Spectrum, homomorphisms and multipliers of Lau product of Banach algebras

Mohammad Valaei(i), Abbas Zivari-Kazempour* (D)
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran

Abstract

Given Banach algebras A, B and a continuous homomorphism $\theta: B \longrightarrow A$ with $\|\theta\| \leq 1$, we obtain characterization of spectrum, homomorphisms and multipliers of $A \times{ }_{\theta} B$, which is a strongly splitting Banach algebra extension of B by A. Also we characterize the semisimplicity of these algebras.

Mathematics Subject Classification (2020). 46B20, 47B47, 47B49.
Keywords. spectrum, homomorphisms, multipliers, Lau product, faithful, semisimple.

1. Introduction

Let A and B be Banach algebras and $\phi: B \longrightarrow \mathbb{C}$ be a multiplicative linear functional. Then the direct product $A \times B$ equipped with the algebra multiplication

$$
(a, b)(u, v)=(a u+\phi(b) u+\phi(v) a, b v), \quad(a, b),(u, v) \in A \times B,
$$

and with the l^{1}-norm is a Banach algebra which is called the Lau product of A and B and is denoted by $A \times_{\phi} B$.
This type of product was introduced by Lau [9] for certain class of Banach algebras and was extended by Sangani Monfared [11] for the general case.
If we allow $\phi=0$, then we obtain the usual direct product of Banach algebras, and when $B=\mathbb{C}$ and $\phi: \mathbb{C} \longrightarrow \mathbb{C}$ is the identity map, $A \times_{\phi} \mathbb{C}$ coincides with the unitization of A.
Some basic properties of $A \times_{\phi} B$ such as characterization of Gelfand space, topological center, amenability, ideal structure and minimal idempotent are investigated in [11]. Also, characterization of multipliers of these product discussed in [3] and [14]. Additionally, many Banach algebras properties of $A \times_{\phi} B$ are studied in [1], [6], [8], [10], [13], for example.

Bhatt and Dabhi in [2] introduced a new type of Lau product. Let $\theta: B \longrightarrow A$ be a continuous homomorphism between Banach algebras with $\|\theta\| \leq 1$. Then $A \times B$ with the multiplication

$$
(a, b)(u, v)=(a u+\theta(b) u+a \theta(v), b v),
$$

and with the l^{1}-norm turns into a Banach algebra, which is denoted by $A \times{ }_{\theta} B$.

[^0]The product $A \times{ }_{\theta} B$ provides not only new examples in Banach algebras by themselves, but also it has the potential to serve as counter-examples in different branches of functional and harmonic analysis.

Let $\Delta(A)$ be the set of all multiplicative linear functionals on Banach algebra A. Note that every $\phi \in \Delta(A)$ is continuous and $\|\phi\| \leq 1$, [5]. When A is unital with identity e_{A} and $\phi \in \Delta(B)$, then $\theta: B \longrightarrow A$ defined by $\theta(b)=\phi(b) e_{A}$ is a continuous homomorphism with $\|\theta\| \leq 1$. Therefore in this case the Lau product coincides with $A \times{ }_{\theta} B$.

We remark that in $A \times_{\theta} B$, we identify $A \times\{0\}$ with A and $\{0\} \times B$ with B. Then A is a closed ideal while B is a closed subalgebra of $A \times_{\theta} B$, and $\left(A \times_{\theta} B\right) / A$ is isometric isomorphism with B.

Spelitting of Banach algebra extensions has been a major tool in the study of Banach algebras. For example, module extensions as generalizations of Banach algebras extensions where introduced and studied by Gourdeau [7]. On the other hand, $A \times_{\theta} B$ is a strongly splitting Banach algebra extension of B by A that exhibits many properties that are not shared, in general, by arbitrary strongly splitting extensions. For example, commutativity is not preserved by a general strongly splitting extension. However, $A \times{ }_{\theta} B$ is commutative if and only if both A and B are commutative, [11, Proposition 2.3].

Let X be an A-bimodule, Y be an B-bimodule and $\theta: B \longrightarrow A$ be a homomorphism. We say that $\sigma: Y \longrightarrow X$ is a right (left) θ-module homomorphism if for all $b \in B$ and $y \in Y$,

$$
\sigma(b y)=\theta(b) \sigma(y), \quad(\sigma(y b)=\sigma(y) \theta(b))
$$

In particular, if $X=A$ and $Y=B$, then σ is called right (left) θ-multiplier. It is clear that each multiplier is a special case of a θ-multiplier with $\theta=i d$, the identity map on A.

Example 1.1. Let

$$
A=\left\{\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]: \quad a, b, c \in \mathbb{C}\right\}
$$

and define $\theta, \sigma: A \longrightarrow A$ by

$$
\theta\left(\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 0 & a \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \sigma\left(\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{ccc}
0 & a & 0 \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right] .
$$

Then, for all $x, y \in A$,

$$
\sigma(x y)=\theta(x) \sigma(y)=\sigma(x) \theta(y)
$$

Therefore σ is a θ-multiplier.
The purpose of the present paper is to investigate the spectrum, homomorphisms and multipliers for Banach algebras induced by Lau product of Banach algebras defined by a Banach algebra morphism.

Throughout the paper, we assume that A and B are Banach algebras and $\theta: B \longrightarrow A$ is a continuous homomorphism with $\|\theta\| \leq 1$.

