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ABSTRACT 
 

In this paper stabilization problem of linear discrete single input, single output plant by affine stabilizator is considered. It is 

assumed that stabilizing vector is bounded and its values are changed in a given box. We use the Schur-Szegö parameters 

(reflection coefficients) and obtain conditions for nonexistence and existence of a stabilizing vector. 
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1. INTRODUCTION 
 

Recall that a single polynomial 

𝑝(𝑠) = 𝑎1 + 𝑎2𝑠 + ⋯+ 𝑎𝑛𝑠𝑛−1 + 𝑎𝑛+1𝑠
𝑛 

 
is called Schur stable if all its roots lie in the unit open disc. In order to use the Schur-Szegö 

parameters we assume that 𝑎𝑛+1 = 1. In this case the above polynomial becomes 

𝑝(𝑠) = 𝑎1 + 𝑎2𝑠 + ⋯+ 𝑎𝑛𝑠𝑛−1 + 𝑠𝑛, (1) 

which corresponds to an 𝑛-dimensional vector 𝑝 = (𝑎1, 𝑎2, … , 𝑎𝑛)𝑇 ∈ ℝ𝑛, where the symbol "T" 

stands for the transpose. The vector 𝑝 is called stable if the corresponding polynomial 𝑝(𝑠) (1) is 

stable. From hence, we will understand “stable” to mean “Schur stability”. 

 

For the definition of Schur-Szegö parameters (reflection coefficients) 𝑘1, 𝑘2, … , 𝑘𝑛 of the polynomial 

(1) we refer to [1,2,3]. A map 𝑓:ℝ𝑛 → ℝ𝑛, (𝑘1, 𝑘2, … , 𝑘𝑛)𝑇 → (𝑓1, 𝑓2, … , 𝑓𝑛)𝑇 which is defined 

recursively by the formula 

(𝑓1, 𝑓2, … , 𝑓𝑛)𝑇 = 𝑀𝑛(𝑘𝑛) [
0𝑇

𝑀𝑛−1(𝑘𝑛−1)
]⋯ [

0𝑇

𝑀1(𝑘1)
] [

0
1
] 

 

is called the reflection map. Here 

𝑀𝑗(𝑘𝑗) = 𝐼𝑗+1 + 𝑘𝑗𝐸𝑗+1,   𝐸𝑗 = [
0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

], 

 

𝐼𝑗 is a 𝑗 × 𝑗 unit matrix, 𝐸𝑗 is a 𝑗 × 𝑗 dimensional unit Henkel matrix. 

 

The reflection map 𝑓 is multilinear, that is, affine linear with respect to each variable 𝑘𝑖. 

 

The polynomial (1) is stable if and only if there exist 𝑘1, 𝑘2, … , 𝑘𝑛 such that |𝑘𝑖| < 1 and 𝑎𝑖 =
𝑓𝑖(𝑘1, 𝑘2, … , 𝑘𝑛) for all 𝑖 = 1,2, … , 𝑛. In this case, the numbers 𝑘1, 𝑘2, … , 𝑘𝑛 are called the reflection 

coefficients or Schur-Szegö parameters of the polynomial (1) (see [2]). 
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Consider a linear plant 𝐺(𝑠) =
𝑎(𝑠)

𝑏(𝑠)
 and regulator 𝑅(𝑠, 𝑐) =

𝑛(𝑠,𝑐)

𝑑(𝑠,𝑐)
, where 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑙)

𝑇 ∈ 𝒞 is 

control vector and 𝒞 is a box: 

 

𝒞 = {(𝑐1, 𝑐2, … , 𝑐𝑙)
𝑇: 𝑐𝑖

− ≤ 𝑐𝑖 ≤ 𝑐𝑖
+, 𝑖 = 1,2,… , 𝑙}. 

