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Abstract: 

 
Different analyses and methods have been employed to capture the 

timing and the effects of crises on foreign exchange markets. Fuzzy 
System Modelling (FSM) has been applied and successfully captures the 
crisis. In this paper, we further explore the uncertainty in the results of 
FSM findings. In this approach it is assumed that the only uncertainty 
resource is the level of fuzziness. Once optimum number of clusters and 
level of fuzziness are obtained by RMSE supervision, uncertainty 
component of level of fuzziness is analyzed. Results and reflection of this 
kind of uncertainty are shown. 

 
Özet: 

 

Döviz Krizlerinin Tahminindeki Belirsizlikler: Tip-2 Bulanık Sistem 
Modellemesi 

 

Döviz piyasalarında gözlemlenen krizlerin zamanlanması ve etkilerini 
araştırmak için bir çok analiz ve metod denenmiştir. Bulanık Sistem 
Modeli (BSM) bu çerçevede denenmiş ve kriz başarılı olarak tahmin 
edilmiştir. Bu çalışmada, BMS bulguları içerisinde belirsizliğin 
yansımaları tetkik edilmiştir. Bu yaklaşımda belirsizliğin tek kaynağı 
bulanıklık seviyesi olarak varsayılmıştır. İlk olarak en uygun yığın sayısı 
RMSE danışımı altında bulunmuş ve bulanıklık seviyesindeki belirsizlik 
analiz edilmiştir. Bu tür belirsizliğin sonuçları ve yansımaları 
gösterilmiştir. 

                                                 
 Keywords: Uncertainty, entropy, Fuzzy System Modelling, inference. 
Anahtar Sözcükler: Belirsizlik, antropi, Bulanık Sistem Modellemesi, çıkarım. 
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INTRODUCTION 
 
Uncertainty is a natural part of most of, if not all of, economical and 

financial research. As a matter of fact, uncertainty is the essential part of every 
business. Simply, without uncertainty it is difficult to speak about decision, 
opportunity, risk, etc. Uncertainty is the basis of freedom, or in other words, it 
makes us free to choose (Bernstein, 1998). 

 
Uncertainty measures are still evolving and new tools are emerging. 

Fuzzy Logic is an example of the evolution of logic which creates a superset of 
crisp sets to capture uncertainty. In this sense, crisp sets become a special case 
of Fuzzy Sets. In this paper a type of uncertainty, specifically fuzziness is 
examined briefly. Furthermore, the reflection of this type of uncertainty in 
inference is shown by an application of a fuzzy model which is used to capture 
the currency crisis in Turkey (Ozkan, Turksen and Aktan, 2003). 

 
 
I. UNCERTAINTY  
 
There has been a growing debate about the meaning of uncertainty and its 

measures. Keynes (1937) stated that:  
 

"By `uncertain' knowledge, let me explain, I do not mean merely 
to distinguish what is known for certain from what is only probable. The 
game of roulette is not subject, in this sense, to uncertainty...The sense 
in which I am using the term is that in which the prospect of a European 
war is uncertain, or the price of copper and the rate of interest twenty 
years hence...About these matters there is no scientific basis on which to 
form any calculable probability whatever. We simply do not know." 
(J.M. Keynes, 1937)”  

 
It is clear that uncertainty is a form of information deficiency and as 

Klir’s (1995) definition:  
 

“Uncertainty involved in any problem solving situation is a result 
of some information deficiency. Information may be incomplete, 
imprecise, fragmentary, not fully reliable, vague, contradictory, or 
deficient in some other way.... Information measured solely by the 
reduction of uncertainty does not capture the rich notion of information 
in human communication and cognition. (1995: 245).” 

 
Probability theory has been long established and used widely to deal with 

uncertainty. Formulations can be linked to Jacob Bernoulli’s (1713) “Law of 
Large Numbers” that may be seen as the basis of frequentist view. Another 
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oldest classical view perhaps stated by Pierre Simon de Laplace (1795). 
Classical view of probabilities can be classified as ‘objective’ probabilities or 
better to say probabilities exist ‘inherently’ in nature. The “relative frequency” 
view argues that the probability of a particular event in a particular trial is the 
relative frequency of occurrence of that event in an infinite sequence of 
"similar” trials (Richard von Mises, 1928, Hans Reichenbach, 1949). The 
"propensity" view of objective probabilities argues that probability represents 
the disposition or tendency of Nature to yield a particular event on a single trial, 
without it necessarily being associated with long-run frequency. It is important 
to note that these "propensities" are assumed to objectively exist (Charles S. 
Peirce ,1910, Karl Popper, 1959). In “epistemic” view, probabilities are really a 
measure of the lack of knowledge about the conditions which might affect the 
coin toss and thus merely represent our ‘beliefs’ about the experiment. Knight 
expressed that "if the real probability reasoning is followed out to its 
conclusion, it seems that there is `really' no probability at all, but certainty, if 
knowledge is complete." (Knight, 1921: 219). Epistemic view can be traced to 
T. Bayes (1763) and can be divided into “logical relationist” (Keynes, 1921; 
Carnap, 1950) and “subjectivist” (F. Ramsey, 1926, De Finetti, 1931) view. 