2. Spectrum of Lau product

The spectrum of an element $a \in A$ is defined as

$$
S p_{A}(a)=\left\{\lambda \in \mathbb{C}: \lambda e_{A}-a \notin \operatorname{Inv}(A)\right\}
$$

where $\operatorname{Inv}(A)$ is the set of all invertible elements of A, and the spectral radius $r_{A}(a)$ of an element a is defined as $r_{A}(a)=\sup \left\{|\lambda|: \lambda \in S p_{A}(a)\right\}$.

It should be note that if A is not unital, then $S p_{A}(a)=S p_{A^{\sharp}}(a)$, where A^{\sharp} stands the unitization of A, [12].

Theorem 2.1. Let A and B be unital Banach algebras. Then

$$
\begin{equation*}
\operatorname{Inv}\left(A \times_{\theta} B\right) \cong \operatorname{Inv}(A) \times \operatorname{Inv}(B), \quad(\text { homeomorphism }) . \tag{2.1}
\end{equation*}
$$

Proof. Let e_{A} and e_{B} be unit of A and B, respectively. Then $\left(e_{A}-\theta\left(e_{B}\right), e_{B}\right)$ is the unit element of $A \times{ }_{\theta} B$. Define

$$
h: \operatorname{Inv}(A) \times \operatorname{Inv}(B) \longrightarrow \operatorname{Inv}\left(A \times_{\theta} B\right),
$$

by $h(a, b)=(a-\theta(b), b)$. Let $a \in \operatorname{Inv}(A)$ and $b \in \operatorname{Inv}(B)$, then there exists $u \in A$ and $v \in B$ such that $a u=e_{A}$ and $b v=e_{B}$. So

$$
(a-\theta(b), b)(u-\theta(v), v)=(a u-\theta(b v), b v)=\left(e_{A}-\theta\left(e_{B}\right), e_{B}\right) .
$$

Therefore $(a-\theta(b), b)$ has a right inverse.
Similarly, $(a-\theta(b), b)$ has a left inverse and thus h is well-defined. It is easy to check that h is linear and one to one.

Suppose that $(a, b) \in \operatorname{Inv}\left(A \times_{\theta} B\right)$. Hence there exist $(u, v) \in \operatorname{Inv}\left(A \times_{\theta} B\right)$ such that

$$
\begin{equation*}
(a u+\theta(b) u+a \theta(v), b v)=(a, b)(u, v)=\left(e_{A}-\theta\left(e_{B}\right), e_{B}\right) . \tag{2.2}
\end{equation*}
$$

It follows from (2.2) that $b v=e_{B}$ and

$$
a u+\theta(b) u+a \theta(v)=e_{A}-\theta\left(e_{B}\right)=e_{A}-\theta(b v) .
$$

Therefore

$$
a u+\theta(b) u+a \theta(v)+\theta(b v)=e_{A} .
$$

Since

$$
(a+\theta(b))(u+\theta(v))=a u+\theta(b) u+a \theta(v)+\theta(b v)=e_{A},
$$

hence $a+\theta(b)$ and b have right inverse in A and B, respectively. Similarly, $a+\theta(b)$ and b have left inverse in A and B, respectively. Thus, $a+\theta(b) \in \operatorname{Inv}(A), b \in \operatorname{Inv}(B)$ and

$$
h(a+\theta(b), b)=(a+\theta(b)-\theta(b), b)=(a, b) .
$$

This means that h is surjective. For $(a, b) \in \operatorname{Inv}(A) \times \operatorname{Inv}(B)$, we have

$$
\begin{aligned}
\|h(a, b)\| & =\|(a-\theta(b), b)\| \\
& =\|a-\theta(b)\|+\|b\| \\
& \leq\|a\|+\|\theta\|\|b\|+\|b\| \\
& \leq(1+\|\theta\|)(\|a\|+\|b\|) .
\end{aligned}
$$

Therefore, $\|h\| \leq 2$ and h is continuous. Similarly, h^{-1} is continuous. This finishes the proof.

Our next result concerns the spectrum in $A \times{ }_{\theta} B$.
Theorem 2.2. For Banach algebras A and B, we have

$$
\begin{equation*}
S p_{A \times_{\theta} B}(a, b)=S p_{A}(a+\theta(b)) \cup S p_{B}(b) . \tag{2.3}
\end{equation*}
$$

Proof. It is enough to show that

$$
S p_{A \times_{\theta} B}(a, b)=S p_{A}(a+\theta(b)) \cup S p_{B}(b),
$$

when A and B are unital.
Let $\lambda \notin S p_{A}(a) \cup S p_{B}(b)$. Then $\lambda e_{A}-a \in \operatorname{Inv}(A)$ and $\lambda e_{B}-b \in \operatorname{Inv}(A)$. Hence by Theorem 2.1, we get

$$
\begin{equation*}
\left(\lambda e_{A}-a-\theta\left(\lambda e_{B}-b\right), \lambda e_{B}-b\right) \in \operatorname{Inv}\left(A \times_{\theta} B\right), \tag{2.4}
\end{equation*}
$$

which yields that

$$
\lambda\left(e_{A}-\theta\left(e_{B}\right), e_{B}\right)-(a-\theta(b), b) \in \operatorname{Inv}\left(A \times_{\theta} B\right) .
$$

Therefore, $\lambda \notin S p_{A \times}{ }_{\theta} B(a-\theta(b), b)$.

