

RESEARCH ARTICLE

Spectrum, homomorphisms and multipliers of Lau product of Banach algebras

Mohammad Valaei, Abbas Zivari-Kazempour*

Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran

Abstract

Given Banach algebras A, B and a continuous homomorphism $\theta: B \longrightarrow A$ with $\|\theta\| \leq 1$, we obtain characterization of spectrum, homomorphisms and multipliers of $A \times_{\theta} B$, which is a strongly splitting Banach algebra extension of B by A. Also we characterize the semisimplicity of these algebras.

Mathematics Subject Classification (2020). 46B20, 47B47, 47B49.

Keywords. spectrum, homomorphisms, multipliers, Lau product, faithful, semisimple.

1. Introduction

Let A and B be Banach algebras and $\phi: B \longrightarrow \mathbb{C}$ be a multiplicative linear functional. Then the direct product $A \times B$ equipped with the algebra multiplication

$$(a,b)(u,v) = (au + \phi(b)u + \phi(v)a, bv), \qquad (a,b), (u,v) \in A \times B,$$

and with the l^1 -norm is a Banach algebra which is called the Lau product of A and B and is denoted by $A \times_{\phi} B$.

This type of product was introduced by Lau [9] for certain class of Banach algebras and was extended by Sangani Monfared [11] for the general case.

If we allow $\phi = 0$, then we obtain the usual direct product of Banach algebras, and when $B = \mathbb{C}$ and $\phi : \mathbb{C} \longrightarrow \mathbb{C}$ is the identity map, $A \times_{\phi} \mathbb{C}$ coincides with the unitization of A.

Some basic properties of $A \times_{\phi} B$ such as characterization of Gelfand space, topological center, amenability, ideal structure and minimal idempotent are investigated in [11]. Also, characterization of multipliers of these product discussed in [3] and [14]. Additionally, many Banach algebras properties of $A \times_{\phi} B$ are studied in [1], [6], [8], [10], [13], for example.

Bhatt and Dabhi in [2] introduced a new type of Lau product. Let $\theta : B \longrightarrow A$ be a continuous homomorphism between Banach algebras with $\|\theta\| \leq 1$. Then $A \times B$ with the multiplication

 $(a,b)(u,v) = (au + \theta(b)u + a\theta(v), bv),$

and with the l^1 -norm turns into a Banach algebra, which is denoted by $A \times_{\theta} B$.

^{*}Corresponding Author.

Email addresses: M.valaei@abru.ac.ir (M. Valaei), zivari@abru.ac.ir (A. Zivari-Kazempour)

Received: 26.04.2023; Accepted: 04.08.2023

The product $A \times_{\theta} B$ provides not only new examples in Banach algebras by themselves, but also it has the potential to serve as counter-examples in different branches of functional and harmonic analysis.

Let $\Delta(A)$ be the set of all multiplicative linear functionals on Banach algebra A. Note that every $\phi \in \Delta(A)$ is continuous and $\|\phi\| \leq 1$, [5]. When A is unital with identity e_A and $\phi \in \Delta(B)$, then $\theta : B \longrightarrow A$ defined by $\theta(b) = \phi(b)e_A$ is a continuous homomorphism with $\|\theta\| \leq 1$. Therefore in this case the Lau product coincides with $A \times_{\theta} B$.

We remark that in $A \times_{\theta} B$, we identify $A \times \{0\}$ with A and $\{0\} \times B$ with B. Then A is a closed ideal while B is a closed subalgebra of $A \times_{\theta} B$, and $(A \times_{\theta} B)/A$ is isometric isomorphism with B.

Spelitting of Banach algebra extensions has been a major tool in the study of Banach algebras. For example, module extensions as generalizations of Banach algebras extensions where introduced and studied by Gourdeau [7]. On the other hand, $A \times_{\theta} B$ is a strongly splitting Banach algebra extension of B by A that exhibits many properties that are not shared, in general, by arbitrary strongly splitting extensions. For example, commutativity is not preserved by a general strongly splitting extension. However, $A \times_{\theta} B$ is commutative if and only if both A and B are commutative, [11, Proposition 2.3].

Let X be an A-bimodule, Y be an B-bimodule and $\theta : B \longrightarrow A$ be a homomorphism. We say that $\sigma : Y \longrightarrow X$ is a right (left) θ -module homomorphism if for all $b \in B$ and $y \in Y$,

$$\sigma(by) = \theta(b)\sigma(y), \qquad (\sigma(yb) = \sigma(y)\theta(b)).$$

In particular, if X = A and Y = B, then σ is called right (left) θ -multiplier. It is clear that each multiplier is a special case of a θ -multiplier with $\theta = id$, the identity map on A.

Example 1.1. Let

$$A = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in \mathbb{C} \right\},\$$

and define $\theta, \sigma : A \longrightarrow A$ by

$$\theta\left(\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \sigma\left(\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & a & 0 \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}$$

Then, for all $x, y \in A$,

$$\sigma(xy) = \theta(x)\sigma(y) = \sigma(x)\theta(y).$$

Therefore σ is a θ -multiplier.

