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We investigate the behavior of light baryons in hot QCD. To this aim, we evaluate 

the light baryons mass and residue in hot medium using the thermal correlation 

function with two-point by means of the thermal QCD sum rule. In sum rule 

calculations, we consider the additional thermal condensates appearing in Wilson 

expansion at 𝑻 ≠ 𝟎. We determine the thermal continuum threshold using obtained 

sum rules expressions to analyze numerically.  We observe that the masses and 

residues of light baryons stay approximately the same until the temperature reaches 

a certain value and then they fall with the temperature increase. We see that vacuum 

values of parameters in our calculations are in good consistency with other studies 

in the literature. Also, we define the fit functions that show how the spectroscopic 

parameters for light baryons behave at 𝑻 ≠ 𝟎. 

 

 

 

 

1. Introduction 

 

The determination of the behaviour of light 

baryons at T≠0 is among the important research 

topics of recent years in hadron physics. Such 

studies have a crucial role in commenting on the 

non-perturbative and perturbative nature of the 

hadronic matter in a hot medium. They can allow 

us to have more ideas about neutron stars' 

compact internal structure.  

 

One of the most reliable and practicable 

phenomenological approaches to evaluate the 

spectroscopic parameters of light baryons at T≠0 

is the thermal QCD sum rules method 

(TQCDSR). TQCDSR is the extended form to 

the finite temperature of QCD sum rules first 

proposed by Shifman, Vainshtein, and Zakharov 

for particles at T=0 [1, 2]. It was firstly given by 

Bochkarev and Shaposhnikov for particles in hot 

medium [3]. In TQCDSR, the Lorentz invariance 

is disrupted at T≠0 and some operators different 

from vacuum operators arise in the operator 

product expansion (OPE) [4, 5]. Also, 

condensates in vacuum are changed placed by 

their thermal expectation values, and the four-

vector velocity in the hot QCD is used.  

 

In TQCDSR, the thermal correlation function 

(TCF), which forms the starting point of the 

method, is defined and the spectroscopic 

parameters of hadrons, such as mass and residue, 

are obtained by calculating this function in two 

different ways. The first calculation is to obtain 

the TCF in hadron language using the dispersion 

relationship. 

 

The other calculation is to write the TCF in quark 

language using OPE. The coefficients with the 

same structures of these correlation functions 

obtained from two different ways are equalized 

to each other using quark-hadron duality. Finally, 

after the undesirable terms arising in the 

dispersion relationship are eliminated with the 
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Borel transformation, the spectroscopic 

parameters of hadrons in a hot medium are 

extracted. 

 

Spectroscopic parameters of mesons at non-zero 

temperature by the TQCDSR have been widely 

studied in the literature [6-31], but there are 

comparatively lesser works about the thermal 

behaviour of light baryons via different 

phenomenological methods [32-49]. In the 

present paper, we calculate the 

𝑁, Σ, Λ, Ξ, Δ, Σ∗, Ξ∗, Ω− light baryons mass and 

residue at 𝑇 ≠ 0 using the thermal light quark 

propagator by means of TQCDSR. In numerical 

calculations, we use the energy density and 

thermal versions of quark and gluon condensates 

obtained by lattice QCD.  

 

This work is planned as follows: In Section 2, the 

thermal QCD sum rules for the masses and 

residues of light baryons at non-zero temperature 

are obtained. In Section 3, numerical calculations 

are presented for the considered light baryon. 

Section 4 is devoted to our discussions and 

conclusions. 

