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Abstract

The Schamel-Korteweg-de Vries (S-KdV) equation including a square root nonlinearity is
very important pattern for the research of ion-acoustic waves in plasma and dusty plasma. As
known, it is significant to discover the traveling wave solutions of such equations. Therefore,
in this paper, some new traveling wave solutions of the S-KdV equation, which arises in
plasma physics in the study of ion acoustic solitons when electron trapping is present and
also it governs the electrostatic potential for a certain electron distribution in velocity space,
are constructed. For this purpose, the Bernoulli Sub-ODE and modified auxiliary equation
methods are used. It has been shown that the suggested methods are effective and give
different types of function solutions as: hyperbolic, trigonometric, power, exponential, and
rational functions. The applied computational strategies are direct, efficient, concise and can
be implemented in more complex phenomena with the assistant of symbolic computations.
The results found in the paper are of great interest and may also be used to discover the
wave sorts and specialities in several plasma systems.

1. Introduction

Nonlinear partial differential equations (NPDEs) are used to describe complex problems with numerous phenomena in different fields,
including engineering, chemical kinematics, biology, wave theory, optics, physics, fluid mechanics, biomedical science, and others [1]- [4].
S-KdV equation, based upon both usual KdV equation (when α = 0) [5]- [10],

ut +βuux +δuxxx = 0,

and Schamel equation (when β = 0)

ut +αu1/2ux +δuxxx = 0,

which was derived a German scientist Hans Schamel in 1973 has the form [11]- [13]

ut +(αu1/2 +βu)x +δuxxx = 0, αβ 6= 0 (1.1)

where α , β and δ are constants which they are refer to the activation trapping, the convection and the dispersion coefficients, respectively.
The advantage of implementing the nonlinear S-KdV equation to analyze dynamics of modulated waves in dispersive media lies in the
diversity of its solutions [14]- [17]. Here we should point out that the S-KdV equation has a stronger nonlinearity than the usual KdV
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equation in that the single soliton solution possesses a smaller width and higher velocity [18]. This equation is contained in many physical
phenomena involving electromagnetic theory, physical chemistry, geophysics and other fields are examples [19, 20]. The square root in the
nonlinear term then translates to lowest order some of the kinetic effects, associated with electron trapping [21]. Schamel [22] stated that
when uux is replaced by (| u |3/2)x, compared to the classical KdV equation, the Schamel equation possesses a stronger nonlinearity, which
reveals that the wave has a smaller width and higher velocity and exact traveling wave solutions for the regularized Schamel equation [23].To
create different exact solutions and to notice their properties, various significant methods have been developed [19]- [21], [24]- [29].
The implementations of the Sub-ODE and modified auxiliary equation methods in this paper highlight our main motivation and indicates its
capacity to handle nonlinear equations, permitting it to be utilized to solve many types of nonlinearity models. The body of our paper is
structured as follows: Methodologies of the Sub-ODE and modified auxiliary equation methods and their detailed structures are given in
Section 2. In Section 3, we apply the different methods, introduced in Section 2, to the Schamel-KdV equation to find the exact solutions.
Different forms of the exact solutions are derived from these methods. Section 4 is devoted to graphical illustrations of the methods. A
discussion section is presented in Section 5. Finally, Section 6 provides conclusions stemming from the results of our work.

2. The Bernoulli Sub-ODE Method [30]- [33]

Herein, we introduce the steps of the Bernoulli Sub-ODE method. Suppose, nonlinear partial differential equation is given by

F(v,vt ,vx,vxx,vxxx, ...) = 0, (2.1)

where v = v(x, t) is wave function to be calculated.