Now suppose that $\lambda \notin S p_{A}(a+\theta(b)) \cup S p_{B}(b)$. Then by the above argument,

$$
\lambda \notin S p_{A \times_{\theta} B}(a+\theta(b)-\theta(b), b)=S p_{A \times_{\theta} B}(a, b) .
$$

This means that

$$
S p_{A \times_{\theta} B}(a, b) \subseteq S p_{A}(a+\theta(b)) \cup S p_{B}(b) .
$$

For the converse, let $\lambda \notin S p_{A x_{\theta} B}(a, b)$. Then

$$
\begin{equation*}
\lambda\left(e_{A}-\theta\left(e_{B}\right), e_{B}\right)-(a, b) \in \operatorname{Inv}\left(A \times_{\theta} B\right) \tag{2.5}
\end{equation*}
$$

But

$$
\begin{aligned}
\lambda\left(e_{A}-\theta\left(e_{B}\right), e_{B}\right)-(a, b) & =\left(\lambda e_{A}-\lambda \theta\left(e_{B}\right)-a, \lambda e_{B}-b\right) \\
& =\left(\lambda e_{A}-\lambda \theta\left(e_{B}\right)-a+\lambda \theta\left(e_{B}\right)-\theta(b)-\theta\left(\lambda e_{B}-b\right), \lambda e_{B}-b\right) \\
& =\left(\lambda e_{A}-(a+\theta(b))-\theta\left(\lambda e_{B}-b\right), \lambda e_{B}-b\right) .
\end{aligned}
$$

It follows from (2.5) and the above equality that

$$
\lambda e_{A}-(a+\theta(b)) \in \operatorname{Inv}(A), \quad \text { and } \quad \lambda e_{B}-b \in \operatorname{Inv}(B) .
$$

Consequently, $\lambda \notin S p_{A}(a+\theta(b))$ and $\lambda \notin S p_{B}(b)$. Thus,

$$
S p_{A}(a+\theta(b)) \cup S p_{B}(b) \subseteq S p_{A \times_{\theta} B}(a, b) .
$$

This completes the proof.
The next corollary appeared in [4, Lemma 2.5] for commutative Banach algebras. Here as a consequence of Theorem 2.2, we deduce it for the general case.

Corollary 2.3. Let A and B be Banach algebras. Then

$$
r_{A \times_{\theta} B}(a, b)=\max \left\{r_{A}(a+\theta(b)), r_{B}(b)\right\} .
$$

3. Homomorphisms of Lau product

In this section, we assume that E and F are Banach algebras, and $\sigma \in \operatorname{Hom}(F, E)$ with $\|\sigma\| \leq 1$, where $\operatorname{Hom}(F, E)$ denotes the set of all homomorphisms from F into E.
Let $p_{A}: A \times_{\theta} B \longrightarrow A$ and $p_{B}: A \times_{\theta} B \longrightarrow B$ be the usual projections which are defined by $p_{A}(a, b)=a$ and $p_{B}(a, b)=b$, respectively.
Recall that an A-bimodule X is called left (right) faithful if the condition $a x=0$ $(x a=0)$ for $x \in X$ implies that $x=0$. The Banach algebra A is faithful, if it is faithful as an A-bimodule over itself.

Theorem 3.1. Suppose that

$$
f_{1}: A \longrightarrow E, \quad f_{2}: B \longrightarrow F, \quad f: A \times_{\theta} B \longrightarrow E \times_{\sigma} F,
$$

where $f=\left(f_{1} \circ p_{A}, f_{2} \circ p_{B}\right)$. Then,
(i) If $f \in \operatorname{Hom}\left(A \times_{\theta} B, E \times_{\sigma} F\right)$, then $f_{1} \in \operatorname{Hom}(A, E)$ and $f_{2} \in \operatorname{Hom}(B, F)$.
(ii) If $f_{1} \in \operatorname{Hom}(A, E)$ and $f_{2} \in \operatorname{Hom}(B, F)$, f_{1} is surjective and E is faithful, then $f \in \operatorname{Hom}\left(A \times{ }_{\theta} B, E \times{ }_{\sigma} F\right)$ if and only if $\sigma \circ f_{2}=f_{1} \circ \theta$.
Proof. (i) Suppose that $f \in \operatorname{Hom}\left(A \times_{\theta} B, E \times{ }_{\sigma} F\right)$, then for all $(a, b),(u, v) \in A \times_{\theta} B$,

$$
\begin{equation*}
f((a, b)(u, v))=f(a, b) f(u, v) . \tag{3.1}
\end{equation*}
$$

By using $f=\left(f_{1} \circ p_{A}, f_{2} \circ p_{B}\right)$ we get

$$
\begin{aligned}
f((a, b)(u, v)) & =f(a u+\theta(b) u+a \theta(v), b v) \\
& =\left(f_{1}(a u)+f_{1}(\theta(b) u)+f_{1}(a \theta(v)), f_{2}(b v)\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
f(a, b) f(u, v) & =\left(f_{1}(a), f_{2}(b)\right)\left(f_{1}(u), f_{2}(v)\right) \\
& =\left(f_{1}(a) f_{1}(u)+\sigma\left(f_{2}(b)\right) f_{1}(u)+f_{1}(a) \sigma\left(f_{2}(v)\right), f_{2}(b) f_{2}(v)\right) .
\end{aligned}
$$

Hence by the above two equalities and (3.1), we have $f_{2}(b v)=f_{2}(b) f_{2}(v)$ and

$$
\begin{equation*}
f_{1}(a u)+f_{1}(\theta(b) u)+f_{1}(a \theta(v))=f_{1}(a) f_{1}(u)+\sigma\left(f_{2}(b)\right) f_{1}(u)+f_{1}(a) \sigma\left(f_{2}(v)\right) . \tag{3.2}
\end{equation*}
$$