The purpose of the present paper is to investigate the spectrum, homomorphisms and multipliers for Banach algebras induced by Lau product of Banach algebras defined by a Banach algebra morphism.

Throughout the paper, we assume that A and B are Banach algebras and $\theta: B \longrightarrow A$ is a continuous homomorphism with $\|\theta\| \leq 1$.

2. Spectrum of Lau product

The spectrum of an element $a \in A$ is defined as

$$Sp_A(a) = \{\lambda \in \mathbb{C} : \lambda e_A - a \notin Inv(A)\},\$$

where Inv(A) is the set of all invertible elements of A, and the spectral radius $r_A(a)$ of an element a is defined as $r_A(a) = \sup\{|\lambda| : \lambda \in Sp_A(a)\}$.

It should be note that if A is not unital, then $Sp_A(a) = Sp_{A^{\sharp}}(a)$, where A^{\sharp} stands the unitization of A, [12].

Theorem 2.1. Let A and B be unital Banach algebras. Then

$$Inv(A \times_{\theta} B) \cong Inv(A) \times Inv(B), \quad (homeomorphism).$$
 (2.1)

Proof. Let e_A and e_B be unit of A and B, respectively. Then $(e_A - \theta(e_B), e_B)$ is the unit element of $A \times_{\theta} B$. Define

$$h: Inv(A) \times Inv(B) \longrightarrow Inv(A \times_{\theta} B),$$

by $h(a,b) = (a - \theta(b), b)$. Let $a \in Inv(A)$ and $b \in Inv(B)$, then there exists $u \in A$ and $v \in B$ such that $au = e_A$ and $bv = e_B$. So

$$(a - \theta(b), b)(u - \theta(v), v) = (au - \theta(bv), bv) = (e_A - \theta(e_B), e_B)$$

Therefore $(a - \theta(b), b)$ has a right inverse.

Similarly, $(a - \theta(b), b)$ has a left inverse and thus h is well-defined. It is easy to check that h is linear and one to one.

Suppose that $(a, b) \in Inv(A \times_{\theta} B)$. Hence there exist $(u, v) \in Inv(A \times_{\theta} B)$ such that

$$(au + \theta(b)u + a\theta(v), bv) = (a, b)(u, v) = (e_A - \theta(e_B), e_B).$$
(2.2)

It follows from (2.2) that $bv = e_B$ and

(

$$au + \theta(b)u + a\theta(v) = e_A - \theta(e_B) = e_A - \theta(bv)$$

Therefore

$$au + \theta(b)u + a\theta(v) + \theta(bv) = e_A.$$

Since

$$a + \theta(b))(u + \theta(v)) = au + \theta(b)u + a\theta(v) + \theta(bv) = e_A$$

hence $a + \theta(b)$ and b have right inverse in A and B, respectively. Similarly, $a + \theta(b)$ and b have left inverse in A and B, respectively. Thus, $a + \theta(b) \in Inv(A)$, $b \in Inv(B)$ and

$$h(a + \theta(b), b) = (a + \theta(b) - \theta(b), b) = (a, b)$$

This means that h is surjective. For $(a, b) \in Inv(A) \times Inv(B)$, we have

$$\begin{aligned} \|h(a,b)\| &= \|(a-\theta(b),b)\| \\ &= \|a-\theta(b)\| + \|b\| \\ &\leq \|a\| + \|\theta\| \|b\| + \|b\| \\ &\leq (1+\|\theta\|)(\|a\|+\|b\|). \end{aligned}$$

Therefore, $||h|| \leq 2$ and h is continuous. Similarly, h^{-1} is continuous. This finishes the proof.

Our next result concerns the spectrum in $A \times_{\theta} B$.

Theorem 2.2. For Banach algebras A and B, we have

$$Sp_{A\times_{\theta}B}(a,b) = Sp_A(a+\theta(b)) \cup Sp_B(b).$$
(2.3)

Proof. It is enough to show that

$$Sp_{A\times_{\theta}B}(a,b) = Sp_A(a+\theta(b)) \cup Sp_B(b)$$

when A and B are unital.

Let $\lambda \notin Sp_A(a) \cup Sp_B(b)$. Then $\lambda e_A - a \in Inv(A)$ and $\lambda e_B - b \in Inv(A)$. Hence by Theorem 2.1, we get

$$(\lambda e_A - a - \theta(\lambda e_B - b), \lambda e_B - b) \in Inv(A \times_{\theta} B),$$
 (2.4)

which yields that

$$\lambda(e_A - \theta(e_B), e_B) - (a - \theta(b), b) \in Inv(A \times_{\theta} B).$$

Therefore, $\lambda \notin Sp_{A \times_{\theta} B}(a - \theta(b), b)$.