 
“Probabilistic uncertainty” was first established by Claude Shannon 

(1948) which is known as Shannon’s Entropy measures. Let xi be a discrete 

random variable taking a finite number of possible values nxxx ,..,, 21  with 

probabilities nppp ,...,, 21  respectively such that pi≥0, i=1,2,...,n and ∑pi=1. 

We attempt to arrive at a number that will measure the amount of uncertainty. 
Let ‘h’ be a function defined on the interval (0,1] and h(p) be interpreted as the 
uncertainty associated with the event X=xi,i=1,...,n or the information conveyed 
by revealing that X has taken on the value xi in a given performance of the 
experiment. For each n, we shall define a function Hn of the n 
variables p1,p2,...,pn. The function Hn(p1,p2,...,pn) is to be interpreted as the 
average uncertainty associated with the event  {X=xi,i=1,...,n} given by 

∑
=

−=
n

i
ibinn ppCpppH

1
21 )(log),..,,(     (1) 

 
where, C>0, b>1 and (0)logb(0) is forced to be zero, and Hn is a form of Hartley 
function (Hartley, 1928). For C=1 and b=2 this function becomes: 

∑
=

−=
n

i
iinn pppppH

1
221 log),..,,(     (2) 

which is known as Shannon’s entropy or measure of uncertainty.  
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Uncertainty measure can be extended to fuzzy sets beyond crisp sets. It is 
possible to define, simple uncertainty, joint uncertainty, conditional uncertainty 
and if uncertainty expressed by sets of possible alternatives then Hartley 
function is well characterized by term nonspecifity (Klir, 1995).  

 
Fuzzy Logic is first introduced by L. A. Zadeh (1965). It can be seen as 

the first attempt to extend classic logic and set theory. Following Zadeh, Fuzzy 
System Modelling (FSM) has been increasingly applied to various problems in 
such areas as computer science, system analysis, electronic engineering, and 
pharmacology. There are at least two advantages of FSM that attracts 
researchers in social sciences. These advantages are; (i) its power of linguistic 
explanation with resulting ease of understanding, and (ii) its tolerance to 
imprecise data which gives it flexibility and stability for prediction. Although 
the number of its application is limited for the time being, it seems that its use is 
increasing. Desgupta and Deb (1996), Richardson (1998) are two examples in 
the field of social choice. A few examples can also be found in the field of 
Econometrics, fuzzy game and in economic analysis: Giles and Draeseke 
(2001), Lindstrom (1998), Tseng at al (1998), Ozawa et al (1997).  

 
Fuzzy set involves a type of uncertainty that is called fuzziness. A 

sensible measure of fuzziness, f, must satisfy some requirements of the degree 
of fuzziness. Three essential requirements are (Klir 1995): 

 
- f(X)=0 iff X is a crisp set 
- f(X) is maximum when fuzziness becomes highest 
- f(Y)≤f(Z) if Y is sharper than set Z.   

 
There are three basic types of uncertainty, specifically, nonspecifity 

(imprecision), fuzziness, strife. All these uncertainty types are involved in 
Fuzzy System Modelling approaches with different measures. These measures 
are not going to be given in detail because they are out of this papers scope.  

 
 
II. REFLECTION OF UNCERTAINTY: 
 
Sources of uncertainty may be classified as: 
 

- Model Uncertainty 
- Parameter Uncertainty 
- Data Uncertainty 
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In this paper one type of parameter uncertainty, perhaps important one, 
namely level of fuzziness in FSM will be investigated and its affect on inference 
will be shown by using the model constructed for predicting the currency crisis 
experienced in Turkey (Ozkan, Turksen and Aktan, 2003).  

 
Model is basically: 
 

),,,( 2132 −−−− ∆∆∆∆=∆ ttttt FDTFDTRRQF    (3) 

where tF∆  is change in TL/USD exchange rate, Rt, is O/N (Overnight interest 

rate) and FDT is “foreign deposits in deposits money banks”, where all are 
monthly data. In this investigation, a Rule Based Fuzzy System Modelling 
(RBFSM) method is  applied (Ozkan, 2003): 
 

- Set search values for cluster and level of fuzziness, cluster list 

C={c1, c2,.., cnc}, level of fuzziness list M={m1, m2,…, mnm} and cutα   

- Do FCM clustering by using (n+1) dimension (input+output, 
{X|Y} space). Apply Mahalonobis distance as similarity measure. Hence 
cluster centers can be represented as: 

 

| , 1, 2, ,( , ,..., , )m m m m m
x y c c c n c cv x x x y= ,     (4) 

 
where 

 
m: the level of fuzziness  
 
c: cth cluster, 
 

,
m
i cx  : is the ith dimension (input variable) of cth cluster center for the 

level of fuzziness, 
 

| ,
m
x y cv  : is the cth cluster center in the input-output space. 