Step 1: Apply the traveling wave transformation,

v(x, t) = v(η), η = kx− ct (2.2)

where k is constant and c is speed of the traveling wave. Substituting (2.2) into (2.1), then (2.1) converted to an ordinary differential
equation:

F(v′,v′′,v′′′, ...) = 0 (2.3)

where F is a polynomial in v(η) and its derivatives.
Step 2: Presume solutions of (2.3) presented by a series in G:

v(η) =
N

∑
i=0

bi(G(η))i (2.4)

where bi(0≤ i≤ N) are constants to be calculated, bN 6= 0, and G(η) satisfies the next ODE,

G′(η)+λG(η) = µG(η)2 (2.5)

which has the following solution:

G(η) =
1

µ

λ
+deλη

where λ ,µ 6= 0 are arbitrary constants.
Step 3: The positive integer N determined by balancing the highest order derivative term with the highest power nonlinear term in (2.3).
Step 4: Replacing (2.4) into (2.3), we acquire a polynomial in G(η). Gathering all terms with the same power and equating each one to zero.

We get a system of equations which can be solved by using Mathematica program.

2.1. The modified auxiliary equation method (MAE) [34]- [37]

Main steps of the modified auxiliary equation method are explained as follows:

Step 1: Solution of (2.3) is given by:

v(η) =
N

∑
i=0

(biai f (η) (2.6)

where f (η) satisfies the following ODE:

f ′ =
1

lna

(
µa− f (η)+σ +λa f (η)

)
(2.7)

where bi (i = 0,1,2, . . . ,N), bN 6= 0, λ ,σ and µ , are constants to be calculated.
Step 2: In (2.3), N is a positive integer determined via the homogeneous balance principle as illustrated before.
Step 3: Substituting (2.6) and (2.7) in (2.3), and gathering the terms which had like powers of (a f (η)) and putting their coffecients equal to

zero, we obtain a set of algebraic equations, which can be solved by the aid of Mathematica program.
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Step 4: There is various sets of solutions of (2.7):
Set 1: σ2−4λ µ < 0 and λ 6= 0,

a f (η) =
−σ

2λ
+

√
4µλ −σ2

2λ
tan

(√
4µλ −σ2η

2

)
,

or

a f (η) =
−σ

2λ
+

√
4µλ −σ2

2λ
cot

(√
4µλ −σ2η

2

)
.

Set 2: σ2−4λ µ > 0 and λ 6= 0,

a f (η) =
−σ

2λ
−
√

σ2−4µλ

2λ
tanh

(√
σ2−4µλη

2

)
,

or

a f (η) =
−σ

2λ
−
√

σ2−4µλ

2λ
coth

(√
σ2−4µλη

2

)
.

Set 3: σ2 +4µ2 < 0,λ 6= 0andλ =−µ,

a f (η) =
σ

2µ
−
√
−σ2−4µ2

2µ
tan

(√
−σ2−4µ2η

2

)
,

or

a f (η) =
σ

2µ
−
√
−σ2−4µ2

2µ
cot

(√
−σ2−4µ2η

2

)
.

Set 4: σ2 +4µ2 > 0,λ 6= 0 and λ =−µ,

a f (η) =
σ

2µ
+

√
σ2 +4µ2

2µ
tanh

(√
σ2 +4µ2η

2

)
,

or

a f (η) =
σ

2µ
+

√
σ2 +4µ2

2µ
coth

(√
σ2 +4µ2η

2

)
.

Set 5:σ2−4µ2 < 0 and λ = µ,

a f (η) =
−σ

2µ
+

√
−σ2 +4µ2

2µ
tan

(√
−σ2 +4µ2η

2

)
,

or

a f (η) =
−σ

2µ
+

√
−σ2 +4µ2

2µ
cot

(√
−σ2 +4µ2η

2

)
.

Set 6: σ2−4µ2 > 0 and λ = µ,

a f (η) =
−σ

2µ
−
√

σ2−4µ2

2µ
tanh

(√
σ2−4µ2η

2

)
,

or

a f (η) =
−σ

2µ
−
√

σ2−4µ2

2µ
coth

(√
σ2−4µ2η

2

)
.

Set 7: σ2 = 4λ µ and λ = µ,

a f (η) =−2+ση

2λη
.
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Set 8: λ µ < 0,σ = 0 and λ 6= 0,

a f (η) =−
√
−µ

λ
tanh

(√
−µλη

)
,

or

a f (η) =−
√
−µ

λ
coth

(√
−µλη

)
.

Set 9:σ = 0 and µ =−λ ,

a f (η) =
1+ e−2λη

−1+ e−2λη
.