Now suppose that $\lambda \notin Sp_A(a + \theta(b)) \cup Sp_B(b)$. Then by the above argument,

$$\lambda \notin Sp_{A \times_{\theta} B}(a + \theta(b) - \theta(b), b) = Sp_{A \times_{\theta} B}(a, b).$$

This means that

$$Sp_{A\times_{\theta}B}(a,b) \subseteq Sp_A(a+\theta(b)) \cup Sp_B(b)$$

For the converse, let $\lambda \notin Sp_{A \times_{\theta} B}(a, b)$. Then

$$\lambda(e_A - \theta(e_B), e_B) - (a, b) \in Inv(A \times_{\theta} B).$$
(2.5)

But

$$\begin{aligned} \lambda(e_A - \theta(e_B), e_B) - (a, b) &= (\lambda e_A - \lambda \theta(e_B) - a, \lambda e_B - b) \\ &= (\lambda e_A - \lambda \theta(e_B) - a + \lambda \theta(e_B) - \theta(b) - \theta(\lambda e_B - b), \lambda e_B - b) \\ &= (\lambda e_A - (a + \theta(b)) - \theta(\lambda e_B - b), \lambda e_B - b). \end{aligned}$$

It follows from (2.5) and the above equality that

$$\lambda e_A - (a + \theta(b)) \in Inv(A), and \lambda e_B - b \in Inv(B).$$

Consequently, $\lambda \notin Sp_A(a + \theta(b))$ and $\lambda \notin Sp_B(b)$. Thus,

$$Sp_A(a + \theta(b)) \cup Sp_B(b) \subseteq Sp_{A \times_{\theta} B}(a, b).$$

This completes the proof.

The next corollary appeared in [4, Lemma 2.5] for commutative Banach algebras. Here as a consequence of Theorem 2.2, we deduce it for the general case.

Corollary 2.3. Let A and B be Banach algebras. Then

$$r_{A \times_{\theta} B}(a, b) = \max\{r_A(a + \theta(b)), r_B(b)\}.$$

3. Homomorphisms of Lau product

In this section, we assume that E and F are Banach algebras, and $\sigma \in Hom(F, E)$ with $\|\sigma\| \leq 1$, where Hom(F, E) denotes the set of all homomorphisms from F into E.

Let $p_A : A \times_{\theta} B \longrightarrow A$ and $p_B : A \times_{\theta} B \longrightarrow B$ be the usual projections which are defined by $p_A(a,b) = a$ and $p_B(a,b) = b$, respectively.

Recall that an A-bimodule X is called left (right) faithful if the condition ax = 0 (xa = 0) for $x \in X$ implies that x = 0. The Banach algebra A is faithful, if it is faithful as an A-bimodule over itself.

Theorem 3.1. Suppose that

$$f_1: A \longrightarrow E, \quad f_2: B \longrightarrow F, \quad f: A \times_{\theta} B \longrightarrow E \times_{\sigma} F,$$

where $f = (f_1 \circ p_A, f_2 \circ p_B)$. Then,

- (i) If $f \in Hom(A \times_{\theta} B, E \times_{\sigma} F)$, then $f_1 \in Hom(A, E)$ and $f_2 \in Hom(B, F)$.
- (ii) If $f_1 \in Hom(A, E)$ and $f_2 \in Hom(B, F)$, f_1 is surjective and E is faithful, then $f \in Hom(A \times_{\theta} B, E \times_{\sigma} F)$ if and only if $\sigma \circ f_2 = f_1 \circ \theta$.

Proof. (i) Suppose that $f \in Hom(A \times_{\theta} B, E \times_{\sigma} F)$, then for all $(a, b), (u, v) \in A \times_{\theta} B$,

$$f((a,b)(u,v)) = f(a,b)f(u,v).$$
(3.1)

By using $f = (f_1 \circ p_A, f_2 \circ p_B)$ we get

$$f((a,b)(u,v)) = f(au + \theta(b)u + a\theta(v), bv)$$

= $(f_1(au) + f_1(\theta(b)u) + f_1(a\theta(v)), f_2(bv)).$

780

On the other hand,

$$f(a,b)f(u,v) = (f_1(a), f_2(b))(f_1(u), f_2(v))$$

= $(f_1(a)f_1(u) + \sigma(f_2(b))f_1(u) + f_1(a)\sigma(f_2(v)), f_2(b)f_2(v)).$

Hence by the above two equalities and (3.1), we have $f_2(bv) = f_2(b)f_2(v)$ and

$$f_1(au) + f_1(\theta(b)u) + f_1(a\theta(v)) = f_1(a)f_1(u) + \sigma(f_2(b))f_1(u) + f_1(a)\sigma(f_2(v)).$$
(3.2)

By taking b = v = 0 in (3.2), we conclude that $f_1(au) = f_1(a)f_1(u)$ for all $a, u \in A$. Thus, f_1 and f_2 are homomorphisms.

