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Abstract: Machine learning and deep learning methods are used in the classification of plant diseases. It takes a 

long time to extract features in machine learning. In deep learning, computers are required to process big data 

depending on the size of the data set. With Google Teachable Machine, faster results can be obtained without the 

need for feature extraction or very powerful computers. For this purpose, a model was created with four apple 

diseases using the data set related to apple diseases. In this model, results of over 95% were obtained in diseases.  
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Google.com Destekli Öğretilebilir Makine Kullanılarak Elma Hastalıklarının 

Sınıflandırılması 
 

Öz: Bitki hastalıklarının sınıflandırılmasında makine öğrenimi ve derin öğrenme yöntemleri kullanılmaktadır. 

Makine öğreniminde özellikleri çıkarmak uzun zaman alıyor. Derin öğrenmede, veri kümesinin boyutuna bağlı 

olarak bilgisayarların büyük verileri işlemesi gerekir. Google öğretilebilir makina ile özellik çıkarımına veya çok 

güçlü bilgisayarlara ihtiyaç duymadan daha hızlı sonuçlar alınabilir. Bu amaçla elma hastalıkları ile ilgili veri seti 

kullanılarak dört elma hastalığı ile model oluşturulmuştur. Bu modelde hastalıklarda %95'in üzerinde sonuçlar elde 

edilmiştir. 

 

Anahtar Kelimeler: Bitki Hastalığı Tespiti, Makine öğrenimi, Öğretilebilir Makine. 

 

1. Introduction 

The fruit sector creates positive value for countries 

in terms of economy and human nutrition. Since fruits 

are directly consumable after being harvested, their 

unprocessed form is also a source of income (Bashimov, 

2016). China, the European Union (EU), the United 

States of America (USA), and Turkey come first in the 

world ranking of fresh fruit producer countries 

(Chammem et al., 2018). Plant disease is one of the most 

important problems encountered in the agricultural 

sector. This problem negatively affects the industry 

socially and economically. Plant pests and diseases are 

responsible for the loss of global food production of up 

to 40-45% with post-harvest losses. When plant disease 

is not diagnosed and detected early, it can affect not only 

one plant but also a large agricultural area (Akbas, 

2019).  

Farmers struggle to diagnose diseases in apples 

because the symptoms produced by different diseases 

can be similar and sometimes appear simultaneously. 

Machine learning approaches such as deep learning are 

proposed for the timely and accurate detection of apple 

diseases from plant leaves (Khan et al. 2021). In 

addition, this effect can last for many years. Apple, 

produced within the scope of fruit growing, is one of the 

fruits traditionally produced in agricultural enterprises 

(Branco et al. 2020; Chao et al. 2020). Apple adjusts the 

acid-base balance in the blood with the vitamins and 

organic acids it contains. It, which is rich in sugars, 

acids, proteins, fatty substances, vitamins and mineral 

salts, is also rich in vitamins A and C. It is a fruit that 

can be consumed in all seasons due to its annual storage 

possibilities (Kacar, 2019).  

Under suitable conditions, apple saplings that have 

formed the branch infrastructure in nursery conditions 

begin to produce fruit economically in 2-3 years, while 

66

https://dergipark.org.tr/tr/pub/gopzfd
https://orcid.org/0000-0002-1863-7566
https://orcid.org/0000-0002-2324-9285
https://orcid.org/0000-0002-6241-5485


ODABAS et al. / JAFAG (2024) 41 (2), 66-71 

apple seedlings that do not form branches when planted 

in the garden begin to produce fruit efficiently after 4-5 

years (Boyaci, 2009). Losing and replanting existing 

apple plants and waiting for fruit harvest can cause 

substantial economic losses. It is both costly and time-

consuming to understand whether there is a disease in 

the plant and to detect this disease type (Turkoglu et al., 

2020). When there are any of the known diseases in 

fruits and vegetables and more plant diseases, the 

symptoms of diseases such as bacteria, fungi, viruses, 

molds, and mites are evident in the images and thus can 

be identified and categorized accordingly (Jasim, 2021).  

Machine learning or deep learning methods are used 

to classify plant diseases (Odabas et al., 2015; Odabas 

et al., 2016; Caliskan et al., 2017) . Although machine 

learning methods are low in cost, feature extraction 

takes time (Senel, 2020; Dammer et al., 2019). Models 

developed using Deep Learning methods are more 

successful and eliminate the loss of time in feature 

extraction (Odabas et al., 2017).  

In addition to these advantages, deep neural 

networks have a significant disadvantage. These 

powerful hardware resources are required in deep 

network training and testing because deep network 

models need high memory and powerful GPU cards to 

work effectively. Researchers researched disease 

detection of apple plants using deep convolutional 

neural networks and achieved an accuracy percentage of 

99.54% with the ResNet-34 architecture (Aksoy et al., 

2020). In another study, an accuracy rate of 99.30% was 

performed in the study for the detection of peach 

diseases (Aslan, 2021). 