Set 10: µ = λ = 0,

a f (η) = cosh(ση)+ sinh(ση).

Set 11: µ = σ =h and λ = 0,

a f (η) = ehη −1.

Set 12: λ = σ =h and µ = 0,

a f (η) =
ehη

1− ehη
.

Set 13: σ = λ +µ,

a f (η) =−1−µe(µ−λ )η

1−λe(µ−λ )η
.

Set 14: σ =−(λ +µ),

a f (η) =
µ− e(µ−λ )η

λ − e(µ−λ )η
.

Set 15: µ = 0,

a f (η) =
σeση

1−λeση
.

Set 16: λ = µ = σ 6= 0,

a f (η) =
√

3tan

(√
3

2
µη

)
−1.

Set 17: λ = σ = 0,

a f (η) = µη .

Set 18: µ = σ = 0,

a f (η) =
−1
λη

.

Set 19: λ = µ and σ = 0,

a f (η) = tan(µη).

Set 20: λ = 0,

a f (η) = eση − µ

σ
.



Universal Journal of Mathematics and Applications 69

3. Applications of the Methods

Begin with the following transformation:

v(x, t) = u(x, t)2,

with wave transformation (2.2) into (1.1), we obtain following ordinary differential equation:

2kβu3u′+6k3
δu′u′′+2u((−c+ kαu)u′+ k3

δu′′′) = 0.

Integrating once with respect to η , we get

−cu2 +
2
3

kαu3 +
1
2

kβu4 +2k3
δ (u′)2 +2k3

δuu′′ = 0. (3.1)

Balancing uu′′ with u4 in (3.1), we get 4N = 2N +2, then N = 1.

3.1. The Bernoulli sub-ODE method

Using (2.4), solution of (3.1) is given by

u(η) = b0 +b1G(η). (3.2)

Substituting (3.2) in (3.1), then collecting terms of the same powers and putting their coefficients equal to zero, next system of equations are
acquired :

− cb2
0 +

2
3

kαb3
0 +

1
2

kβb4
0 = 0,

−2cb0b1 +2k3
δλ

2b0b1 +2kαb2
0b1 +2kβb3

0b1 = 0,

−6k3
δλ µb0b1− cb2

1 +4k3
δλ

2b2
1 +2kαb0b2

1 +3kβb2
0b2

1 = 0,

4k3
δ µ

2b0b1−10k3
δλ µb2

1 +
2
3

kαb3
1 +2kβb0b3

1 = 0,

6k3
δ µ

2b2
1 +

1
2

kβb4
1 = 0.

In what follows, we present the two sets of solution:
Set 1:

δ =− 4α2

75k2βλ 2 , b0 =−
4α

5β
, b1 =

4αµ

5βλ
, c =−16kα2

75β
, v(x, t) =

−4α

5β
+

4αµ

5βλ

 1

µ

λ
+de

λ

(
kx+

(
16kα2

75β

)
t
)



2

.

(3.3)

Set 2:

δ =− 4α2

75k2βλ 2 , b0 = 0, b1 =−
4αµ

5βλ
, c =−16kα2

75β
, v(x, t) =

−4αµ

5βλ

 1

µ

λ
+de

λ

(
kx+

(
16kα2

75β

)
t
)



2

. (3.4)

3.2. The modified auxiliary equation method (MAE)

(2.6) presents the solution in the form:

u(η) = b0 +b1a f (η). (3.5)

Substituting (3.5)in (3.1), then summing terms of like powers and setting their coefficients equal to zero, the next system of equations are
obtained:

− cb2
0 +

2
3

kαb3
0 +

1
2

kβb4
0 +2k3

δ µσb0b1 +2k3
δ µ

2b2
1 = 0,

−2cb0b1 +4k3
δλ µb0b1 +2k3

δσ
2b0b1 +2kαb2

0b1 +2kβb3
0b1 +6k3

δ µσb2
1 = 0,

6k3
δλσb0b1− cb2

1 +8k3
δλ µb2

1 +4k3
δσ

2b2
1 +2kαb0b2

1 +3kβb2
0b2

1 = 0,

4k3
δλ

2b0b1 +10k3
δλσb2

1 +
2
3

kαb3
1 +2kβb0b3

1 = 0,

6k3
δλ

2b2
1 +

1
2

kβb4
1 = 0.
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Solving the previous system yields two sets of solutions:

c = 4k3
δ (−4λ µ +σ

2), α =±
15k2δλ

√
(−4λ µ +σ2)b2

1

b2
1

, β =−12k2δλ 2

b2
1

, b0 =
σb1±

√
(−4λ µ +σ2)b2

1

2λ
.