 
The values of the cluster centers to input space are: 
 

, 1, 2, ,( , ,..., )m m m m
x c c c n cv x x x=      (5) 

 
- For each cluster and level of fuzziness 
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o Membership values for each input vector are re-calculated by 

using projected input space cluster centers, ,
,

nc m
x cv . Least Square 

Estimation of Regression coefficients for each cluster are generated 
by calculated membership values for each cluster and {X|Y}. This 
causes a separation of clusters (either by using alpha-cut or zero, 
where we use zero) and generates Linear Regression function for each 
cluster. As a mathematical representation for each cluster we have: 

 

, ,( ) ( )m m
x c x cd Y d Xµ µ=       (6) 

 

and mnc
cxd ,
,µ is a diagonal matrix that has the form, 

 

1,

2,
,

,

0 ... 0

0 ... 0

... ... ... ...

0 0 ...

m
c

m
cm

x c

m
k c

d

µ

µ
µ

µ

=    (7) 

 
Where,  

 
k is the number of data vectors, c is the number of clusters, 

X  : mxn Input data (explanatory variables),  

Y  : mx1 Output (dependent variable) 
 

Delete all vectors {Xk|Yk} where cutkc αµ ≤, and obtain a subset of the data. 

 
Obtain a regression function for each cluster by using LSE such as: 

 

0 1 1 1.... ( ,..., )m m m m m
c n n c ny x x f x xβ β β= + + + =    (8) 

 
where c=1..nc, i.e., there is a regression equation for each fuzzy cluster. 

 
o Calculate Root Mean Square Error by using Inference as: 
 

,
1

nc
m

k c k c
c

Y yµ
=

=∑  and       (9) 
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2
,

1

1
( )

k
m

nc m j j
j

RMSE Y Y
k =

= −∑      (10) 

 

where, jY  is the jth observation and mnc
jY , is the jth prediction when m  is the 

level of fuzziness. 
 

- Select, {c*, m*} pair based on minimum mncRMSE , , for c ∈ C and 

m ∈ M 
- Use Test data to validate model performance. 

 
This approach is a supervised learning approach where the number of 

clusters and the level of fuzziness are both determined by supervision of RMSE 
measure.  

 
The optimum values of (m*,c*) are found as (1.3 and 5) in this 

investigation for currency crisis in TL/USD monthly values analysis. In order to 
generate Type-2 membership values and their affect on inference, number of 
cluster, c, is kept constant and list of level of fuzziness is used as m={1.01, 1.1, 
1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}. 

 
          Figure 1. RBFSM Predictions for 2001 Currency Crisis. 
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The degrees of overlapping of clusters are changed by the level of 
fuzziness, m. Intuitively it is possible to analyze the uncertainty called fuzziness 
by changing the level of fuzziness. Similar works has been done in KIS 
laboratory at Toronto University1 for different type of applications. Although 
other sources directly effect the parameters of the model it is very difficult to 
separate and quantify all sources of uncertainty. In estimating the overall 
uncertainty, it may be necessary to take each source of uncertainty and treat it 
separately to obtain the contribution from that source.  

 
It can be seen in           Figure 1, model predicts large currency change 

before crisis happens. Another striking point is that the predictions generated for 
different levels of fuzziness values are more spread around the crisis month. 
The difference between minimum and maximum predictions starts to increase 
two months before and reaches its maximum value at crisis month. This can be 
seen more accurately from the membership values of these data vectors.  

 
Table 1. Membership Values of Data Vectors (Italic Bold ones are for the 

crisis month) for c=5 and m=1.3 
 

Months Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
% USD/TRL 

Change 

-4 0.984 0 0 0.013 0.003 1.02% 

-3 0.238 0.574 0.005 0.088 0.094 -0.80% 

-2 0.128 0.524 0.21 0.077 0.061 -0.97% 

-1 0.281 0.072 0.161 0.354 0.132 10.48% 

Crisis 0.146 0.288 0.27 0.143 0.153 28.85% 

+1 0.161 0.167 0.368 0.155 0.149 26.26% 

+2 0.233 0.013 0 0.369 0.384 -6.17% 

+3 0.034 0.001 0 0.955 0.01 7.22% 

+4 0.007 0 0 0.11 0.882 8.82% 

+5 0.002 0 0 0.996 0.002 5.92% 

+6 0.009 0 0 0.983 0.007 5.32% 

 
 
In Table 1 membership values of the vectors for each month around crisis 

together with their cluster numbers when there are 5 clusters in the model, and 
level of fuzziness is 1.3. It is seen that these values are well spread for crisis 
month although the level of fuzziness is 1.3, eventhough, it is fairly close to the 
crisp clustering where m=1.  