In the field of agriculture, machine learning and 

other soft computing methods have been widely 

employed for the identification and categorization of 

diseases (Bansal et al. 2021). Teachable Machine 

(Google 2022) allows us to train our datasets using a 

web application. Image and sound classification can be 

made (Google, 2023). There is no need for a high-

performance computer and GPU card while training the 

data. With a mobile application developed, a corn plant 

recognition application was developed using the data 

sets of the corn plant, and they achieved an accuracy rate 

of 80.7% (Aqil et al., 2021). In another study, 97% 

accuracy rates were obtained in animal classification by 

the researchers (Agustian et al., 2021). In the research 

on insect classification, 2646 images were used, and 

100% accuracy was achieved (Gupta, 2021). 

In this study, real-time apple disease classification 

was made through a web application designed by 

training the datasets of the disease of the apples. 

2. Material and Method 

In this study, the Turkey-Plant Dataset dataset 

created by Turkoglu et al. was used (Turkoglu et al. 

2021). All images in the dataset are 300 x 300 pixels in 

size (Table 1).   

 

Table 1. Apple diseases examined in the study and the 

number of images related to them. 

Çizelge 1. Araştırmada incelenen elma hastalık ve 
zararlılarına ilişkin görsel sayısı. 

Apple diseases Abbreviation The number of data 

Aphis Spp. AS 162 

Eriosoma lanigerum EL 366 

Monilinia laxa ML 255 

Venturia inaequalis VI 633 

 

The aphid species (Aphis Spp) in apple orchards are 

the green apple aphid, Aphis pomi de Geer, and the 

spirea aphid, Aphis spiraecola Patch (Hemiptera: 

Aphididae). Green apple aphids reduce tree growth and 

nonstructural carbohydrate concentration and fruit 

production in young apple trees. Severe infestation also 

increases the risk of winter death. The negative impact 

of green apple aphids is more significant on young trees 

than on mature trees (Fréchette et al., 2008). Woolly 

apple aphid (WAA), Eriosoma lanigerum is a 

worldwide pest of apple. It colonizes roots and sites on 

the trunk and branches previously injured and can also 

occupy undamaged current-year shoots (Lordan et al., 

2015). Monilinia spp. is an economically important 

disease. Monilinia laxa is causing mainly blossom and 

twig blight. Under suitable weather conditions, the 

disease develops rapidly. That’s why,   Monilinia spp., 

before or during storage, is essential for crop losses on 

pome fruits, especially post-harvest (Spitaler et al., 

2022). Venturia inaequalis (Cooke Wint)  affects the 

leaves and fruit tissue of trees. The pathogen was placed 

into the genus Venturia by Winter in 1880. It leads to 

both a saprophytic and parasitic lifestyle. The pathogen 

ascospores on the leaves broke the thin surface 

epithelium of immature leaves when moisture was 

present. The germ tube differentiates into an 

appressorium upon coming into contact with a cuticle 

and releases sticky mucilaginous chemicals that are 

thought to aid in adhesion to the host surface. Once an 

infection is established, curative preparations are 

required to stop further development of the mycelium. 

In organic apple growing, sulfur, lime, and copper are 

used for scab disease (Doolotkeldieva and Bobusheva, 

2017). 

Images of four diseases of the apple plant were 

trained by a teachable machine. While training the 
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dataset, parameter values are 100 for epoch, 32 for batch 

size, and 0.001 for learning rate. There are no settings 

related to training and test datasets. Epoch is a term used 

to describe an iteration within the scope of training a 

model in which the model uses the entire training set to 

update its weights. Updating weights during the training 

phase usually does not rely on all training sets 

simultaneously due to computational complexities or a 

data point due to noise issues. Instead, the update step is 

done with mini-sets, where the number of data points in 

a batch is a hyperparameter that we can adjust. Data in 

mini-clusters is called batch (Amidi, 2022). The 

learning rate determines the rate at which weights are 

updated, usually denoted as alpha (α) or sometimes eta 

(η). It can be fixed or adapted. The most popular method 

available is called ADAM and it is a method that adjusts 

the learning rate. 

 

 
Figure 1. Performing machine learning based classification  

Şekil 1. Makine öğrenimi tabanlı sınıflandırma gerçekleştirme 
 

 
Figure2. Web interface 

Şekil 2. Web arayüzü 

The model formed in the study was designed as a 

web interface and classified apple disease and 

transferred to the web interface with the tensorflow.js 

file (Saka, 2022). 

 

3. Result and Discussion 

The appropriate division of a dataset is crucial in 

leveraging machine learning techniques for the 

identification and categorization of diseases and pests in 

apple plants (Thakur et al. 2022). Typically, datasets are 

segmented into three key sections: the training set, the 
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validation set, and the test set. The training set is utilized 

to train the model, while the validation set aids in fine-

tuning parameters and optimizing the model's 

performance. Finally, the test set evaluates the model's 

overall effectiveness. Common ratios for this division 

include allocating 60-80% for the training set, 10-20% 

for the validation set, and another 10-20% for the test 

set. Maintaining randomness in this partitioning process 

ensures the dataset's diversity and representation. 

