

Rigidity Results on Generalized *m***-Quasi** Einstein Manifolds with Associated Affine Killing Vector Field

Rahul Poddar*, Subramanian Balasubramanian and Ramesh Sharma

(Dedicated to the memory of Prof. Dr. Krishan Lal DUGGAL (1929 - 2022))

ABSTRACT

We study a non-trivial generalized *m*-quasi Einstein manifold *M* with finite *m* and associated divergence-free affine Killing vector field, and show that *M* reduces to an *m*-quasi Einstein manifold. In addition, if *M* is complete, then it splits as the product of a line and an (n-1)-dimensional negatively Einstein manifold. Finally, we show that the same result holds for a complete non-trivial *m*-quasi Einstein manifold *M* with finite *m* and associated affine Killing vector field.

Keywords: Generalized *m*-quasi Einstein manifold, affine Killing vector field, Einstein manifold, Ricci almost soliton. *AMS Subject Classification (2020):* Primary: 53C21; Secondary: 53C24; 53C25.

1. Introduction

In [7], Pigola et al. defined a Ricci almost soliton as an *n*-dimensional smooth Riemannian manifold (M, g) satisfying the condition

$$\pounds_V g + 2Ric = 2\lambda g,\tag{1.1}$$

where *V* is a vector field on *M*, *Ric* is the Ricci tensor of *g*, *£* is the Lie-derivative operator, and λ is a smooth real valued function on *M*. If the vector field *V* is the gradient of a smooth function *f*, up to the addition of a Killing vector field, then (M, g, f, λ) is called a gradient Ricci almost soliton, in which case equation (1.1) assumes the form

$$Ric + Hessf = \lambda g, \tag{1.2}$$

where Hess f is the Hessian of f with respect to g. For λ constant, equation (1.1) defines a Ricci soliton which corresponds to self-similar solutions of the Ricci flow equation, and equation (1.2) is then known as a gradient Ricci soliton. For compact Ricci almost solitons, we state the following rigidity result of Sharma.

Theorem 1.1 ([8]). If a compact Ricci almost soliton (M, g, V, λ) has divergence free soliton vector field V, then it is Einstein and V is Killing.

We show that the same conclusion holds if compactness is waived and V is assumed to be an affine Killing vector field. More precisely, we state this as the following proposition.

Proposition 1.1. Let (M, g, V, λ) be a Ricci almost soliton. If V is an affine Killing vector field and is divergence free, then V is Killing and g is Einstein.

Here, we recall that, *V* is an affine Killing vector field (a generalization of a Killing vector field) if it satisfies the condition

$$(\pounds_V \nabla)(X, Y) = 0. \tag{1.3}$$

Received: 18-01-2023, Accepted: 31-03-2023

^{*} Corresponding author

Geodesics along with their affine parameters are preserved by an affine Killing vector field. The set of all affine Killing vector fields on an *n*-Riemannian manifold forms a Lie algebra of maximum dimension $n^2 + n$, under the usual bracket operation for vector fields. Also, the divergence of an affine Killing vector field is constant (Yano [10]).

As a generalization of Einstein metrics, gradient Ricci solitons, gradient Ricci almost solitons, Catino [4] defined a generalized quasi-Einstein manifold as an n-dimensional smooth Riemannian manifold (M, g) satisfying the equation

$$Ric + Hessf - \mu df \otimes df = \lambda g, \tag{1.4}$$

and showed that a complete (M, g) satisfying (1.4) with harmonic Weyl tensor and zero radial Weyl curvature is locally a warped product with (n - 1)-dimensional Einstein fiber. In particular, if

$$\mu = \frac{1}{m},$$

for a real *m* such that $0 < m \le \infty$, then (1.4) becomes

$$Ric + Hessf - \frac{1}{m}df \otimes df = \lambda g, \tag{1.5}$$

where the left side is called the *m*-Bakry-Émery Ricci tensor denoted by Ric_f^m . We will call (M, g) satisfying equation (1.5) as a generalized *m*-quasi Einstein manifold. We note that for $m = \infty$, and λ constant in (1.5), we get a gradient Ricci soliton. For $m = \infty$, and λ non-constant, (1.5) gives a gradient Ricci almost soliton. If λ is constant, then (1.5) is an *m*-quasi Einstein metric, further, if *m* is a positive integer, then (1.5) holds on the base of a (m + n)-dimensional Einstein warped product (Case, Shu and Wei [3], He, Petersen and Wylie [6] and Barros and Ribeiro, Jr. [1]). An *m*-quasi Einstein manifold is said to be expanding, steady, or shrinking, if $\lambda < 0$, $\lambda = 0$, or $\lambda > 0$ respectively.