 

2. Material and Method 

 

In this part, QCD sum rules for light baryons 

mass and residue at non-zero temperature are 

presented. The starting point of the calculations 

is the following the TCF introduced as 

 

Π(𝜇𝜈)(𝑝, 𝑇) = 𝑖 ∫ 𝑑4 𝑥 𝑒𝑖𝑝∙𝑥 

× 〈𝒯 (𝜂(𝜇)
𝑂(𝐷)(𝑥) 𝜂(𝜈)

+ 𝑂(𝐷)(0))〉,                          (1) 

 

where 𝑝 is the four-momentum, 𝑇 represents 

temperature and 𝒯 denotes time ordering 

product. Also, 𝜂𝑂(𝑥) and 𝜂𝜇
𝐷(𝑥) are interpolating 

currents for 𝑁, Σ, Λ, Ξ octet and 

Δ, Σ∗, Ξ∗, Ω− decuplet light baryons, respectively. 

We take the following expressions for these 

interpolating currents: 

 

𝜂𝑂(𝑥) = 𝑁𝜀𝑎𝑏𝑐 ∑ [𝐾 (𝑞1
𝑇,𝑎(𝑥)𝐶𝐴1

𝑖 𝑞2
𝑏(𝑥))

2

𝑖=1

 

× 𝐴2
𝑖 𝑞3

𝑐(𝑥)] + 𝐿 [(𝑞2
𝑇,𝑎(𝑥)𝐶𝐴1

𝑖 𝑞3
𝑏(𝑥)) 𝐴2

𝑖 𝑞1
𝑐(𝑥)] 

+𝑀 [(𝑞1
𝑇,𝑎(𝑥)𝐶𝐴1

𝑖 𝑞3
𝑏(𝑥)) 𝐴2

𝑖 𝑞2
𝑐(𝑥)],                   (2) 

 

𝜂𝜇
𝐷(𝑥) = 𝑁𝜀𝑎𝑏𝑐 [(𝑞1

𝑇,𝑎(𝑥)𝐶𝛾𝜇𝑞2
𝑏(𝑥)) 

× 𝑞3
𝑐(𝑥) + (𝑞2

𝑇,𝑎(𝑥)𝐶𝛾𝜇𝑞3
𝑏(𝑥)) 𝑞1

𝑐(𝑥) 

+ (𝑞3
𝑇,𝑎(𝑥)𝐶𝛾𝜇𝑞1

𝑏(𝑥)) 𝑞2
𝑐(𝑥)].                        (3) 

 

Here 𝑎, 𝑏, 𝑐 denote color indices, 𝐴1
1 = 𝐼, 𝐴1

2 =

𝐴2
1 = 𝛾5  and 𝐴2

2 = 𝑡.    𝐶 and 𝑡 are the charge 

conjugation operator and arbitrary auxiliary 

parameter, respectively. We take as 𝑡 = −1 that 

accords to Ioffe current. The normalization 

constant 𝑁 and the coefficients 𝐾, 𝐿, 𝑀 as well as 

quark fields 𝑞1, 𝑞2 and 𝑞3 for 

𝑁, Σ, Λ, Ξ, Δ, Σ∗, Ξ∗, Ω− light baryons are 

presented in Table 1. 

 
Table 1. 𝑁, 𝐾, 𝐿, 𝑀 coefficients as well as quark 

fields 𝑞1, 𝑞2 and 𝑞3 for 𝑁, Σ, Λ, Ξ, Δ, Σ∗, Ξ∗, Ω− light 

baryons 

 𝑵 𝑲 𝑳 𝑴 𝒒𝟏 𝒒𝟐 𝒒𝟑 

N 2 1 0 0 𝑢 𝑑 𝑢 

Σ − 1 √2⁄  1 −1 0 𝑢 𝑑 𝑠 

Λ 1 √6⁄  1 1 2 𝑢 𝑑 𝑠 

Ξ −2 1 0 0 𝑢 𝑑 𝑠 

Δ 1 √3⁄  − − − 𝑑 𝑑 𝑢 

Σ* √2 3⁄  − − − 𝑢 𝑑 𝑠 

Ξ* 1 √3⁄  − − − 𝑠 𝑠 𝑢 

Ω- 1 3⁄  − − − 𝑠 𝑠 𝑠 

 