Initially, the dataset is divided into training and 

temporary subsets, which are further segmented into 

validation and test sets. Ultimately, this process yields 

the training set (X_train, y_train), validation set (X_val, 

y_val), and test set (X_test, y_test). These steps are 

essential in effectively utilizing machine learning 

approaches, enabling robust model performance and 

generalization (Mesías-Ruiz et al. 2023). 

After the data set training process was completed, a 

report on the model consisting of the "Under the hood" 

menu was received. When this report was examined, it 

was seen that the data set was divided into 85% training 

and 15% test set, and the training process was carried 

out. The results of this training process are given in 

Table 2. 

 

Table 2. Results obtained at the end of the training  

Çizelge 2. Eğitim sonunda elde edilen sonuçlar 

Class Accuracy The number of samples 

Aphis Spp. 0.96 25 

Eriosoma lanigerum 0.98 55 

Monilinia laxa 0.95 39 

Venturia inaequalis 0.98 95 

 

According to the results, the highest accuracy value 

was seen in Apple Venturia inaequalis disease (AVI) at 

98%, and the lowest accuracy value was seen in Apple 

Monillia laxa  (AML) disease at 95%. In the disease 

prediction table, the accuracy values of the test sets 

belonging to the classes formed from apple diseases are 

included. Monillia laxa disease, with the lowest 

accuracy, was seen to be confused with Venturia 

inaequalis only (Table 3). 

 

Table 3. Prediction table of apple diseases  

Çizelge 3. Elma hastalıklarının tahmin tablosu 

AAS 24 0 0 1 

AEL 0 54 0 1 

AML 0 1 37 1 

AVI 1 0 1 93 

 AAS AEL AML AVI 

 

After the training and test data are divided into two 

groups, this test set is tested as much as the determined 

epochs (100) value in the epochs process. Accuracy, and 

loss values are pivotal indicators in assessing the 

performance of a machine learning model during 

training. The accuracy graph tracks the model's 

precision at each epoch, ideally showing a steady 

increase and stabilization at high levels across both 

training and validation sets. Conversely, if accuracy 

peaks on the training set but declines on the validation 

set, overfitting may be occurring. Meanwhile, the loss 

graph demonstrates the model's error rate throughout 

training, with the expectation that it steadily decreases. 

A significant gap between training and validation set 

losses may signal overfitting. Evaluating these metrics 

together provides valuable insights for model 

refinement, such as considering model complexity 

adjustments or the acquisition of additional data to 

address overfitting issues (Burgkart et al. 2001). 

Accuracy and loss values are shown in Figure 3. 

When the graphs are examined, the epoch value 

shows that stable results start to be obtained after 30, and 

it becomes the most stable after 40. After this value, 

there was a slight decrease in the accuracy value of the 

test set. In addition, there is a slight increase in the loss 

amount of the test set after this value.  

 
Figure 3.  Epochs accuracy and loss values  

Şekil 3. Epoch doğruluğu ve kayıp değerleri 

69



ODABAS et al. / JAFAG (2024) 41 (2), 66-71 

4. Conclusion 

Utilizing a teachable machine to develop a model for 

detecting four different diseases in apple plants 

represents a notable advancement in agricultural 

technology. The achieved accuracy rates, ranging from 

95% to 98%, underscore the effectiveness of this 

approach in disease identification. Furthermore, the 

study suggests a positive correlation between accuracy 

rates and the volume of available data, indicating the 

potential for even greater accuracy with larger datasets. 

Support from existing literature in agricultural 

technology reinforces the importance of accurate 

disease detection methods. For instance, research 

conducted by (Kala et al. 2023), emphasizes the crucial 

role of advanced technology in mitigating the adverse 

effects of plant diseases on crop yields. Similarly, 

studies such as (Storey et al. 2022) highlight the 

significance of employing machine learning techniques 

for precise disease diagnosis and timely intervention in 

agricultural contexts. These findings align with the 

outcomes of the current study, further validating the 

efficacy of utilizing a teachable machine for disease 

detection in apple plants. 

In the domain of machine learning methodologies, 

the feature extraction process is acknowledged for its 

time-consuming nature. However, it is worth noting that 

accuracy values tend to increase proportionally with the 

expansion of features. Conversely, deep learning 

methods, often requiring high-performance computers 

equipped with GPUs, offer impressive accuracy levels. 

In contrast, the implementation of a teachable machine 

proves to be both time-saving and cost-effective, 

making it a viable solution for disease detection in apple 

plants. 

The findings of this study underscore the feasibility 

of developing high-accuracy models through the 

application of appropriate methods and techniques, 

particularly when employing a teachable machine for 

processing image datasets. This highlights the potential 

for widespread adoption of such technologies in the 

agricultural sector, leading to improved disease 

management practices and ultimately contributing to 

enhanced crop yields and agricultural sustainability. 
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