(ii) Assume that $f_1 \in Hom(A, E), f_2 \in Hom(B, F)$ and let $f : A \times_{\theta} B \longrightarrow E \times_{\sigma} F$ be a homomorphism. Then by the equality (3.2),

$$f_1(\theta(b))f_1(u) + f_1(a)f_1(\theta(v)) = \sigma(f_2(b))f_1(u) + f_1(a)\sigma(f_2(v)).$$
(3.3)

If we take a = 0 in (3.3), we obtain

$$(f_1(\theta(b)) - \sigma(f_2(b)))f_1(u) = 0, \quad u \in A, b \in B.$$

Since f_1 is surjective and E is faithful, we get $\sigma \circ f_2 = f_1 \circ \theta$. The converse is similar. \Box

If $E = F = \mathbb{C}$ and $\sigma : \mathbb{C} \longrightarrow \mathbb{C}$ is the identity map, then we get the following result.

Corollary 3.2. Let

$$f_1: A \longrightarrow \mathbb{C}, \quad f_2: B \longrightarrow \mathbb{C}, \quad f: A \times_{\theta} B \longrightarrow \mathbb{C}^2,$$

where $f = (f_1 \circ p_A, f_2 \circ p_B)$. Then,

- (i) If $f \in Hom(A \times_{\theta} B, \mathbb{C}^2)$, then $f_1 \in \Delta(A)$ and $f_2 \in \Delta(B)$. (ii) If $0 \neq f_1 \in \Delta(A)$ and $f_2 \in \Delta(B)$, then $f \in Hom(A \times_{\theta} B, \mathbb{C}^2)$ if and only if $f_2 = f_1 \circ \theta.$

It should be pointed out that the topology of $\Delta(A)$ is the induced weak^{*} topology from A^* , the dual space of A. Note that $\Delta(A)$ is a locally compact Hausdorff space and it is compact, whether A is unital, [5].

It is shown in [11, Proposition 2.4] that if A and B are commutative and $\theta \in \Delta(B)$, then $\Delta(A \times_{\theta} B) = E \cup F$, where

$$E = \{(\phi, \theta) : \phi \in \Delta(A)\}, and \quad F = \{(0, \psi) : \psi \in \Delta(B)\}$$

The following result shows that $\Delta(A)$ and $Hom(A \times_{\theta} B, \mathbb{C}^2)$ are homeomorphic as a two locally compact Hausdorff spaces.

Corollary 3.3. For Banach algebras A and B,

$$\Delta(A) \cong Hom(A \times_{\theta} B, \mathbb{C}^2).$$

Proof. Define $h: \Delta(A) \longrightarrow Hom(A \times_{\theta} B, \mathbb{C}^2)$ via

$$h(f_1) = (f_1 \circ p_A, f_1 \circ \theta \circ p_B),$$

Then h is linear and bijective. Moreover, both h and h^{-1} are continuous. Indeed, for each $f_1 \in \Delta(A)$, we have

$$\begin{aligned} \|h(f_1)\| &= \|(f_1 \circ p_A, f_1 \circ \theta \circ p_B)\| \\ &\leq \|f_1 \circ p_A\| + \|f_1 \circ \theta \circ p_B\| \\ &= \|f_1\| + \|f_1 \circ \theta\| \\ &\leq \|f_1\| (1 + \|\theta\|) \leq 2\|f_1\|. \end{aligned}$$

Thus, h is continuous. The continuity of h^{-1} is obvious.

The Jacobson radical of an algebra A, denoted by radA, is the intersection of maximal modular left (right) ideals of A. The algebra A is called *semisimple* if $radA = \{0\}$. If A is a commutative Banach algebra, then

$$radA = \bigcap \{ker\phi: \phi \in \Delta(A)\}$$

Lemma 3.4. Let A and B be commutative and $(a, b) \in rad(A \times_{\theta} B)$. Then f(a, b) = (0, 0) for each $f \in Hom(A \times_{\theta} B, \mathbb{C}^2)$.

Proof. Let $(a,b) \in rad(A \times_{\theta} B)$, then g(a,b) = 0 for each $g \in \Delta(A \times_{\theta} B)$. Assume to contrary that there exist $f \in Hom(A \times_{\theta} B, \mathbb{C}^2)$ such that $f(a,b) \neq (0,0)$. By Corollary (3.3), there exist $f_1 \in \Delta(A)$ such that

$$(f_1(a), f_1 \circ \theta(b)) = f(a, b) \neq (0, 0)$$

Therefore $f_1(a) \neq 0$ or $f_1 \circ \theta(b) \neq 0$.

Case I: Let $f_1(a) + f_1 \circ \theta(b) \neq 0$.

Let $g: A \times_{\theta} B \longrightarrow \mathbb{C}$ defined by $g(a, b) = f_1(a) + f_1 \circ \theta(b)$. Then $g \in \Delta(A \times_{\theta} B)$ and $g(a, b) \neq 0$.