Therefore, using the above sets gives the solitary wave solutions to (2.5) in the following formulas:

(kx− (4k3
δ (−4λ µ +σ

2))t)

Set 1: σ2−4λ µ < 0 and λ 6= 0,

v1,2(x, t) =

σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
+

√
4µλ −σ2

2λ
tan

(√
4µλ −σ2

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

))2

,

or

v3,4(x, t) =

σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
+

√
4µλ −σ2

2λ
cot

(√
4µλ −σ2

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

))2

.

Set 2: σ2−4λ µ > 0 and λ 6= 0,

v5,6(x, t) =

σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
−
√

σ2−4µλ

2λ
tanh

(√
σ2−4µλ

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

))2

,

or

v7,8(x, t) =

 σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
−
√

σ2−4µλ

2λ
coth

(√
σ2−4µλ

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

)) 2

.

(3.6)

Set 3: σ2 +4µ2 < 0,λ 6= 0 and λ =−µ,

v9,10(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
−
√
−σ2−4µ2

2µ
tan

(√
−σ2−4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

,

or

v11,12(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
−
√
−σ2−4µ2

2µ
cot

(√
−σ2−4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

.

Set 4: σ2 +4µ2 > 0, λ 6= 0 and λ =−µ,

v13,14(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
+

√
σ2 +4µ2

2µ
tanh

(√
σ2 +4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

,

or

v15,16(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
+

√
σ2 +4µ2

2µ
coth

(√
σ2 +4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

.

Set 5: σ2−4µ2 < 0 and λ = µ,

v17,18(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
+

√
−σ2 +4µ2

2µ
tan

(√
−σ2 +4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

,

or

v19,20(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
+

√
−σ2 +4µ2

2µ
cot

(√
−σ2 +4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

.

(3.7)
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Set 6: σ2−4µ2 > 0 and λ = µ,

v21,22(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
−
√

σ2−4µ2

2µ
tanh

(√
σ2−4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

,

or

v23,24(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
−
√

σ2−4µ2

2µ
coth

(√
σ2−4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

.

Set 7: σ2 = 4λ µ and λ = µ,

v25,26(x, t) =

√λ µb1

λ
−

(
2+2kx

√
λ µ

)
b1

2kxλ

2

.

Set 8: λ µ < 0, σ = 0 and λ 6= 0,

v27,28(x, t) =

±
√
−λ µb2

1

λ
−
√
−µ

λ
b1 tanh

(√
−λ µ

(
kx+16k3tδλ µ

))2

,

or

v29,30(x, t) =

±
√
−λ µb2

1

λ
−
√
−µ

λ
b1 coth

(√
−λ µ

(
kx+16k3tδλ µ

))2

.

(3.8)

Set 9: σ = 0 and µ =−λ ,

v31,32(x, t) =

±
√

λ 2b2
1

λ
+b1

(
1+ e−2λ(kx−16k3δλ 2t)

−1+ e−2λ (kx−16k3δλ 2t)

)2

.

Set 10: λ = σ =h and µ = 0,

v33,34(x, t) =

hb1±
√

h2b2
1

2h
+b1

(
eh(kx−4h2k3δ t)

1− eh(kx−4h2k3δ t)

)2

.

Set 11: σ = λ +µ,

v35,36(x, t) =

(
b1 (λ +µ)±b1 (λ −µ)

2λ
−b1

(
1−µe(µ−λ )(kx−4k3δ (λ−µ)2t)

1−λe(µ−λ )(kx−4k3δ (λ−µ)2t)

))2

.