By taking $b=v=0$ in (3.2), we conclude that $f_{1}(a u)=f_{1}(a) f_{1}(u)$ for all $a, u \in A$. Thus, f_{1} and f_{2} are homomorphisms.
(ii) Assume that $f_{1} \in \operatorname{Hom}(A, E), f_{2} \in \operatorname{Hom}(B, F)$ and let $f: A \times_{\theta} B \longrightarrow E \times_{\sigma} F$ be a homomorphism. Then by the equality (3.2),

$$
\begin{equation*}
f_{1}(\theta(b)) f_{1}(u)+f_{1}(a) f_{1}(\theta(v))=\sigma\left(f_{2}(b)\right) f_{1}(u)+f_{1}(a) \sigma\left(f_{2}(v)\right) \tag{3.3}
\end{equation*}
$$

If we take $a=0$ in (3.3), we obtain

$$
\left(f_{1}(\theta(b))-\sigma\left(f_{2}(b)\right)\right) f_{1}(u)=0, \quad u \in A, b \in B
$$

Since f_{1} is surjective and E is faithful, we get $\sigma \circ f_{2}=f_{1} \circ \theta$. The converse is similar.
If $E=F=\mathbb{C}$ and $\sigma: \mathbb{C} \longrightarrow \mathbb{C}$ is the identity map, then we get the following result.
Corollary 3.2. Let

$$
f_{1}: A \longrightarrow \mathbb{C}, \quad f_{2}: B \longrightarrow \mathbb{C}, \quad f: A \times_{\theta} B \longrightarrow \mathbb{C}^{2}
$$

where $f=\left(f_{1} \circ p_{A}, f_{2} \circ p_{B}\right)$. Then,
(i) If $f \in \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$, then $f_{1} \in \Delta(A)$ and $f_{2} \in \Delta(B)$.
(ii) If $0 \neq f_{1} \in \Delta(A)$ and $f_{2} \in \Delta(B)$, then $f \in \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$ if and only if $f_{2}=f_{1} \circ \theta$.

It should be pointed out that the topology of $\Delta(A)$ is the induced weak* topology from A^{*}, the dual space of A. Note that $\Delta(A)$ is a locally compact Hausdorff space and it is compact, whether A is unital, [5].

It is shown in [11, Proposition 2.4] that if A and B are commutative and $\theta \in \Delta(B)$, then $\Delta\left(A \times_{\theta} B\right)=E \cup F$, where

$$
E=\{(\phi, \theta): \phi \in \Delta(A)\}, \text { and } F=\{(0, \psi): \psi \in \Delta(B)\}
$$

The following result shows that $\Delta(A)$ and $\operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$ are homeomorphic as a two locally compact Hausdorff spaces.

Corollary 3.3. For Banach algebras A and B,

$$
\Delta(A) \cong \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)
$$

Proof. Define $h: \Delta(A) \longrightarrow \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$ via

$$
h\left(f_{1}\right)=\left(f_{1} \circ p_{A}, f_{1} \circ \theta \circ p_{B}\right)
$$

Then h is linear and bijective. Moreover, both h and h^{-1} are continuous. Indeed, for each $f_{1} \in \Delta(A)$, we have

$$
\begin{aligned}
\left\|h\left(f_{1}\right)\right\| & =\left\|\left(f_{1} \circ p_{A}, f_{1} \circ \theta \circ p_{B}\right)\right\| \\
& \leq\left\|f_{1} \circ p_{A}\right\|+\left\|f_{1} \circ \theta \circ p_{B}\right\| \\
& =\left\|f_{1}\right\|+\left\|f_{1} \circ \theta\right\| \\
& \leq\left\|f_{1}\right\|(1+\|\theta\|) \leq 2\left\|f_{1}\right\| .
\end{aligned}
$$

Thus, h is continuous. The continuity of h^{-1} is obvious.

The Jacobson radical of an algebra A, denoted by $\operatorname{rad} A$, is the intersection of maximal modular left (right) ideals of A. The algebra A is called semisimple if $\operatorname{rad} A=\{0\}$. If A is a commutative Banach algebra, then

$$
\operatorname{rad} A=\bigcap\{\operatorname{ker} \phi: \quad \phi \in \Delta(A)\}
$$

Lemma 3.4. Let A and B be commutative and $(a, b) \in \operatorname{rad}\left(A \times_{\theta} B\right)$. Then $f(a, b)=(0,0)$ for each $f \in \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$.
Proof. Let $(a, b) \in \operatorname{rad}\left(A \times_{\theta} B\right)$, then $g(a, b)=0$ for each $g \in \Delta\left(A \times_{\theta} B\right)$. Assume to contrary that there exist $f \in \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$ such that $f(a, b) \neq(0,0)$. By Corollary (3.3), there exist $f_{1} \in \Delta(A)$ such that

$$
\left(f_{1}(a), f_{1} \circ \theta(b)\right)=f(a, b) \neq(0,0)
$$

Therefore $f_{1}(a) \neq 0$ or $f_{1} \circ \theta(b) \neq 0$.
Case I: Let $f_{1}(a)+f_{1} \circ \theta(b) \neq 0$.
Let $g: A \times_{\theta} B \longrightarrow \mathbb{C}$ defined by $g(a, b)=f_{1}(a)+f_{1} \circ \theta(b)$. Then $g \in \Delta\left(A \times_{\theta} B\right)$ and $g(a, b) \neq 0$.

Case II: Let $f_{1}(a)+f_{1} \circ \theta(b)=0$.
Then $f_{1} \circ \theta(b) \neq 0$. Define $g: A \times_{\theta} B \longrightarrow \mathbb{C}$ via $g(a, b)=f_{1} \circ \theta(b)$. Then $g \in \Delta\left(A \times_{\theta} B\right)$ and $g(a, b) \neq 0$.