To obtain desired sum rules, TCF given in Eq. (1) 

is evaluated in two different forms:  In a first 

form, the hadronic side, the obtained expression 

includes observable hadronic states like mass and 

residue. In a second form, the QCD side, TCF is 

evaluated in the way of light quark fields by 

Wick’s theorem. The sum rules for hadronic 

states are eventually reached by equating the 

determined structures' coefficients from both 

sides help of the dispersion relation. To suppress 

the terms arising from continuum and the higher 

states, it is necessary to apply the Borel 

transformation to on both parts of the equation.   
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The hadronic part of TCF is determined by 

inserting a full set of hadronic states into Eq. (1) 

and performing the four-dimensional integral. 

Therefore, we can write the hadronic part of TCF 

as 

 

Π(𝜇𝜈)
𝐻𝐴𝐷(𝑝, 𝑇) = −⟨0|𝜂(𝜇)

𝑂(𝐷)(0) |𝐿(𝑝, 𝑠)⟩
𝑇
 

×
⟨𝐿(𝑝, 𝑠)|�̅�(𝜈)

𝑂(𝐷)(0) |0⟩
𝑇

𝑝2−𝑚𝑂(𝐷)
2 (𝑇)

+ ⋯,                          (4) 

 

where 𝑚𝑂(𝐷)(𝑇) is the thermal mass of octet or 

decuplet light baryon at 𝑇 ≠ 0, |𝐿(𝑝, 𝑠)⟩ is the 

light baryon state and the dots represents the 

contributions of the higher states and continuum. 

The matrix elements for octet and decuplet 

baryon can be taken respectively as 

 

⟨0|𝜂𝑂(0) |𝐿(𝑝, 𝑠)⟩𝑇 = 𝜆𝑂(𝑇)𝑢(𝑝, 𝑠),             (5) 

 

⟨0|𝜂𝜇
𝐷(0) |𝐿(𝑝, 𝑠)⟩

𝑇
= 𝜆𝐷(𝑇)𝑢𝜇(𝑝, 𝑠),            (6) 

 

Here, 𝜆𝑂(𝑇) and 𝜆𝐷(𝑇) are thermal residues of 

octet and decuplet baryon at 𝑇 ≠ 0, respectively. 

As 𝑢(𝑝, 𝑠) represents Dirac spinor, 𝑢𝜇(𝑝, 𝑠) 

denotes the Rarita–Schwinger spinor. After we 

insert the matrix elements given in Eqs. (5), (6) 

into Eq. (4) and sum over the spins for considered 

light baryon, we find the hadronic part of TCF 

with respect to the Borel parameter in two 

different Lorentz structures as 

 

�̂�Π1(𝜇𝜈)
𝐻𝐴𝐷 (𝑝2, 𝑝0, 𝑇) = −𝜆𝑂(𝐷)(𝑇)𝑒

−
𝑚𝑂(𝐷)

2 (𝑇)

𝑀2 ,   (7)            

 

�̂�Π2(𝜇𝜈)
𝐻𝐴𝐷 (𝑝2, 𝑝0, 𝑇) = −𝜆𝑂(𝐷)(𝑇) 

×  𝑚𝑂(𝐷)(𝑇)𝑒− 𝑚𝑁,𝐻(𝐷)
2 (𝑇)

𝑀2 ,                   (8) 

 

where 𝑀2 indicates the Borel parameter, 𝑝0 

denotes the quasi-particle energy, Π1 and  Π2 are 

coefficients of Lorentz structures  𝓅  and 𝐼 for 

nucleon/hyperon as they are coefficients of  

𝓅𝑔𝜇𝜈 and 𝑔𝜇𝜈 for decuplet baryons, respectively. 