Set 12: σ =−(λ +µ),

v37,38(x, t) =

(
b1 (−λ −µ)±b1 (λ −µ)

2λ
+b1

(
µ− e(µ−λ )(kx−4k3δ (λ−µ)2t)

λ − e(µ−λ )(kx−4k3δ (λ−µ)2t)

))2

Set 13: µ = 0,

v39,40(x, t) =

(
σb1±σb1

2λ
+b1

(
σeσ(kx−4k3δσ 2t)

1−λeσ(kx−4k3δσ 2t)

))2

.

Set 14: λ = µ = σ 6= 0,

v41,42(x, t) =

b1±
√
−3b2

1

2
+

1
2

b1

(
−1+

√
3tan

(√
3

2
σ

(
kx+12k3δ

σ
2t
)))2

.
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Set 15: µ = σ = 0,

v43,44(x, t) =
b2

1
k2λ 2x2 .

Set 16: λ = µ and σ = 0,

v45,46(x, t) =
(
±
√
−b2

1 +b1 tan
(

µ

(
kx+16k3

δ µ
2t
)))2

.

4. Graphical Illustrations

The majority of our solutions are presented in the following graphs to illustrate solutions.
In Figure 4.1, we present graph of (3.3) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2. Figure
4.2 shows graph of (3.4) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2. Graph of (3.6) using the
modified auxiliary equation method at k = 2,b1 = 0.3,µ = 0.02,λ = 0.1,δ = 0.1,σ = 0.3 is presented in Figure 4.3. Graph of (3.7) using
the modified auxiliary equation method at k = 0.6,b1 = 0.1,µ = 0.03,δ = 1.6,σ = 0.04 is given in Figure 4.4. Lastly, Figure 4.5 presents
graph of (3.8) using the modified auxiliary equation method at k = 0.7,b1 = 0.1,µ = 0.3,δ = 0.3,σ = 0,λ =−0.5.
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Figure 4.1: Graph of Eq. (3.3) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2.
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Figure 4.2: Graph of Eq. (3.4) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2.
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Figure 4.3: Graph of Eq. (3.6) using the modified auxiliary equation method at k = 2,b1 = 0.3,µ = 0.02,λ = 0.1,δ = 0.1,σ = 0.3.

- 10 - 5 0 5 10

0.0056

0.0058

0.0060

0.0062

0.0064

0.0066

x

u
(
x
,t
) t=15

t=10

t=5

Figure 4.4: Graph of Eq. (3.7) using the modified auxiliary equation method at k = 0.6,b1 = 0.1,µ = 0.03,δ = 1.6,σ = 0.04.
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Figure 4.5: Graph of Eq. (3.8) using the modified auxiliary equation method at k = 0.7,b1 = 0.1,µ = 0.3,δ = 0.3,σ = 0,λ =−0.5.
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5. Discussion

The graph is one of the best tools for describing and presenting solutions. In the following, we review the behavior of the wave in the
solutions presented: In Figures 4.1-4.2 the wave travels to the left with increasing timet = 0,5,10. Contrarily, in Figures 4.3-4.5 the wave
moves towards left as time passes t = 0,5,10. The flipped wave is presented in Figure 4.4 as time goes on.

6. Conclusion

In this work, a class of some new travelling wave solutions of the Schamel–Korteweg-de Vries equation are successfully found out by using
the Bernoulli Sub-ODE and modified auxiliary equation methods. The Bernoulli Sub-ODE is a simple and straightforward method and
is applicable to a wide range of problems in science and engineering, but it can be time-consuming to apply the method if the equation
involves complex functions. The modified auxiliary equation method can be used to solve a wide range of differential equations, also it can
provide closed-form solutions, but it can be difficult to determine the appropriate auxiliary equation to use for a given differential equation.
The presented exact solutions provided here may describe various new characteristics of waves and then may be useful in the theoretical
and numerical studies of the considered equation. A graphical representation of newly discovered solutions are also shown to explain the
dynamics of soliton profiles. The found new soliton solutions of the S-KdV equation are of significant importance and can be used in other
areas of physics such as plasma physics.
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