Motivated by Proposition 1.1, we consider the problem of classifying a generalized m-quasi Einstein manifold with finite m and associated affine Killing and divergence free potential vector field Df (D denotes the gradient operator). In this context, we establish the following result.

Theorem 1.2. Let (M, g, f, λ) be an *n*-dimensional non-trivial generalized *m*-quasi Einstein manifold with finite *m*. If the potential vector field Df is affine Killing and divergence free, then M reduces to an *m*-quasi Einstein manifold. In addition, if M is complete, then M splits as the product of a line and an (n - 1)-dimensional complete negatively Einstein manifold.

In the case of a non-trivial complete *m*-quasi Einstein manifold with associated affine Killing vector field, we show that the result of Theorem 1.2 holds without the divergence-free condition on the potential vector field, and prove the following result.

Theorem 1.3. Let (M, g, f, λ) be an n-dimensional (n > 2) non-trivial complete m-quasi Einstein manifold with finite m. If the potential vector field Df is affine Killing, then M splits as the product of a line and an (n - 1)-dimensional complete negatively Einstein manifold.

2. Proofs of the Results

Proof of Proposition 1.1 The g-trace of the Ricci almost soliton equation (1.1) and the hypothesis divV = 0 provides

$$r = n\lambda. \tag{2.1}$$

Next, using the commutation formula (Yano [10]):

$$(\pounds_V \nabla_X g - \nabla_X \pounds_V g - \nabla_{[V,X]} g)(Y,Z)$$

= $-g((\pounds_V \nabla)(X,Y),Z) - g((\pounds_V \nabla)(X,Z),Y)$

and the hypothesis that *V* is affine Killing (i.e., $\pounds_V \nabla = 0$), we find that $\nabla_X \pounds_V g = 0$. Using this in the Ricci almost soliton equation (1.1) gives

$$(\nabla_X Q)Y = (X\lambda)Y.$$

Contracting this equation at *Y* and *X* separately, and using twice contracted Bianchi second identity: $(divQ)Y = \frac{1}{2}Yr$ provides

$$Dr = nD\lambda, \quad Dr = 2D\lambda.$$

As n > 2, the above equations imply that λ and r are constant. So M is a Ricci soliton with constant scalar curvature. Using the following integrability equation (Ghosh and Sharma [5]) for a Ricci soliton:

$$\pounds_V r = \Delta r + 2|Q|^2 - 2\lambda r$$

and noting that *r* is constant, we get $|Q|^2 = \lambda r$. But $|Q - \frac{r}{n}I|^2 = |Q|^2 - \frac{r^2}{n}$. Combining the two preceding equations yields

$$|Q - \frac{r}{n}I|^2 = -\frac{r}{n}(r - n\lambda).$$

The use of equation (2.1) in the above equation immediately shows that *g* is Einstein and $Q = \lambda I$. Consequently, equation (1.1) implies that *V* is Killing and this completes the proof.

Proof of Theorem 1.2 Equation (1.5) can be written as

$$2Ric(Y,Z) + (\pounds_{Df}g)(Y,Z) - \frac{2}{m}(Yf)(Zf) = 2\lambda g(Y,Z),$$

for arbitrary smooth vector fields *Y*, *Z* on *M*. Covariantly differentiating the preceding equation with respect to *X* gives

$$2(\nabla_X Ric)(Y,Z) + (\nabla_X \pounds_{Df}g)(Y,Z) - \frac{2}{m}g(\nabla_X Df,Y)(Zf) - \frac{2}{m}g(\nabla_X Df,Z)(Yf) = 2(X\lambda)g(Y,Z).$$
(2.2)

Rearranging the terms yields

$$(\nabla_X \pounds_{Df} g)(Y, Z) = 2(X\lambda)g(Y, Z) + \frac{2}{m}g(\nabla_X Df, Y)(Zf) + \frac{2}{m}g(\nabla_X Df, Z)(Yf) - 2(\nabla_X Ric)(Y, Z).$$
(2.3)