 

It is assumed that 𝑎, 𝑏, 𝑛 and 𝑑 are polynomials in 𝑠 and both 𝑛(𝑠, 𝑐) and 𝑑(𝑠, 𝑐) are affine linear with 

respect to 𝑐. The closed-loop system has characteristic polynomial 

 

𝑝(𝑠, 𝑐) = 𝑎(𝑠) 𝑛(𝑠, 𝑐) + 𝑏(𝑠) 𝑑(𝑠, 𝑐)

= 𝑝0(𝑠) + 𝑐1𝑝1(𝑠) + 𝑐2𝑝2(𝑠) + ⋯+ 𝑐𝑙𝑝𝑙(𝑠).
 (2) 

 

Without loss of generality assume that degree(𝑝0) = 𝑛, degree(𝑝𝑖) < 𝑛 (𝑖 = 1,2, … , 𝑙) and 𝑝0(𝑠) is 

monic polynomial. 

 

The stabilization problem is the determination of a parameter 𝑐 ∈ 𝒞 such that the characteristic 

polynomial (2) becomes stable. The relation (2) can be written in a vector equation in ℝ𝑛 as follows 

(see [2,3]). Define column vectors 𝑝0, 𝑝1, … , 𝑝𝑙, where the vector 𝑝𝑖 correspond to the polynomial 

𝑝𝑖(𝑠) (𝑖 = 0,1, … , 𝑙). Since degree(𝑝𝑖) < 𝑛 (𝑖 = 1,2, … , 𝑙) we add zero components to the vector 

representation of 𝑝𝑖(𝑠) (𝑖 = 0,1,… , 𝑙) in order to have dimension 𝑛. For example, assume that 

 

𝑝0(𝑠) = 𝑠4 + 2𝑠3 + 𝑠2 + 3𝑠 + 1, 𝑝1(𝑠) = 2𝑠3 + 𝑠2 + 1, 𝑝2(𝑠) = 𝑠2 + 𝑠. 
Then 

𝑝0 = (1,3,1,2)𝑇 , 𝑝1 = (1,0,1,2)𝑇 , 𝑝2 = (0,1,1,0)𝑇 .  

 

The relation (2) can be written as the following vector equation 

𝑝(𝑐) = 𝐴𝑐 + 𝑝0 (3) 

where 𝐴 is 𝑛 × 𝑙 dimensional matrix with column vectors 𝑝𝑖 (𝑖 = 1,2, … , 𝑙). 

 

Let the monic polynomial (1) be given and 𝑝 is the corresponding 𝑛-dimensional vector. The vector 𝑝 

is said to be stable if the corresponding polynomial (1) is stable. Define the following open subset of 

ℝ𝑛: 

𝒟 = {(𝑎1, 𝑎2, … , 𝑎𝑛)𝑇 ∈ ℝ𝑛:  (1) is stable}.  

It is shown in [4] that the closed convex hull of 𝒟 is a polytope with (𝑛 + 1) vertices: 

co̅̅̅ 𝒟 = co {𝑉1, 𝑉2, … , 𝑉𝑛+1}, (4) 

where co̅̅̅ stands for the closure of the convex hull and 𝑛-dimensional column vectors 𝑉𝑖 correspond to 

the polynomial (𝑠 − 1)𝑖(𝑠 + 1)𝑛−𝑖 (0 ≤ 𝑖 ≤ 𝑛). 

 

Define 

𝒫 = {𝐴𝑐 + 𝑝0:  𝑐 ∈ 𝒞}. (5) 

The following proposition is obvious. 

 

Proposition 1 There exists a stabilizing parameter 𝑐 ∈ 𝒞 if and only if 𝒫 ∩ 𝒟 ≠ ∅.  

If 𝒫 ∩ co {𝑉1, 𝑉2, … , 𝑉𝑛+1} = ∅ then there is no stabilizing parameter 𝑐. 

 

Stabilization problems for discrete systems with unbounded stabilizing vector 𝑐 have been considered 

in [3,5-9]. In [5,7] stabilizing vector from ℝ𝑙 is sought by randomly generating a great number of 

stable points or stable segments in the parameter space. In [6], 𝐷-decomposition method for the case 

𝑙 = 2 is described, stabilization of matrix families and various solution methods are discussed. In [3] 

the Bernstein expansion method is applied for stabilization. In [8] the locations of vertices 𝑉𝑖 with 

respect to the affine set 𝒫 is used for stabilization. The outer and inner approximation of the 
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stabilizing set by using the interlacing property of Schur stable polynomials is considered in [9, p. 

367]. 