Case II: Let $f_1(a) + f_1 \circ \theta(b) = 0$.

Then $f_1 \circ \theta(b) \neq 0$. Define $g: A \times_{\theta} B \longrightarrow \mathbb{C}$ via $g(a, b) = f_1 \circ \theta(b)$. Then $g \in \Delta(A \times_{\theta} B)$ and $g(a, b) \neq 0$.

In both cases we obtain a contradiction. Thus, we reach the desired result.

 \square

The following result is due to Sangani Monfared [11, Theorem 3.1] when $\theta \in \Delta(B)$, see also [2, Corollary 2.2]. Here we outline an alternative proof for it with direct method.

Theorem 3.5. Let A and B be commutative. Then $A \times_{\theta} B$ is semisimple if and only if A and B are semisimple.

Proof. Suppose that $A \times_{\theta} B$ is semisimple and let $b \in rad(B)$. Then $f_2(b) = 0$, for each $f_2 \in \Delta(B)$. Since $f_1 \circ \theta \in \Delta(B)$, for every multiplicative linear functional f_1 on A, so $(f_1 \circ \theta)(b) = 0$. Therefore, for all $f \in Hom(A \times_{\theta} B, \mathbb{C}^2)$,

$$f(\theta(b), b) = (f_1(\theta(b)), f_1 \circ \theta(b)) = (0, 0).$$

Noticing that

$$\Delta(A \times_{\theta} B) \subseteq Hom(A \times_{\theta} B, \mathbb{C}^2).$$

hence for every $g \in \Delta(A \times_{\theta} B)$, we have $g(\theta(b), b) = 0$. Thus, $(\theta(b), b) \in rad(A \times_{\theta} B) = \{0\}$ and hence b = 0. Consequently, B is semisimple.

Now we prove that $rad(A) = \{0\}$. To see this, let $a \in rad(A)$, then for each $f_1 \in \Delta(A)$, we have $f_1(a) = 0$. Therefore for all $f \in Hom(A \times_{\theta} B, \mathbb{C}^2)$,

$$f(a,0) = (f_1(a), f_1 \circ \theta(0)) = (0,0),$$

which yields that g(a, 0) = 0 for each $g \in \Delta(A \times_{\theta} B)$. So $(a, 0) \in rad(A \times_{\theta} B) = \{0\}$ and hence a = 0. Therefore, A is semisimple.

For the converse let A and B be semisimple. Suppose that $g \in \Delta(A \times_{\theta} B)$ is arbitrary and g(a, b) = 0. Then by Lemma 3.4, we have $(f_1(a), f_1 \circ \theta(b)) = (0, 0)$ where $f_1 \in \Delta(A)$. So $f_1(a) = f_1 \circ \theta(b) = 0$. It follows from the semisimplicity of A and B that a = b = 0. Thus, $A \times_{\theta} B$ is semisimple.

Corollary 3.6. Suppose that A is commutative and semisimple. If θ is one to one, then

- (i) $A \times_{\theta} B$ is semisimple,
- (ii) $\Delta(A \times_{\theta} B)$ separates the points of $A \times_{\theta} B$,
- (iii) $r_{A \times_{\theta} B}(a, b)$ is a norm on $A \times_{\theta} B$,
- (iv) $A \times_{\theta} B$ has a unique complete norm.

Proof. (i) Let $b \in rad(B)$. Then $f_2(b) = 0$ for each $f_2 \in \Delta(B)$. Since $f_1 \circ \theta \in \Delta(B)$, for all $f_1 \in \Delta(A)$, so $(f_1 \circ \theta)(b) = 0$. Therefore $\theta(b) \in rad(A) = \{0\}$, and hence b = 0. Thus, B is semisimple and by Theorem 3.5, $A \times_{\theta} B$ is semisimple.

(ii), (iii), and (iv) follows from (i).

4. Multipliers of Lau product

Let X be an A-bimodule, Y be an B-bimodule and suppose that $\sigma: Y \longrightarrow X$ is a θ -module homomorphism. Consider $X \times_{\sigma} Y$ as a Banach space, then the action

 $(a,b)(x,y) = (ax + a\sigma(y) + \theta(b)x, by), \quad (a,b) \in A \times_{\theta} B, \quad (x,y) \in X \times_{\sigma} Y.$

turns $X \times_{\sigma} Y$ into a left $(A \times_{\theta} B)$ -module. Indeed, for every $(a, b), (u, v) \in A \times_{\theta} B$ and $(x,y) \in X \times_{\sigma} Y$ we have

$$((a,b)(u,v))(x,y) = (au + \theta(b)u + a\theta(v), bv)(x,y)$$

= $(aux + \theta(b)ux + a\theta(v)x + au\sigma(y) + \theta(b)u\sigma(y) + a\theta(v)\sigma(y)$
+ $\theta(bv)x, bvy).$