                                                 
1 Uncu (2003), Ozkan-Turksen (2003) have been working experimentally. 
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There are five clusters in this model. And each cluster has its own 
regression equation. Alpha-cut is used as zero. By changing the level of 
fuzziness, degree of overlapping is changed and hence it is possible to see the 
affect of fuzziness on regression coefficients. However it should be noted that 
crisis should generate a one specific cluster since it has a large change in 
currency and the methodology used for clustering is ‘n+1’ dimensional 
({input|output}) clustering, i.e., means the effect of output is included during 
clustering. Therefore for the cluster that indicates the month of a crisis, it may 
not be possible to generate regression coefficients.  

 
Figures 2, 3, 4, and figure 5 show the behaviour of each coefficient and 

Figure 6 shows 3-dimensional view of all predictions.  

 
Figure 2. ∆fdtt-1 Coefficient Values for Different Clusters and Level of 

Fuzziness 
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Figure 3. ∆fdtt-2 Coefficient Values for Different Clusters and Level of 

Fuzziness 

 
Figure 4. ∆rt-2 Coefficient Values for Different Clusters and Level of 

Fuzziness 
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Figure 5. ∆rt-3 Coefficient Values for Different Clusters and Level of 

Fuzziness 
 
As it can be seen from above figures that coefficients of ∆FDTt-2 and ∆Rt-

3 are more varying with level of fuzziness. Coefficients calculated for second 
cluster are relatively more spread. The affect of uncertainty in level of fuzziness 
creates these results on fuzzy regressions coefficients. As the level of fuzziness 
increases the coefficient values become more stable. This might be expected 
since alpha-cut value is used as zero which means that any pattern becomes a 
member of the cluster even it has very little membership values for this cluster. 
In this manner, it affects the regression coefficients. 

 
Table 2 shows the coefficient of variation of regression coefficients 

(standard deviation of coefficient/mean of coefficient). The regression functions 
for each cluster are in a linear regression form such as,  

∆FTc= 0β + 1β ∆Rt-2 + 2β  ∆Rt-3 + 3β  ∆FDTt-1 + 4β ∆FDTt-2 (13) 

 
It is possible to calculate standard deviation and mean for each 

coefficient,  βi except cluster 3 which has βj=0, j=1..4.  
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Table 2. Coefficient of Variation of Regression Coefficients in Each Cluster 
 

Cluster 0β  1β  2β  3β  4β  

1 0.2003 0.4645 0.384 0.2544 0.2148 

2 1.3304 2.318 0.8845 0.7959 0.8721 

3 0.0149 - - - - 

4 1.4878 -2.528 0.7786 0.5076 0.8886 

5 -8.0251 -1.0711 0.7409 0.8027 0.6523 

. 
Another way to calculate the effect of level of fuzziness, or uncertainty as 

fuzziness, is to calculate the movement of centers and their effect on inference. 
Information uncertainty based on cluster centers may lead to find unsupervised 
optimum number of clusters. Alternately if they are calculated as partial 
information entropy, a modified Bezdek (1981) cluster validity index can be 
obtained. This work is out of the scope of this paper and is left for future work 
that concludes all types of parameter uncertainty as uncertainty coefficients. 

 

 
Figure 6. 2001 Crisis Prediction for C=5 And M=1.01,...,2.0 
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Figure 6 shows all predictions around 2001 crisis (±8 months). These 
predictions are calculated based on learning from ‘training’ data which include 
1994 currency crisis.  

 
 
CONCLUSION 
 
In this paper one type of uncertainty, fuzziness, and its affect on 

regression equations has been investigated by an application of the FSM created 
to capture currency crisis experienced in Turkey in 2001 (Ozkan 2003). In the 
model data has been split into ‘training’ and ‘test’ data sets. Training data set 
was used to learn model parameters and test data set was used to asses the 
model predictions. Optimum number of clusters and level of fuzziness was 
found to be (5, 1.3) under RMSE supervision.  

 
Fuzziness and its effect were analyzed by changing level of fuzziness 

around optimum value and the effect of this change on regression coefficient 
was calculated. The degree of overlapping of clusters depends on the level of 
fuzziness and changing it effects directly on both rule bases and inferences. 
Changes in rule bases, or variation of centers, are not investigated in this paper. 
Variations in the value of regression coefficient give extra information, such as 
the contribution of input variables to uncertainty. In this example, ∆FDTt-2  and 
∆Rt-3 are more time-varying i.e., they contribute to uncertainty more then the 
others. It is shown that variations of the level of fuzziness exposes uncertainty 
associated with the exchange rates around crisis.  
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