 

In this paper, we consider stabilization problem with bounded stabilizing vector. In Section 2, we 

reduce the necessary condition 𝒫 ∩ co {𝑉1, 𝑉2, … , 𝑉𝑛+1} ≠ ∅ to a linear programming (LP) problem. 

The unfeasibility of this LP proves the nonexistence of a stabilizing vector. In Section 3, we apply 

least square minimization for stabilization. 

 

2. LINEAR PROGRAMMING 

 

In this section, we investigate the condition 

 

𝒫 ∩ co {𝑉1, 𝑉2, … , 𝑉𝑛+1} ≠ ∅. (6) 

 

This problem is reduced to feasibility problem of a suitable standard LP problem. If the feasibility set 

is empty then there is no stabilizing parameter 𝑐. 

 

Since 

co {𝑉1, 𝑉2, … , 𝑉𝑛+1} = {𝑥1𝑉
1 + 𝑥2𝑉

2 + ⋯+ 𝑥𝑛+1𝑉
𝑛+1:  𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛+1 = 1,  

 𝑥1 ≥ 0, 𝑥2 ≥ 0,… , 𝑥𝑛+1 ≥ 0} 
 

the condition (6) is equivalent to the following: there exist (𝑐1, 𝑐2, … , 𝑐𝑙) ∈ [𝑐1
−, 𝑐1

+] × [𝑐2
−, 𝑐2

+] × ⋯×
[𝑐𝑙

−, 𝑐𝑙
+] and 𝑥1 ≥ 0, 𝑥2 ≥ 0, … , 𝑥𝑛+1 ≥ 0,  𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛+1 = 1 such that 

𝑥1𝑉
1 + 𝑥2𝑉

2 + ⋯+ 𝑥𝑛+1𝑉
𝑛+1 = 𝑐1𝑝

1 + 𝑐2𝑝
2 + ⋯+ 𝑐𝑙𝑝

𝑙 + 𝑝0. (7) 

By introducing new variables, without loss of generality, we can assume that 𝑐1
− = 𝑐2

− = ⋯ = 𝑐𝑙
− = 0 

that is 𝒞 = [0, 𝑐1
+] × [0, 𝑐2

+] × ⋯× [0, 𝑐𝑙
+]. 

 

Define the following variables: 

𝑥𝑛+2 = 𝑐1, 𝑥𝑛+3 = 𝑐2, ⋯ , 𝑥𝑛+𝑙+1 = 𝑐𝑙 ,

𝑥𝑛+𝑙+2 = 𝑐1
+ − 𝑐1, 𝑥𝑛+𝑙+3 = 𝑐2

+ − 𝑐2, ⋯ , 𝑥𝑛+2𝑙+1 = 𝑐𝑙
+ − 𝑐𝑙 .

  

The equality (7) is equivalent to the feasibility of the following LP problem:  

[
 
 
 
 
 
𝑉1 𝑉2 ⋯ 𝑉𝑛+1 −𝑝1 −𝑝2 ⋯ −𝑝𝑙 0 0 ⋯ 0
1 1 ⋯ 1 0 0 ⋯ 0 0 0 ⋯ 0
0 0 ⋯ 0 1 0 ⋯ 0 1 0 ⋯ 0
0 0 ⋯ 0 0 1 ⋯ 0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 1 0 0 ⋯ 1]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

𝑥1

𝑥2

⋮
𝑥𝑛+1

𝑥𝑛+2

⋮
𝑥𝑛+𝑙+1

𝑥𝑛+𝑙+2

⋮
𝑥𝑛+2𝑙+1]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑝0

1
𝑐1

+

𝑐2
+

⋮
𝑐𝑙

+]
 
 
 
 
 

  

𝑥𝑖 ≥ 0 (𝑖 = 1,2,… , 𝑛 + 2𝑙 + 1). 

(8) 

 

In the above LP feasibility problem 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, the matrix 𝐴 is (𝑛 + 𝑙 + 1) × (𝑛 + 2𝑙 + 1) 

dimensional and the variable 𝑥 is (𝑛 + 2𝑙 + 1) dimensional. 