On the other hand,

$$(a,b)((u,v)(x,y)) = (a,b)(ux + u\sigma(y) + \theta(v)x, vy)$$

= $(aux + au\sigma(y) + a\theta(v)x + a\sigma(vy) + \theta(b)ux + \theta(b)u\sigma(y)$
+ $\theta(b)\theta(v)x, bvy).$

Since σ is a right θ -module homomorphism, by comparing the above two expressions, we obtain

$$((a,b)(u,v))(x,y) = (a,b)((u,v)(x,y)).$$

Similarly, $X \times_{\sigma} Y$ is a right $(A \times_{\theta} B)$ -module with the module action

$$(x, y)(a, b) = (xa + \sigma(y)a + x\theta(b), yb),$$

and in this case we arrive at

$$(x,y)((a,b)(u,v)) = ((x,y)(a,b))(u,v).$$

Theorem 4.1. Suppose that $\sigma: Y \longrightarrow X$ is a θ -module homomorphism and set

$$T_1: A \longrightarrow X, \quad T_2: B \longrightarrow Y, \quad T: A \times_{\theta} B \longrightarrow X \times_{\sigma} Y,$$

where $T = (T_1 \circ p_A, T_2 \circ p_B)$. Then,

- (i) If T is a right multiplier, then T_1 and T_2 are so.
- (ii) If T_1 and T_2 are right multiplier and X is faithful, then T is right multiplier if and only if $\sigma \circ T_2 = T_1 \circ \theta$.

Proof. (i) Suppose that T is a right multiplier, then for all $(a,b), (u,v) \in A \times_{\theta} B$,

$$T((a,b)(u,v)) = (a,b)T(u,v).$$
(4.1)

It follows from (4.1) and our assumption that

$$(aT_1(u) + a\sigma(T_2(v)) + \theta(b)T_1(u), bT_2(v)) = (a, b)(T_1(u), T_2(v))$$

= $(a, b)T(u, v)$
= $T((a, b)(u, v))$
= $T(au + \theta(b)u + a\theta(v), bv)$
= $(T_1(au + \theta(b)u + a\theta(v)), T_2(bv)).$

Therefore, $T_2(bv) = bT_2(v)$ and

$$aT_{1}(u) + a\sigma(T_{2}(v)) + \theta(b)T_{1}(u) = T_{1}(au + \theta(b)u + a\theta(v)).$$
(4.2)

Setting b = v = 0 in (4.2), we get $aT_1(u) = T_1(au)$ for all $a, u \in A$. Thus, T_1 and T_2 are right multipliers.

(ii) Let T_1, T_2 and T are right multipliers. Then (4.2) gives

 $a\sigma(T_2(v)) = T_1(a\theta(v)) = aT_1(\theta(v)), \quad a \in A, v \in B.$

Therefore, $a(\sigma(T_2(v)) - T_1(\theta(v))) = 0$ and since X is faithful, we get $\sigma \circ T_2 = T_1 \circ \theta$. The converse is immediate.

Let $\mathfrak{M}_r(A)$ denotes the set of all right multipliers from A into a left A-module X, and let

$$\mathfrak{M}_r(A \times_{\theta} B) = \{T : A \times_{\theta} B \longrightarrow X \times_{\sigma} Y, T \text{ is a right multiplier} \}.$$

In the next result we turns our attention to the multipliers of $A \times_{\theta} B$.

Theorem 4.2. Suppose that $\sigma: Y \longrightarrow X$ is a invertible θ -module homomorphism. If X is faithful and σ^{-1} is continuous, then

$$\mathfrak{M}_r(A) \cong \mathfrak{M}_r(A \times_{\theta} B).$$

Proof. Let $h: \mathfrak{M}_r(A) \longrightarrow \mathfrak{M}_r(A \times_{\theta} B)$ defined by

$$h(T_1) = (T_1 \circ p_A, \sigma^{-1} \circ T_1 \circ \theta \circ p_B).$$

First note that h is linear and well-defined. To see this, let $T_1 : A \longrightarrow X$ be a right multiplier and take $T_2 = \sigma^{-1} \circ T_1 \circ \theta$. Then for $b_1, b_2 \in B$,

$$T_{2}(b_{1}b_{2}) = \sigma^{-1} \circ T_{1} \circ \theta(b_{1}b_{2})$$

= $\sigma^{-1} \circ T_{1}(\theta(b_{1})(\theta(b_{2})))$
= $\sigma^{-1}(\theta(b_{1})T_{1}(\theta(b_{2})))$
= $\sigma^{-1}(\theta(b_{1})\sigma(T_{2}(b_{2})))$
= $b_{1}T_{2}(b_{2}).$

The last equality is true, because σ is a θ -module homomorphism. Hence T_2 is a right multiplier from B into Y, so by Theorem 4.1 (ii), $h(T_1) \in \mathfrak{M}_r(A \times_{\theta} B)$.