In both cases we obtain a contradiction. Thus, we reach the desired result.
The following result is due to Sangani Monfared [11, Theorem 3.1] when $\theta \in \Delta(B)$, see also [2, Corollary 2.2]. Here we outline an alternative proof for it with direct method.
Theorem 3.5. Let A and B be commutative. Then $A \times_{\theta} B$ is semisimple if and only if A and B are semisimple.
Proof. Suppose that $A \times_{\theta} B$ is semisimple and let $b \in \operatorname{rad}(B)$. Then $f_{2}(b)=0$, for each $f_{2} \in \Delta(B)$. Since $f_{1} \circ \theta \in \Delta(B)$, for every multiplicative linear functional f_{1} on A, so $\left(f_{1} \circ \theta\right)(b)=0$. Therefore, for all $f \in \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$,

$$
f(\theta(b), b)=\left(f_{1}(\theta(b)), f_{1} \circ \theta(b)\right)=(0,0)
$$

Noticing that

$$
\Delta\left(A \times_{\theta} B\right) \subseteq \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)
$$

hence for every $g \in \Delta\left(A \times_{\theta} B\right)$, we have $g(\theta(b), b)=0$. Thus, $(\theta(b), b) \in \operatorname{rad}\left(A \times_{\theta} B\right)=\{0\}$ and hence $b=0$. Consequently, B is semisimple.

Now we prove that $\operatorname{rad}(A)=\{0\}$. To see this, let $a \in \operatorname{rad}(A)$, then for each $f_{1} \in \Delta(A)$, we have $f_{1}(a)=0$. Therefore for all $f \in \operatorname{Hom}\left(A \times_{\theta} B, \mathbb{C}^{2}\right)$,

$$
f(a, 0)=\left(f_{1}(a), f_{1} \circ \theta(0)\right)=(0,0)
$$

which yields that $g(a, 0)=0$ for each $g \in \Delta\left(A \times_{\theta} B\right)$. So $(a, 0) \in \operatorname{rad}\left(A \times_{\theta} B\right)=\{0\}$ and hence $a=0$. Therefore, A is semisimple.

For the converse let A and B be semisimple. Suppose that $g \in \Delta\left(A \times_{\theta} B\right)$ is arbitrary and $g(a, b)=0$. Then by Lemma 3.4, we have $\left(f_{1}(a), f_{1} \circ \theta(b)\right)=(0,0)$ where $f_{1} \in \Delta(A)$. So $f_{1}(a)=f_{1} \circ \theta(b)=0$. It follows from the semisimplicity of A and B that $a=b=0$. Thus, $A \times{ }_{\theta} B$ is semisimple.

Corollary 3.6. Suppose that A is commutative and semisimple. If θ is one to one, then
(i) $A \times_{\theta} B$ is semisimple,
(ii) $\Delta\left(A \times_{\theta} B\right)$ separates the points of $A \times_{\theta} B$,
(iii) $r_{A \times_{\theta} B}(a, b)$ is a norm on $A \times_{\theta} B$,
(iv) $A \times{ }_{\theta} B$ has a unique complete norm.

Proof. (i) Let $b \in \operatorname{rad}(B)$. Then $f_{2}(b)=0$ for each $f_{2} \in \Delta(B)$. Since $f_{1} \circ \theta \in \Delta(B)$, for all $f_{1} \in \Delta(A)$, so $\left(f_{1} \circ \theta\right)(b)=0$. Therefore $\theta(b) \in \operatorname{rad}(A)=\{0\}$, and hence $b=0$. Thus, B is semisimple and by Theorem 3.5, $A \times_{\theta} B$ is semisimple.
(ii), (iii), and (iv) follows from (i).

4. Multipliers of Lau product

Let X be an A-bimodule, Y be an B-bimodule and suppose that $\sigma: Y \longrightarrow X$ is a θ-module homomorphism. Consider $X \times{ }_{\sigma} Y$ as a Banach space, then the action

$$
(a, b)(x, y)=(a x+a \sigma(y)+\theta(b) x, b y), \quad(a, b) \in A \times_{\theta} B, \quad(x, y) \in X \times_{\sigma} Y
$$

turns $X \times_{\sigma} Y$ into a left $\left(A \times_{\theta} B\right)$-module. Indeed, for every $(a, b),(u, v) \in A \times_{\theta} B$ and $(x, y) \in X \times_{\sigma} Y$ we have

$$
\begin{aligned}
((a, b)(u, v))(x, y)= & (a u+\theta(b) u+a \theta(v), b v)(x, y) \\
= & (a u x+\theta(b) u x+a \theta(v) x+a u \sigma(y)+\theta(b) u \sigma(y)+a \theta(v) \sigma(y) \\
& +\theta(b v) x, b v y)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(a, b)((u, v)(x, y))= & (a, b)(u x+u \sigma(y)+\theta(v) x, v y) \\
= & (a u x+a u \sigma(y)+a \theta(v) x+a \sigma(v y)+\theta(b) u x+\theta(b) u \sigma(y) \\
& +\theta(b) \theta(v) x, b v y)
\end{aligned}
$$

Since σ is a right θ-module homomorphism, by comparing the above two expressions, we obtain

$$
((a, b)(u, v))(x, y)=(a, b)((u, v)(x, y))
$$

Similarly, $X \times_{\sigma} Y$ is a right $\left(A \times_{\theta} B\right)$-module with the module action

$$
(x, y)(a, b)=(x a+\sigma(y) a+x \theta(b), y b)
$$

and in this case we arrive at

$$
(x, y)((a, b)(u, v))=((x, y)(a, b))(u, v)
$$

Theorem 4.1. Suppose that $\sigma: Y \longrightarrow X$ is a θ-module homomorphism and set

$$
T_{1}: A \longrightarrow X, \quad T_{2}: B \longrightarrow Y, \quad T: A \times_{\theta} B \longrightarrow X \times_{\sigma} Y
$$

where $T=\left(T_{1} \circ p_{A}, T_{2} \circ p_{B}\right)$. Then,
(i) If T is a right multiplier, then T_{1} and T_{2} are so.
(ii) If T_{1} and T_{2} are right multiplier and X is faithful, then T is right multiplier if and only if $\sigma \circ T_{2}=T_{1} \circ \theta$.