 

If the feasibility set of (8) is empty then there is no stabilizing vector (see Example 1). If the feasibility 

set is nonempty the solution set gives several inequalities from which a stabilizing vector can be 

determined easily by inspection (see Example 2). 
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Example 1 Consider the plant 

𝐺(𝑠) =
−0.7𝑠2 − 0.2𝑠 − 2.5

𝑠5 − 1.4𝑠4 + 𝑠3 + 2.4𝑠2 + 1.2𝑠 − 1.9
  

 

and controller 𝑅(𝑠, 𝑐) =
𝑐1+𝑐2𝑠+𝑐3𝑠2

𝑠
 with 𝑐1 ∈ [0,5], 𝑐2 ∈ [0,5], 𝑐3 ∈ [0,5]. 

 

The closed loop characteristic polynomial is 

𝑝(𝑠, 𝑐) = 𝑠6 − 1.4𝑠5 + 2.4𝑠4 + 5.25𝑠3 + 5.99𝑠2 + 6.59𝑠 − 3.25
+ 𝑐1(−0.7𝑠2 − 0.2𝑠 − 2.5) + 𝑐2(−0.7𝑠3 − 0.2𝑠2 − 2.5𝑠)
+ 𝑐3(−0.7𝑠4 − 0.2𝑠3 − 2.5𝑠2) 

 

 

Then 𝑝0 = (− 3.25, 6.59,5.99,5.25,2.4,− 1.4)𝑇, 𝑝1 = (− 2.50,− 0.20,− 0.70,0,0,0)𝑇, 𝑝2 =
(0,− 2.50,− 0.20,− 0.70,0,0)𝑇, 𝑝3 = (0,0,− 2.50,− 0.20,− 0.7,0)𝑇. For 𝑛 = 6, the vertices 

𝑉1, 𝑉2, … , 𝑉7 are 

𝑉1 = (1, 6, 15, 20, 15, 6)𝑇 ,  𝑉2 = (−1,−4,−5, 0, 5, 4)𝑇 ,  𝑉3 = (1, 2, −1,−4,−1, 2)𝑇 ,

 𝑉4 = (−1, 0, 3, 0, −3, 0)𝑇 ,  𝑉5 = (1,−2,−1, 4,−1,−2)𝑇 ,  𝑉6 = (−1, 4, −5, 0, 5, −4)𝑇 ,

 𝑉7 = (1,−6, 15,−20, 15,−6)𝑇

  

 

The corresponding LP problem (8) is 

[
 
 
 
 
 
 
 
 
 

1 −1 1 −1 1 −1 1 2.5 0 0 0 0 0 
 6 −4 2 0 −2 4 −6  0.2  2.5 0 0 0 0 
 15 −5 −1 3 −1 −5 15  0.6 0.2  2.5 0 0 0 
 20 0 −4 0 4 0 −20 0  0.6 0.2 0 0 0 
 15 5 −1 −3 −1 5 15 0 0 0.6 0 0 0 
 6 4 2 0 −2 −4 −6 0 0 0 0 0 0 
 1 1 1 1 1 1 1 0 0 0 0 0 0 
 0 0 0 0 0 0 0 1 0 0 1 0 0 
 0 0 0 0 0 0 0 0 1 0 0 1 0 
 0 0 0 0 0 0 0 0 0 1 0 0 1]

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

⋮
𝑥13]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
− 3.25 
 6.59 
 5.99 
 5.25 
 2.4 

 − 1.4 
 1 

 5.0 
 5.0 
 5 ]

 
 
 
 
 
 
 
 
 

 

𝑥𝑖 ≥ 0 (𝑖 = 1,2,… ,13). 

 

 

The feasible set of this LP is empty, that is, 𝒫 ∩ co {𝑉1, 𝑉2, … , 𝑉7} = ∅ and there is no stabilizing 

parameter. 

 

Example 2 Let the family (2) be given as 

𝑝(𝑠, 𝑐) = 𝑠5 − 2.9𝑠4 + 5.84𝑠3 − 3.064𝑠2 + 0.8783𝑠 − 2.28035 + 𝑐1(−𝑠3 + 1)
+ 𝑐2(0.5𝑠2 + 𝑠) 

 

and 𝑐1 ∈ [0,2], 𝑐2 ∈ [0,1]. 
 