The next aim is to obtain the QCD part of TCF 

with respect to quark fields by operator product 

expansion (OPE). TCF in this representation can 

be separated to the different Lorentz structures as 

hadronic side. We select 𝓅 and 𝐼 Lorentz 

structures for nucleon/hyperon as well as  𝓅𝑔𝜇𝜈 

and 𝑔𝜇𝜈 structures for decuplet baryons. By 

inserting the interpolating currents given in Eqs. 

(2) and (3) for considered light baryon into TCF 

and then contracting out all quark pairs by 

Wick’s theorem, we find the QCD part of the 

TCF in connection with the thermal light quark 

propagators 𝑆𝑞(𝑥): 

 

Π𝑄𝐶𝐷,𝑁(𝑝, 𝑇) = 4𝑖𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 

× ⟨{((𝛾5𝑆𝑢
𝑐�́�(𝑥)�́�𝑑

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)𝛾5 

−𝛾5𝑆𝑢
𝑐�́�(𝑥)𝛾5𝑇𝑟[𝑆𝑢

𝑎�́�(𝑥)�́�𝑑
𝑏�́�(𝑥)]) +

𝑡(𝛾5𝑆𝑢
𝑐�́�(𝑥)𝛾5�́�𝑑

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥) +

𝑆𝑢
𝑐�́�(𝑥)�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥)𝛾5 −

𝛾5𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑢

𝑎�́�(𝑥)𝛾5�́�𝑑
𝑏�́�(𝑥)] −

𝑆𝑢
𝑐�́�(𝑥)𝛾5𝑇𝑟[𝑆𝑢

𝑎�́�(𝑥)�́�𝑑
𝑏�́�(𝑥)𝛾5]) +

𝑡2(𝑆𝑢
𝑐�́�(𝑥)𝛾5�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥) −

𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑑

𝑏�́�(𝑥)𝛾5�́�𝑢
𝑎�́�(𝑥)𝛾5])}⟩

𝑇
,                     (9) 

 

Π𝑄𝐶𝐷,Σ(𝑝, 𝑇) =
𝑖

2
𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 

⟨{(𝛾5𝑆𝑑
𝑐�́�(𝑥)𝛾5𝑇𝑟[𝑆𝑢

𝑎�́�(𝑥)�́�𝑠
𝑏�́�(𝑥)] 

+𝛾5𝑆𝑑
𝑐�́�(𝑥)�́�𝑠

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)𝛾5 

+𝛾5𝑆𝑢
𝑐�́�(𝑥)�́�𝑠

𝑎�́�(𝑥)𝑆𝑑
𝑏�́�(𝑥)𝛾5 

+𝛾5𝑆𝑢
𝑐�́�(𝑥)𝛾5𝑇𝑟[𝑆𝑠

𝑎�́�(𝑥)�́�𝑑
𝑏�́�(𝑥)]) 

+𝑡(𝛾5𝑆𝑑
𝑐�́�(𝑥)𝛾5�́�𝑠

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥) 

+𝛾5𝑆𝑑
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑠

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)] 

+𝑆𝑢
𝑐�́�(𝑥)�́�𝑠

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥)𝛾5 

+𝑆𝑢
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑠
𝑎�́�(𝑥)] 

+𝛾5𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑑

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥)] 
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+𝛾5𝑆𝑢
𝑐�́�(𝑥)𝛾5𝑆́ 𝑠

𝑎�́�(𝑥)𝑆𝑑
𝑏�́�(𝑥) 

+𝑆𝑑
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑠

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥)] 

+𝑆𝑑
𝑐�́�(𝑥)�́�𝑠

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥)𝛾5) 

+𝑡2(𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑠

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥)] 

+𝑆𝑢
𝑐�́�(𝑥)𝛾5�́�𝑠

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥) 

+𝑆𝑑
𝑐�́�(𝑥)𝛾5�́�𝑠

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥) 

+𝑆𝑑
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑢

𝑎�́�(𝑥)𝛾5𝑆𝑠
𝑏�́�(𝑥)])}⟩

𝑇
,               (10) 

 