Proof. (i) Suppose that T is a right multiplier, then for all $(a, b),(u, v) \in A \times{ }_{\theta} B$,

$$
\begin{equation*}
T((a, b)(u, v))=(a, b) T(u, v) \tag{4.1}
\end{equation*}
$$

It follows from (4.1) and our assumption that

$$
\begin{aligned}
\left(a T_{1}(u)+a \sigma\left(T_{2}(v)\right)+\theta(b) T_{1}(u), b T_{2}(v)\right) & =(a, b)\left(T_{1}(u), T_{2}(v)\right) \\
& =(a, b) T(u, v) \\
& =T((a, b)(u, v)) \\
& =T(a u+\theta(b) u+a \theta(v), b v) \\
& =\left(T_{1}(a u+\theta(b) u+a \theta(v)), T_{2}(b v)\right) .
\end{aligned}
$$

Therefore, $T_{2}(b v)=b T_{2}(v)$ and

$$
\begin{equation*}
a T_{1}(u)+a \sigma\left(T_{2}(v)\right)+\theta(b) T_{1}(u)=T_{1}(a u+\theta(b) u+a \theta(v)) \tag{4.2}
\end{equation*}
$$

Setting $b=v=0$ in (4.2), we get $a T_{1}(u)=T_{1}(a u)$ for all $a, u \in A$. Thus, T_{1} and T_{2} are right multipliers.
(ii) Let T_{1}, T_{2} and T are right multipliers. Then (4.2) gives

$$
a \sigma\left(T_{2}(v)\right)=T_{1}(a \theta(v))=a T_{1}(\theta(v)), \quad a \in A, v \in B
$$

Therefore, $a\left(\sigma\left(T_{2}(v)\right)-T_{1}(\theta(v))=0\right.$ and since X is faithful, we get $\sigma \circ T_{2}=T_{1} \circ \theta$.
The converse is immediate.
Let $\mathfrak{M}_{r}(A)$ denotes the set of all right multipliers from A into a left A-module X, and let

$$
\mathfrak{M}_{r}\left(A \times_{\theta} B\right)=\left\{T: A \times_{\theta} B \longrightarrow X \times_{\sigma} Y, \quad T \text { is a right multiplier }\right\} .
$$

In the next result we turns our attention to the multipliers of $A \times{ }_{\theta} B$.
Theorem 4.2. Suppose that $\sigma: Y \longrightarrow X$ is a invertible θ-module homomorphism. If X is faithful and σ^{-1} is continuous, then

$$
\mathfrak{M}_{r}(A) \cong \mathfrak{M}_{r}\left(A \times_{\theta} B\right)
$$

Proof. Let $h: \mathfrak{M}_{r}(A) \longrightarrow \mathfrak{M}_{r}\left(A \times_{\theta} B\right)$ defined by

$$
h\left(T_{1}\right)=\left(T_{1} \circ p_{A}, \sigma^{-1} \circ T_{1} \circ \theta \circ p_{B}\right) .
$$

First note that h is linear and well-defined. To see this, let $T_{1}: A \longrightarrow X$ be a right multiplier and take $T_{2}=\sigma^{-1} \circ T_{1} \circ \theta$. Then for $b_{1}, b_{2} \in B$,

$$
\begin{aligned}
T_{2}\left(b_{1} b_{2}\right) & =\sigma^{-1} \circ T_{1} \circ \theta\left(b_{1} b_{2}\right) \\
& =\sigma^{-1} \circ T_{1}\left(\theta\left(b_{1}\right)\left(\theta\left(b_{2}\right)\right)\right. \\
& =\sigma^{-1}\left(\theta\left(b_{1}\right) T_{1}\left(\theta\left(b_{2}\right)\right)\right) \\
& =\sigma^{-1}\left(\theta\left(b_{1}\right) \sigma\left(T_{2}\left(b_{2}\right)\right)\right) \\
& =b_{1} T_{2}\left(b_{2}\right) .
\end{aligned}
$$

The last equality is true, because σ is a θ-module homomorphism. Hence T_{2} is a right multiplier from B into Y, so by Theorem 4.1 (ii), $h\left(T_{1}\right) \in \mathfrak{M}_{r}\left(A \times_{\theta} B\right)$.