For 𝑛 = 5, the vertices 𝑉1, 𝑉2, … , 𝑉6 are 

𝑉1 = (1,5,10,10,5)𝑇, 𝑉2 = (−1,−3,−2,2,3)𝑇, 𝑉3 = (1,1,−2,−2,1)𝑇,

𝑉4 = (−1,1,2,−2,−1)𝑇 , 𝑉5 = (1,−3,2,2,−3)𝑇 , 𝑉6 = (−1,−5,−10,10,−5)𝑇 .
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The corresponding LP problem (8) is 

[
 
 
 
 
 
 
 
1 −1 1 −1 1 −1 −1  1 0 0 
5 −3 1 1 −3 5 0 0 −1 1 
10 −2 −2 2 2 −10 0 0 − 0.5 0.5 
10 2 −2 −2 2 10 1 −1 0 0 
5 3 1 −1 −3 −5 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 1 0 
 0 0 0 0 0 0 0 1 0 1 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑥1 
𝑥2 
 𝑥3 
 𝑥4 
 𝑥5 
 𝑥6 
 𝑥7 
 𝑥8 
 𝑥9 
𝑥10]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
−2.28035 
0.8783 
–  3.064 

5.84 
−2.9 

1 
2 
1 ]

 
 
 
 
 
 
 

 

𝑥𝑖 ≥ 0 (𝑖 = 1,2,… ,10). 

 

 

The solution set of this LP consists of the union of 11 polyhedral sets. For example, the first solution 

set has the following form: 

 
0 ≤ 𝑥1 ≤ 0.009, 0 ≤ 𝑥2 ≤  0.033,
 𝑥3 =  0.107 − 3.999 𝑥1 − 1.999 𝑥2,  𝑥4 =  0.206 + 5.111 𝑥1 + 1.333 𝑥2,
 𝑥5 =  0.314 − 3.222 𝑥1 − 0.666 𝑥2,  𝑥6 =  0.371 + 1.111 𝑥1 + 0.333 𝑥2,
 𝑥7 =  2.123 − 12.444 𝑥1 − 5.333 𝑥2,  𝑥8 =  0.3507 + 21.3333 𝑥1,
 𝑥9 = −0.123 + 12.444 𝑥1 + 5.333 𝑥2,  𝑥10 = 0.649 − 21.333 𝑥1.

  

 

Take the following point from this set 

 

(𝑥1, 𝑥2, … , 𝑥10)
𝑇 = (0.002, 0.01, 0.079012, 0.229552, 0.300896, 0.376552, 2.044782, 0.3933666,

−0.044782, 0.606334)𝑇 .
 

 

Recall that 𝑐1 = 𝑥7, 𝑐2 = 𝑥8. The values 𝑐1
0 = 𝑥7 = 2.044782, 𝑐2

0 = 𝑥8 = 0.3933666 are stabilizing, 

since the polynomial 

𝑝(𝑠, 𝑐0) = 𝑠5 − 2.9𝑠4 + 3.795218𝑠3 − 2.86731670𝑠2 + 1.2716666𝑠 − 0.235568  

is stable. 

 

3. LEAST SQUARE MINIMIZATION 

 

The condition (6) is only a necessary condition for the existence of a stabilizing parameter. On the 

other hand we can give corresponding example where (6) is satisfied but there is no stabilizing 

parameter (see Example 3). This shows that the condition (6) is only a necessary condition for the 

existence. In this section, we consider the Euclidean distance between the sets 𝒫 and 𝒟. Define 

𝛼 = min
𝑐∈𝒞, 𝑘∈[−1,1]𝑛

‖𝐴𝑐 + 𝑝0 − 𝑓(𝑘)‖,  

where 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑙)
𝑇, 𝒞 = [0, 𝑐1

+] × [0, 𝑐2
+] × ⋯× [0, 𝑐𝑙

+], 𝑘 = (𝑘1, 𝑘2, … . , 𝑘𝑛)𝑇, [−1,1]𝑛 =
[−1,1] × [−1,1] × ⋯× [−1,1], 𝑓(𝑘) = (𝑓1(𝑘), 𝑓2(𝑘),… , 𝑓𝑛(𝑘))𝑇 and 𝑓 is the reflection map, 𝑘 is the 

reflection vector. 