Next, using the commutation formula (Yano [10]) mentioned and used in the proof of Proposition 1.1, taking V = Df and the fact that g is parallel with respect to ∇ , along with equations (1.3) and (2.3) leads us to

$$2(X\lambda)Y + \frac{2}{m}g(\nabla_X Df, Y)Df + \frac{2}{m}(Yf)\nabla_X Df - 2(\nabla_X Q)Y = 0.$$
(2.4)

Contracting equation (2.4) with respect to *Y* gives

$$nD\lambda + \frac{2}{m}\nabla_{Df}Df - Dr = 0.$$
(2.5)

Similarly, contracting equation (2.4) at *X*, and using the twice contracted Bianchi's identity, we arrive at

$$2D\lambda + \frac{2}{m}\nabla_{Df}Df + \frac{2}{m}(\Delta f)Df - Dr = 0.$$
(2.6)

Equations (2.5) and (2.6) along with the hypothesis that Df is divergence free, at once gives

$$(n-2)D\lambda = 0. \tag{2.7}$$

This implies that λ is constant, i.e., M becomes an m-quasi Einstein manifold. This reduces equation (2.5) to

$$Dr = \frac{2}{m} \nabla_{Df} Df.$$
(2.8)

Now, equation (1.5) can be written as

$$\nabla_X Df = \lambda X - QX + \frac{1}{m} (Xf) Df.$$
(2.9)

268

Contracting (2.9) at X and using the hypothesis that Df is divergence free, we get

$$r = n\lambda + \frac{1}{m}|Df|^2.$$

$$(2.10)$$

Next, we indite Lemma 2(2) of Barros and Ribeiro, Jr. [2] for an *m*-quasi Einstein manifold,

$$\frac{1}{2}Dr = \left(1 - \frac{1}{m}\right)QDf + \frac{1}{m}(r - (n - 1)\lambda)Df.$$
(2.11)

Using equation (2.9) with X = Df, (2.8) and (2.10) in (2.11) provides

$$QDf = 0. (2.12)$$

As λ was shown to be a constant, equation (2.4) reduces to

$$(\nabla_X Q)Y = \frac{1}{m}g(\nabla_X Df, Y)Df + \frac{1}{m}(Yf)\nabla_X Df.$$
(2.13)

Using (2.9) and (2.13), we compute R(X, Y)Df and obtain the equation

$$R(X,Y)Df = 0.$$
 (2.14)

Differentiating (2.14) along an arbitrary smooth vector field Z and using (2.9) entails

$$(\nabla_Z R)(X,Y)Df - R(X,Y)QZ + \lambda R(X,Y)Z = 0$$

Contracting the foregoing equation at *X* gives

$$(\nabla_Z Ric)(Y, Df) - Ric(Y, QZ) + \lambda Ric(Y, Z) = 0.$$
(2.15)

Using (2.9) and (2.13) we find that

$$(\nabla_Z Ric)(Y, Df) = \frac{1}{m} \bigg[\lambda \langle Z, Y \rangle |Df|^2 - Ric(Z, Y) |Df|^2 + \bigg(\frac{2}{m} |Df|^2 + \lambda \bigg) (Zf)(Yf) \bigg].$$

In view of (2.15), the foregoing equation takes the form

$$\begin{aligned} Ric(Y,QZ) - \lambda Ric(Y,Z) &= \frac{1}{m} \bigg[\lambda < Z, Y > |Df|^2 - Ric(Z,Y) |Df|^2 \\ &+ \bigg(\frac{2}{m} |Df|^2 + \lambda \bigg) (Zf)(Yf) \bigg]. \end{aligned}$$

Substituting Df for Z in the above equation and using (2.12) we find that

$$\left(\lambda + \frac{1}{m}|Df|^2\right)Yf = 0.$$
(2.16)

At this point, we show that |Df| is constant on M. For this, we compute the covariant derivative of $|Df|^2$ along an arbitrary vector field Y as follows:

$$Y|Df|^2 = 2g(\nabla_Y Df, Df) = 2g(\lambda Y - QY + \frac{1}{m}(Yf)Df, Df) = 0$$

where we used equations (2.12) and (2.16). Hence Df is everywhere zero on M (in which case M is trivial, contradicting our hypothesis), or everywhere non-zero on M. Thus Df is nowhere zero on M, and hence (2.16) implies

$$\lambda = -\frac{1}{m}|Df|^2 \tag{2.17}$$

and hence λ is negative. Now, substituting *Df* for *X* in equation (2.9) and using (2.12) and (2.17) shows that