Clearly, h is one to one. We show that h is surjective. Let $T: A \times{ }_{\theta} B \longrightarrow X \times_{\sigma} Y$ be a right multiplier. Then for all $(a, b) \in A \times_{\theta} B$,

$$
T(a, b)=\left(S_{1}(a, b), S_{2}(a, b)\right),
$$

where $S_{1}: A \times_{\theta} B \longrightarrow X$ and $S_{2}: A \times_{\theta} B \longrightarrow Y$. Define $T_{1}: A \longrightarrow X$ via $T_{1} \circ p_{A}=S_{1}$ and $T_{2}: B \longrightarrow Y$ by $T_{2} \circ p_{B}=S_{2}$. Then by the preceding theorem T_{1} and T_{2} are right multipliers. Also the equality $\sigma \circ T_{2}=T_{1} \circ \theta$ holds true. So

$$
h\left(T_{1}\right)=\left(S_{1}, S_{2}\right)=T
$$

Note that h^{-1} is automatically continuous. In fact, for each $T \in \mathfrak{M}_{r}\left(A \times_{\theta} B\right)$,

$$
\left\|h^{-1}(T)\right\|=\left\|T_{1}\right\| \leq\left\|T_{1}\right\|+\left\|T_{2}\right\|=\|T\|
$$

and hence $\left\|h^{-1}\right\| \leq 1$.
On the other hand, for each $T_{1} \in \mathfrak{M}_{r}(A)$ we have

$$
\begin{aligned}
\left\|h\left(T_{1}\right)\right\| & =\left\|\left(T_{1} \circ p_{A}, \sigma^{-1} \circ T_{1} \circ \theta \circ p_{B}\right)\right\| \\
& \leq\left\|T_{1} \circ p_{A}\right\|+\left\|\sigma^{-1} \circ T_{1} \circ \theta \circ p_{B}\right\| \\
& =\left\|T_{1}\right\|+\left\|\sigma^{-1} \circ T_{1} \circ \theta\right\| \\
& \leq\left\|T_{1}\right\|\left(1+\left\|\sigma^{-1}\right\|\|\theta\|\right) .
\end{aligned}
$$

Consequently, h is continuous. This finishes the proof.
As a consequence of Theorem 4.2, we deduce the next result.

Corollary 4.3. Let A be a unital Banach algebra. If θ is invertible and θ^{-1} is continuous, then T_{1} is a right multiplier on A if and only if T is a right multiplier on $A \times_{\theta} B$.

Let σ be a θ-module homomorphism and define

$$
\begin{aligned}
L_{X} & =\left\{L_{x}: A \longrightarrow X: \quad L_{x}(a)=a x, \quad \forall x \in X\right\}, \\
L_{Y} & =\left\{L_{y}: B \longrightarrow Y: \quad L_{y}(b)=b y, \quad \forall y \in Y\right\},
\end{aligned}
$$

and

$$
\left(L_{X}, L_{Y}\right)=\left\{\left(L_{x}, L_{y}\right): \quad x \in X, y \in Y\right\} .
$$

Moreover, for $x \in X$ and $y \in Y$ we set

$$
L_{X \times_{\sigma} Y}=\left\{L_{(x, y)}: A \times_{\theta} B \longrightarrow X \times_{\sigma} Y: \quad L_{(x, y)}(a, b)=(a, b)(x, y)\right\} .
$$

Then for all $x \in X$ and $y \in Y, L_{x}, L_{y}$ and $L_{(x, y)}$ are right multipliers.
The next example provided that $\left(L_{X}, L_{Y}\right)$ is different from $\mathfrak{M}_{r}\left(A \times_{\theta} B\right)$.
Example 4.4. Let A be a unital Banach algebra, and let $\theta=\sigma: A \longrightarrow A$ be the identity map. Then by Theorem 4.1, $\left(L_{x}, L_{y}\right) \in \mathfrak{M}_{r}\left(A \times_{\theta} B\right)$ if and only if $\sigma \circ L_{y}=L_{x} \circ \theta$. However, for $x=e_{A}, y=2 e_{A}$ and $a=e_{A}$ we have,

$$
\sigma \circ L_{y}(a)=\sigma\left(2 e_{A}\right)=2 e_{A}, \quad L_{x} \circ \theta(a)=L_{x}(a)=e_{A} .
$$

Therefore, $\left(L_{x}, L_{y}\right)$ is not a right multiplier.
Proposition 4.5. Let $\sigma: Y \longrightarrow X$ be a θ-module homomorphism. If X is faithful and θ is surjective, then $\left(L_{x}, L_{y}\right) \in \mathfrak{M}_{r}\left(A \times_{\theta} B\right)$ if and only if $x=\sigma(y)$.
Proof. Let $\left(L_{x}, L_{y}\right) \in \mathfrak{M}_{r}\left(A \times_{\theta} B\right)$. Then by Theorem 4.1, for every $b \in B$,

$$
\left(\sigma \circ L_{y}\right)(b)=\left(L_{x} \circ \theta\right)(b),
$$

which imply that $\theta(b) \sigma(y)=\sigma(b y)=\theta(b) x$. For each $a \in A$ there exist $b \in B$ such that $\theta(b)=a$. Therefore, we have $a x=a \sigma(y)$ and hence $a(x-\sigma(y))=0$. Since X is faithful, we conclude that $x=\sigma(y)$. The converse is similar.