 

The condition 𝛼 = 0 is “almost” a necessary and sufficient condition for the existence of a stabilizing 

parameter. 

 

Proposition 2 If 𝛼 > 0 then there is no a stabilizing parameter. If 𝛼 = 0 then there exists a stabilizing 

parameter or there exists 𝑐 ∈ 𝒞 such that the corresponding polynomial 𝑝(𝑠, 𝑐) has all roots belonging 

to the closed unit disc. 
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In what follows the minimizations have been made by using Maple minimization commands. 

 
Example 3 Consider the family 

 

𝑝(𝑠, 𝑐) = 𝑠5 − 1.4𝑠4 + 0.4𝑠3 + 4.12𝑠2 − 1.3𝑠 − 1.5 + 𝑐1(0.7𝑠3 − 0.3𝑠2 + 0.6) + 

𝑐2(0.5𝑠2 + 𝑠 + 0.1) + 𝑐3(𝑠
3 − 0.3𝑠 + 0.2), 

 

𝑐1 ∈ [0,5], 𝑐2 ∈ [0,1], 𝑐3 ∈ [0,1]. 
 

For this example, the feasibility set of LP problem (8) is nonempty. Consider the following 

minimization problem 

𝐹(𝑐, 𝑘) = ‖𝐴𝑐 + 𝑝0 − 𝑓(𝑘)‖2   →    min (9) 

where 𝑐 = (𝑐1, 𝑐2, 𝑐3)
𝑇 ∈ [0,5] × [0,1] × [0,1], 𝑘 = (𝑘1, 𝑘2, … , 𝑘5) ∈ [−1,1]5. 

The optimal value of (9) is positive (≈ 4.999). Therefore, there is no stabilizing parameter. 

 

Example 4 Consider the family 

 

𝑝(𝑠, 𝑐) = 𝑠5 − 3.2𝑠4 + 4.24𝑠3 − 7.758𝑠2 − 2.3699𝑠 + 1.1872 + 𝑐1(0.3𝑠2 + 1.1𝑠 + 0.7) + 

𝑐2(1.5𝑠2 + 2𝑠 − 0.6) + 𝑐3(0.5𝑠3 − 2.4𝑠 − 2.2), 
 

𝑐1 ∈ [0,3], 𝑐2 ∈ [0,3], 𝑐3 ∈ [0,4]. 
The corresponding LP problem (8) has nonempty feasibility set. The minimization problem 

𝐹(𝑐, 𝑘) = ‖𝐴𝑐 + 𝑝0 − 𝑓(𝑘)‖2   →    min  

has optimal value zero (≈ 2.3 10−8). The optimal point is the following 

 
𝑐1 =  1.94598672835119, 𝑐2 =  2.12919162384265, 𝑐3 = 0.816115998634540,
𝑘1 =  0.954034132402279, 𝑘2 = −0.891166832620269, 𝑘3 =  0.773998874801903,

𝑘4 = −0.544090555311313,  𝑘5 =  0.523579479105046.
  

 

For 𝑐1 =  1.94598672835119, 𝑐2 =  2.12919162384265 the corresponding polynomial is 

𝑝(𝑠, 𝑐) = 𝑠5 − 3.2𝑠4 + 4.648057999𝑠3 − 3.980416546𝑠2 + 2.070390252𝑠 

−0.5235794617 
 

and its roots are 
𝑧1 = 0.9309235937, |𝑧1| = 0.9309235937,

𝑧2 =  0.8235418792 + 0.4120655366 𝑖, |𝑧2| = 0.9208795976,

𝑧3 = 0.8235418792 − 0.4120655366 𝑖, |𝑧3| = 0.9208795976,

𝑧4 = 0.3109963240 + 0.7526681217 𝑖, |𝑧4| = 0.814388123,

𝑧5 = 0.3109963240 − 0.7526681217 𝑖, |𝑧5| = 0.814388123.

  

 

Therefore the polynomial 𝑝(𝑠, 𝑐) is stable. 

 

4. CONCLUSION 

 

In this paper, we consider Schur stabilization problem for discrete single input, single output systems. 

It is assumed that the control parameter is bounded and control function is affine linear with respect to 

the control parameter. Two approaches are considered: Linear programming and least square 

minimization. 
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