$$\nabla_{Df} Df = 0. \tag{2.18}$$

From (2.8) and (2.18), it follows that Dr = 0, i.e., the scalar curvature is constant. Using this consequence, equation (2.12), and $Df \neq 0$ on M, in equation (2.11), shows that

$$r = (n-1)\lambda. \tag{2.19}$$

Hence *r* is negative, because λ was found negative earlier. At this stage, we indite Lemma 3.2 of Case et al. [3] for an *m*-quasi Einstein manifold

$$\frac{1}{2}\Delta|Df|^2 = |Hessf|^2 - Ric(Df, Df) + \frac{2}{m}|Df|^2\Delta f.$$
(2.20)

Using (2.18), (2.20), (2.12) and the hypothesis that the potential vector field is divergence free (i.e., $\Delta f = 0$), we get

$$Hess f = 0, (2.21)$$

i.e., Df is parallel on M. As M is complete, by a result [Theorem 2 (I,A)] of Tashiro [9], M is the Riemannian product of a line \mathcal{R} and an (n - 1)-dimensional complete Riemannian manifold N. Here Df is tangent to \mathcal{R} . As Hessf = 0, equation (1.5) reduces to $Ric - \frac{1}{m}df \otimes df = \lambda g$. From this, it follows that, if E is an eigenvector of the Ricci operator Q, then E is point-wise collinear with Df, because $\lambda \neq 0$. It also follows that N is Einstein and hence negatively Einstein, because r < 0. This completes the proof.

Proof of Theorem 1.3 For an *m*-quasi Einstein manifold, we know that λ is constant. Also, as Df is affine Killing, divDf = constant, i.e., $\Delta f = constant$ (Yano [10], Pg. 45). Using this in (2.5) and (2.6) yields

$$(\Delta f)Df = 0.$$

Since *M* is non-trivial, we have $\Delta f = 0$. The rest of the proof follows from Theorem 1.2.

Acknowledgements

Not applicable.

Funding

The first author was funded by the University Grants Commission (UGC), India, in the form of Senior Research Fellowship.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] Barros, A. and Ribeiro, E.: Integral formulae on quasi-Einstein manifolds and applications, Glasg. Math. J. 54, 213-223 (2012).
- [2] Barros, A. and Ribeiro, E.: *Characterizations and integral formulae for generalized m-quasi-Einstein metrics*, Bull. Braz. Math. Soc., New Series 45, 325-341 (2014).
- [3] Case, J., Shu, Y. and Wei, G.: Rigidity of quasi-Einstein metrics, Diff. Geom. Appl. 29, 93-100 (2011).
- [4] Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Zeits. 271, 751-756 (2012).
- [5] Ghosh, A. & Sharma, R.: Sasakian metric as a Ricci soliton and related results, Journal of Geometry and Physics 75, 1-6 (2014).
- [6] He, C., Petersen, P. Wylie, W.: On the classification of warped product Einstein metrics, ArXiv Preprint ArXiv: 1010.5488, (2010).

- [7] Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A.G.: Ricci almost solitons, Ann.Della Scuola Norm. Sup. Di Pisa-Classe Di Sci. 10, 757-799 (2011).
- [8] Sharma, R.: Some results on almost Ricci solitons and geodesic vector fields, Beitr. Alg. Geom. 59, 289-294 (2018).
- [9] Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc. 117, 251-275 (1965).
- [10] Yano, K.: Integral formulas in Riemannian geometry, Marcel Dekker, 1970.

Affiliations

RAHUL PODDAR

ADDRESS: Sri Sathya Sai Institute of Higher Learning, Dept. of Mathematics and Computer Science, Prasanthi Nilayam, 515134, Andhra Pradesh, India. E-MAIL: rahulpoddar@sssihl.edu.in ORCID ID: 0000-0002-5671-2774

S. BALASUBRAMANIAN

ADDRESS: Sri Sathya Sai Institute of Higher Learning, Dept. of Mathematics and Computer Science, Prasanthi Nilayam, 515134, Andhra Pradesh, India. E-MAIL: sbalasubramanian@sssihl.edu.in ORCID ID: 0000-0001-8947-4840

RAMESH SHARMA ADDRESS: University of New Haven, Dept. of Mathematics, West Haven, 06516, CT, USA. E-MAIL: rsharma@newhaven.edu ORCID ID: 0000-0001-5026-8564