The next corollary follows immediately from preceding result.
Corollary 4.6. Let A be a unital Banach algebra. Then for all $a \in A$,

$$
\left(L_{a}, L_{a}\right) \in \mathfrak{M}_{r}\left(A \times_{\theta} A\right) .
$$

Lemma 4.7. Let $\sigma: Y \longrightarrow X$ be a θ-module homomorphism. Then for each $x \in X$ and $y \in Y$,

$$
L_{(x, y)}=\left(L_{(x+\sigma(y))} \circ p_{A}+L_{x} \circ \theta \circ p_{B}, L_{y} \circ p_{B}\right) .
$$

Proof. Let $(a, b) \in\left(A \times_{\theta} B\right)$. Then

$$
\begin{aligned}
L_{(x, y)}(a, b) & =(a, b)(x, y) \\
& =(a x+a \sigma(y)+\theta(b) x, b y) \\
& =\left(L_{(x+\sigma(y))}(a)+L_{x} \circ \theta(b), L_{y}(b)\right) . \\
& =\left(L_{(x+\sigma(y))} \circ p_{A}(a, b)+L_{x} \circ \theta \circ p_{B}(a, b), L_{y} \circ p_{B}(a, b)\right),
\end{aligned}
$$

as required.
Theorem 4.8. Suppose that $\sigma: Y \longrightarrow X$ is a θ-module homomorphism. If θ is surjective, then

$$
\left(L_{X}, L_{Y}\right) \cong L_{X \times_{\sigma} Y} .
$$

Proof. Let $h:\left(L_{X}, L_{Y}\right) \longrightarrow L_{X \times_{\sigma} Y}$ defined by

$$
h\left(\left(L_{x}, L_{y}\right)\right)=\left(L_{(x+\sigma(y))} \circ p_{A}+L_{x} \circ \theta \circ p_{B}, L_{y} \circ p_{B}\right) .
$$

The mapping h is linear and it is well-defined by Lemma 4.7. Clearly, h is surjective. We show that h is one to one. Let $h\left(\left(L_{x}, L_{y}\right)\right)=h\left(\left(L_{s}, L_{t}\right)\right)$, then

$$
\begin{equation*}
L_{(x+\sigma(y))} \circ p_{A}+L_{x} \circ \theta \circ p_{B}=L_{(s+\sigma(t))} \circ p_{A}+L_{s} \circ \theta \circ p_{B}, \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{y} \circ p_{B}=L_{t} \circ p_{B} . \tag{4.4}
\end{equation*}
$$

It follows from (4.4) that $L_{y}=L_{t}$ and hence for each $b \in B$,

$$
\begin{equation*}
b y=L_{y}(b)=L_{t}(b)=b t . \tag{4.5}
\end{equation*}
$$

Since σ is a right θ-module homomorphism, by (4.5) we get

$$
\begin{equation*}
\theta(b) \sigma(y)=\sigma(b y)=\sigma(b t)=\theta(b) \sigma(t) \tag{4.6}
\end{equation*}
$$

and the surjectivity of θ together (4.6) implies that

$$
\begin{equation*}
L_{\sigma(y)}(a)=a \sigma(y)=a \sigma(t)=L_{\sigma(t)}(a), \tag{4.7}
\end{equation*}
$$

for all $a \in A$. From (4.3) we have

$$
\begin{aligned}
L_{(x+\sigma(y))}(a) & =\left(L_{(x+\sigma(y))} \circ p_{A}+L_{x} \circ \theta \circ p_{B}\right)(a, 0) \\
& =\left(L_{(s+\sigma(t))} \circ p_{A}+L_{s} \circ \theta \circ p_{B}\right)(a, 0) \\
& =L_{(s+\sigma(t))}(a) .
\end{aligned}
$$

By (4.7) and the above equality, we obtain $L_{x}=L_{s}$. Therefore, $\left(L_{x}, L_{y}\right)=\left(L_{s}, L_{t}\right)$ and h is one to one. The continuity of h and h^{-1} are obvious.

From Theorem 4.8, we have the next result.
Corollary 4.9. If θ is surjective, then $\left(L_{A}, L_{B}\right) \cong L_{A \times_{\theta} B}$.
Acknowledgment. The authors gratefully acknowledge the helpful comments of the anonymous referees.

References

[1] F. Abtahi, A. Ghafarpanah and A. Rejali, Biprojectivity and biflatness of Lau product of Banach algebras defined by a Banach algebras morphism, Bull. Aust. Math. Soc. 91 (1), 134-144, 2015.
[2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87, 195-206, 2013.
[3] P. A. Dabhi, Multipliers of perturbed Cartesian products with application to BESproperty, Acta. Math. Hungar 149 (1), 58-66, 2016.
[4] P. A. Dabhi and S. K. Patel Spectral properties and stability of perturbed Cartesian products with application to BES-property, Proc. Indian Acad. Sci. Math. Sci. 127 (4), 673-687, 2017.
[5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc., 24, Clarendon Press, Oxford, 2000.
[6] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. Math. 122 (2), 225-232, 2011.
[7] F. Gourdeau, Amenability and the second dual of a Banach algebras, Studia Math. 125 (3), 75-81, 1997.
[8] A. R. Khoddami and H. R. Ebrahimi Vishki, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iranian Math. Soc. 39 (3), 559-568, 2013.
[9] A. T. M. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (3), 161-175, 1983.
[10] A. Minapoor, A. Bodaghi and O.T. Mewomo, Ideal Connes-amenability of Lau product of Banach algebras, Eurasian Math. J. 12 (4), 74-81, 2021.
[11] M. S. Monfared, On certain products of Banach algebras with application to harmonic analysis, Studia Math. 178 (3), 277-294, 2007.
[12] G. J. Murphy, C^{*}-algebras and operator theory, Academic Press, 1990.
[13] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau product of Banach algebras, Banach J. Math. Anal. 9 (2), 183-195, 2015.
[14] S. E. Takahasi, H. Takagi and T. Miura, A characterization of multipliers of a Lau algebras constructed by semisimple commutative Banach algebras, Taiwan J. Math. 20 (6), 1401-1415, 2016.

[^0]: *Corresponding Author.
 Email addresses: M.valaei@abru.ac.ir (M. Valaei), zivari@abru.ac.ir (A. Zivari-Kazempour)
 Received: 26.04.2023; Accepted: 04.08.2023