Π𝑄𝐶𝐷,Ξ(𝑝, 𝑇) = 𝑖𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 

× ⟨{((𝛾5𝑆𝑠
𝑐�́�(𝑥)𝛾5𝑇𝑟[𝑆𝑠

𝑎�́�(𝑥)�́�𝑢
𝑏�́�(𝑥)] 

−𝛾5𝑆𝑠
𝑐�́�(𝑥)�́�𝑢

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥)𝛾5) +

𝑡 (𝛾5𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑢

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥)] −

𝛾5𝑆𝑠
𝑐�́�𝛾5(𝑥)�́�𝑢

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥) +

𝑆𝑠
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑢

𝑏�́�(𝑥)𝛾5𝑆𝑠
𝑎�́�(𝑥)] −

𝑆𝑠
𝑐�́�(𝑥)�́�𝑢

𝑏�́�(𝑥)𝛾5𝑆𝑠
𝑎�́�(𝑥)) +

𝑡2 (𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑠

𝑎�́�(𝑥)𝛾5𝑆𝑢
𝑏�́�(𝑥)] −

𝑆𝑠
𝑐�́�(𝑥)𝛾5�́�𝑢

𝑏�́�(𝑥)𝛾5𝑆𝑠
𝑎�́�(𝑥))}⟩

𝑇
,                            (11) 

 

Π𝑄𝐶𝐷,Λ(𝑝, 𝑇) =
𝑖

6
𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 

× ⟨{((4𝛾5𝑆𝑠
𝑐�́�(𝑥)𝛾5𝑇𝑟[𝑆𝑢

𝑎�́�(𝑥)�́�𝑑
𝑏�́�(𝑥)] 

−2𝛾5𝑆𝑠
𝑐�́�(𝑥)�́�𝑢

𝑎�́�(𝑥)𝑆𝑑
𝑏�́�(𝑥)𝛾5   

−2𝛾5𝑆𝑠
𝑐�́�(𝑥)�́�𝑑

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)𝛾5 

−2𝛾5𝑆𝑑
𝑐�́�(𝑥)�́�𝑢

𝑎�́�(𝑥)𝑆𝑠
𝑏�́�(𝑥)𝛾5 

+𝛾5𝑆𝑑
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑠

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)] 

−𝛾5𝑆𝑑
𝑐�́�(𝑥)�́�𝑠

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)𝛾5 

−2𝛾5𝑆𝑢
𝑐�́�(𝑥)�́�𝑑

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥)𝛾5 

−𝛾5𝑆𝑢
𝑐�́�(𝑥)�́�𝑠

𝑎�́�(𝑥)𝑆𝑑
𝑏�́�(𝑥)𝛾5 

+𝛾5𝑆𝑢
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑑

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥)]) 

+t(4𝛾5𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑑

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)] 

−2𝛾5𝑆𝑠
𝑐�́�𝛾5(𝑥)�́�𝑢

𝑎�́�(𝑥)𝑆𝑑
𝑎𝑏(𝑥) 

−2𝛾5𝑆𝑠
𝑐�́�(𝑥)𝛾5�́�𝑑

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥) 

+4𝑆𝑠
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥)] 

−2𝑆𝑠
𝑐�́�(𝑥)�́�𝑢

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥)𝛾5 

−2𝑆𝑠
𝑐�́�(𝑥)�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥)𝛾5 

−2𝛾5𝑆𝑑
𝑐�́�(𝑥)𝛾5�́�𝑢

𝑎�́�(𝑥)𝑆𝑠
𝑏�́�(𝑥) 

+𝛾5𝑆𝑑
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑠

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥)] 

−𝛾5𝑆𝑑
𝑐�́�(𝑥)𝛾5�́�𝑠

𝑏�́�(𝑥)𝑆𝑢
𝑎�́�(𝑥) 

−2𝑆𝑑
𝑐�́�(𝑥)�́�𝑢

𝑎�́�(𝑥)𝛾5𝑆𝑠
𝑏�́�(𝑥) 