Clearly, h is one to one. We show that h is surjective. Let $T : A \times_{\theta} B \longrightarrow X \times_{\sigma} Y$ be a right multiplier. Then for all $(a, b) \in A \times_{\theta} B$,

$$T(a,b) = (S_1(a,b), S_2(a,b)),$$

where $S_1 : A \times_{\theta} B \longrightarrow X$ and $S_2 : A \times_{\theta} B \longrightarrow Y$. Define $T_1 : A \longrightarrow X$ via $T_1 \circ p_A = S_1$ and $T_2 : B \longrightarrow Y$ by $T_2 \circ p_B = S_2$. Then by the preceding theorem T_1 and T_2 are right multipliers. Also the equality $\sigma \circ T_2 = T_1 \circ \theta$ holds true. So

$$h(T_1) = (S_1, S_2) = T.$$

Note that h^{-1} is automatically continuous. In fact, for each $T \in \mathfrak{M}_r(A \times_{\theta} B)$,

$$||h^{-1}(T)|| = ||T_1|| \le ||T_1|| + ||T_2|| = ||T||,$$

and hence $||h^{-1}|| \le 1$.

On the other hand, for each $T_1 \in \mathfrak{M}_r(A)$ we have

$$\|h(T_1)\| = \|(T_1 \circ p_A, \sigma^{-1} \circ T_1 \circ \theta \circ p_B)\|$$

$$\leq \|T_1 \circ p_A\| + \|\sigma^{-1} \circ T_1 \circ \theta \circ p_B\|$$

$$= \|T_1\| + \|\sigma^{-1} \circ T_1 \circ \theta\|$$

$$\leq \|T_1\|(1 + \|\sigma^{-1}\|\|\theta\|).$$

Consequently, h is continuous. This finishes the proof.

As a consequence of Theorem 4.2, we deduce the next result.

784

Corollary 4.3. Let A be a unital Banach algebra. If θ is invertible and θ^{-1} is continuous, then T_1 is a right multiplier on A if and only if T is a right multiplier on $A \times_{\theta} B$.

Let σ be a θ -module homomorphism and define

$$L_X = \{L_x : A \longrightarrow X : L_x(a) = ax, \forall x \in X\},$$
$$L_Y = \{L_y : B \longrightarrow Y : L_y(b) = by, \forall y \in Y\},$$

and

$$(L_X, L_Y) = \{(L_x, L_y) : x \in X, y \in Y\}.$$

Moreover, for $x \in X$ and $y \in Y$ we set

$$L_{X \times_{\sigma} Y} = \{ L_{(x,y)} : A \times_{\theta} B \longrightarrow X \times_{\sigma} Y : \quad L_{(x,y)}(a,b) = (a,b)(x,y) \}.$$

Then for all $x \in X$ and $y \in Y$, L_x , L_y and $L_{(x,y)}$ are right multipliers.

The next example provided that (L_X, L_Y) is different from $\mathfrak{M}_r(A \times_{\theta} B)$.

Example 4.4. Let A be a unital Banach algebra, and let $\theta = \sigma : A \longrightarrow A$ be the identity map. Then by Theorem 4.1, $(L_x, L_y) \in \mathfrak{M}_r(A \times_{\theta} B)$ if and only if $\sigma \circ L_y = L_x \circ \theta$. However, for $x = e_A$, $y = 2e_A$ and $a = e_A$ we have,

$$\sigma \circ L_y(a) = \sigma(2e_A) = 2e_A, \qquad L_x \circ \theta(a) = L_x(a) = e_A.$$

Therefore, (L_x, L_y) is not a right multiplier.

Proposition 4.5. Let $\sigma: Y \longrightarrow X$ be a θ -module homomorphism. If X is faithful and θ is surjective, then $(L_x, L_y) \in \mathfrak{M}_r(A \times_{\theta} B)$ if and only if $x = \sigma(y)$.

Proof. Let $(L_x, L_y) \in \mathfrak{M}_r(A \times_{\theta} B)$. Then by Theorem 4.1, for every $b \in B$,

$$(\sigma \circ L_y)(b) = (L_x \circ \theta)(b),$$

which imply that $\theta(b)\sigma(y) = \sigma(by) = \theta(b)x$. For each $a \in A$ there exist $b \in B$ such that $\theta(b) = a$. Therefore, we have $ax = a\sigma(y)$ and hence $a(x - \sigma(y)) = 0$. Since X is faithful, we conclude that $x = \sigma(y)$. The converse is similar.

The next corollary follows immediately from preceding result.

