Df |2 + λ

)
(Zf)(Y f)

]
.

Substituting Df for Z in the above equation and using (2.12) we find that(
λ+

1

m
|Df |2

)
Y f = 0. (2.16)

At this point, we show that |Df | is constant on M . For this, we compute the covariant derivative of |Df |2 along
an arbitrary vector field Y as follows:

Y |Df |2 = 2g(∇Y Df,Df) = 2g(λY −QY +
1

m
(Y f)Df,Df) = 0,

where we used equations (2.12) and (2.16). Hence Df is everywhere zero on M (in which case M is trivial,
contradicting our hypothesis), or everywhere non-zero on M . Thus Df is nowhere zero on M , and hence (2.16)
implies

λ = − 1

m
|Df |2 (2.17)
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and hence λ is negative. Now, substituting Df for X in equation (2.9) and using (2.12) and (2.17) shows that

∇DfDf = 0. (2.18)

From (2.8) and (2.18), it follows that Dr = 0, i.e., the scalar curvature is constant. Using this consequence,
equation (2.12), and Df ̸= 0 on M , in equation (2.11), shows that

r = (n− 1)λ. (2.19)

Hence r is negative, because λ was found negative earlier. At this stage, we indite Lemma 3.2 of Case et al. [3]
for an m-quasi Einstein manifold

1

2
∆|Df |2 = |Hessf |2 −Ric(Df,Df) +

2

m
|Df |2∆f. (2.20)

Using (2.18), (2.20), (2.12) and the hypothesis that the potential vector field is divergence free (i.e., ∆f = 0), we
get

Hessf = 0, (2.21)

i.e., Df is parallel on M . As M is complete, by a result [Theorem 2 (I,A)] of Tashiro [9], M is the Riemannian
product of a line R and an (n− 1)-dimensional complete Riemannian manifold N . Here Df is tangent to R.
As Hessf = 0, equation (1.5) reduces to Ric− 1

mdf ⊗ df = λg. From this, it follows that, if E is an eigenvector
of the Ricci operator Q, then E is point-wise collinear with Df , because λ ̸= 0. It also follows that N is Einstein
and hence negatively Einstein, because r < 0. This completes the proof.

Proof of Theorem 1.3 For an m-quasi Einstein manifold, we know that λ is constant. Also, as Df is affine
Killing, divDf = constant, i.e., ∆f = constant (Yano [10], Pg. 45). Using this in (2.5) and (2.6) yields

(∆f)Df = 0.

Since M is non-trivial, we have ∆f = 0. The rest of the proof follows from Theorem 1.2.
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