Corollary 4.6. Let A be a unital Banach algebra. Then for all $a \in A$,

$$(L_a, L_a) \in \mathfrak{M}_r(A \times_{\theta} A).$$

Lemma 4.7. Let $\sigma : Y \longrightarrow X$ be a θ -module homomorphism. Then for each $x \in X$ and $y \in Y$,

$$L_{(x,y)} = (L_{(x+\sigma(y))} \circ p_A + L_x \circ \theta \circ p_B, L_y \circ p_B).$$

Proof. Let $(a,b) \in (A \times_{\theta} B)$. Then

$$L_{(x,y)}(a,b) = (a,b)(x,y)$$

= $(ax + a\sigma(y) + \theta(b)x, by)$
= $(L_{(x+\sigma(y))}(a) + L_x \circ \theta(b), L_y(b)).$
= $(L_{(x+\sigma(y))} \circ p_A(a,b) + L_x \circ \theta \circ p_B(a,b), L_y \circ p_B(a,b)),$

as required.

Theorem 4.8. Suppose that $\sigma : Y \longrightarrow X$ is a θ -module homomorphism. If θ is surjective, then

$$(L_X, L_Y) \cong L_{X \times_\sigma Y}.$$

Proof. Let $h: (L_X, L_Y) \longrightarrow L_{X \times_{\sigma} Y}$ defined by

$$h((L_x, L_y)) = (L_{(x+\sigma(y))} \circ p_A + L_x \circ \theta \circ p_B, L_y \circ p_B)$$

The mapping h is linear and it is well-defined by Lemma 4.7. Clearly, h is surjective. We show that h is one to one. Let $h((L_x, L_y)) = h((L_s, L_t))$, then

$$L_{(x+\sigma(y))} \circ p_A + L_x \circ \theta \circ p_B = L_{(s+\sigma(t))} \circ p_A + L_s \circ \theta \circ p_B, \tag{4.3}$$

and

$$L_y \circ p_B = L_t \circ p_B. \tag{4.4}$$

It follows from (4.4) that $L_y = L_t$ and hence for each $b \in B$,

$$y = L_y(b) = L_t(b) = bt.$$
 (4.5)

Since σ is a right θ -module homomorphism, by (4.5) we get

$$\theta(b)\sigma(y) = \sigma(by) = \sigma(bt) = \theta(b)\sigma(t), \tag{4.6}$$

and the surjectivity of θ together (4.6) implies that

$$L_{\sigma(y)}(a) = a\sigma(y) = a\sigma(t) = L_{\sigma(t)}(a), \qquad (4.7)$$

for all $a \in A$. From (4.3) we have

$$L_{(x+\sigma(y))}(a) = (L_{(x+\sigma(y))} \circ p_A + L_x \circ \theta \circ p_B)(a, 0)$$

= $(L_{(s+\sigma(t))} \circ p_A + L_s \circ \theta \circ p_B)(a, 0)$
= $L_{(s+\sigma(t))}(a).$

By (4.7) and the above equality, we obtain $L_x = L_s$. Therefore, $(L_x, L_y) = (L_s, L_t)$ and h is one to one. The continuity of h and h^{-1} are obvious.

From Theorem 4.8, we have the next result.

Corollary 4.9. If θ is surjective, then $(L_A, L_B) \cong L_{A \times_{\theta} B}$.

Acknowledgment. The authors gratefully acknowledge the helpful comments of the anonymous referees.

References

- F. Abtahi, A. Ghafarpanah and A. Rejali, *Biprojectivity and biflatness of Lau product of Banach algebras defined by a Banach algebras morphism*, Bull. Aust. Math. Soc. **91** (1), 134-144, 2015.
- [2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Law product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87, 195-206, 2013.
- [3] P. A. Dabhi, Multipliers of perturbed Cartesian products with application to BESproperty, Acta. Math. Hungar 149 (1), 58-66, 2016.
- [4] P. A. Dabhi and S. K. Patel Spectral properties and stability of perturbed Cartesian products with application to BES-property, Proc. Indian Acad. Sci. Math. Sci. 127 (4), 673-687, 2017.
- [5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc., 24, Clarendon Press, Oxford, 2000.
- [6] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. Math. 122 (2), 225-232, 2011.
- [7] F. Gourdeau, Amenability and the second dual of a Banach algebras, Studia Math. 125 (3), 75-81, 1997.
- [8] A. R. Khoddami and H. R. Ebrahimi Vishki, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iranian Math. Soc. 39 (3), 559-568, 2013.

- [9] A. T. M. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (3), 161-175, 1983.
- [10] A. Minapoor, A. Bodaghi and O.T. Mewomo, Ideal Connes-amenability of Law product of Banach algebras, Eurasian Math. J. 12 (4), 74-81, 2021.
- [11] M. S. Monfared, On certain products of Banach algebras with application to harmonic analysis, Studia Math. 178 (3), 277-294, 2007.
- [12] G. J. Murphy, C^{*}-algebras and operator theory, Academic Press, 1990.
- [13] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau product of Banach algebras, Banach J. Math. Anal. 9 (2), 183-195, 2015.
- [14] S. E. Takahasi, H. Takagi and T. Miura, A characterization of multipliers of a Lau algebras constructed by semisimple commutative Banach algebras, Taiwan J. Math. 20 (6), 1401-1415, 2016.