+𝑆𝑑
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑠

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥)] 

−𝑆𝑑
𝑐�́�(𝑥)�́�𝑠

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥)𝛾5 

−2𝛾5𝑆𝑢
𝑐�́�(𝑥)𝛾5�́�𝑑

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥) 

−𝛾5𝑆𝑢
𝑐�́�(𝑥)𝛾5�́�𝑠

𝑎�́�(𝑥)𝑆𝑑
𝑏�́�(𝑥) 

+𝛾5𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑑

𝑏�́�(𝑥)𝑆𝑠
𝑎�́�(𝑥)] 

−2𝑆𝑢
𝑐�́�(𝑥)�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑠
𝑎�́�(𝑥)𝛾5 

−𝑆𝑢
𝑐�́�(𝑥)�́�𝑠

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥)𝛾5 

+𝑆𝑢
𝑐�́�(𝑥)𝛾5𝑇𝑟[�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑠
𝑎�́�(𝑥)]) 

+𝑡2(4𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑢

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥)] −

2𝑆𝑠
𝑐�́�(𝑥)𝛾5�́�𝑢

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥) −

2𝑆𝑠
𝑐�́�(𝑥)𝛾5�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥) −

2𝑆𝑑
𝑐�́�(𝑥)𝛾5�́�𝑢

𝑎�́�(𝑥)𝛾5𝑆𝑠
𝑏�́�(𝑥) +

𝑆𝑑
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑢

𝑎�́�(𝑥)𝛾5𝑆𝑠
𝑏�́�(𝑥)] −

𝑆𝑑
𝑐�́�(𝑥)𝛾5�́�𝑠

𝑏�́�(𝑥)𝛾5𝑆𝑢
𝑎�́�(𝑥) −

2𝑆𝑢
𝑐�́�(𝑥)𝛾5�́�𝑑

𝑏�́�(𝑥)𝛾5𝑆𝑠
𝑎�́�(𝑥) −

𝑆𝑢
𝑐�́�(𝑥)𝛾5�́�𝑠

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥) −

𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝛾5�́�𝑠

𝑎�́�(𝑥)𝛾5𝑆𝑑
𝑏�́�(𝑥)])}⟩

𝑇
 ,            (12) 

Π𝜇𝜈
𝑄𝐶𝐷,Δ(𝑝, 𝑇) =

𝑖

3
𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 
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× ⟨{2𝑆𝑑
𝑐�́�(𝑥)𝛾𝜈�́�𝑑

𝑎�́�(𝑥)𝛾𝜇𝑆𝑢
𝑏�́�(𝑥)

− 2𝑆𝑑
𝑐�́�(𝑥)𝛾𝜈�́�𝑑

𝑎�́�(𝑥)𝛾𝜇𝑆𝑢
𝑏�́�(𝑥)

+ 4𝑆𝑑
𝑐�́�(𝑥)𝛾𝜈�́�𝑢

𝑏�́�(𝑥)𝛾𝜇𝑆𝑑
𝑎�́�(𝑥)

+ 2𝑆𝑢
𝑐�́�(𝑥)𝛾𝜈�́�𝑑

𝑎�́�(𝑥)𝛾𝜇𝑆𝑑
𝑏�́�(𝑥)

− 2𝑆𝑢
𝑐�́�(𝑥)𝛾𝜈�́�𝑑

𝑏�́�(𝑥)𝛾𝜇𝑆𝑑
𝑎�́�(𝑥)

− 𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑑

𝑏�́�(𝑥)𝛾𝜈�́�𝑑
𝑎�́�(𝑥)𝛾𝜇]        

+𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑑

𝑏�́�(𝑥)𝛾𝜈�́�𝑑
𝑎�́�(𝑥)𝛾𝜇]  −

𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑑

𝑏�́�(𝑥)𝛾𝜈�́�𝑑
𝑎�́�(𝑥)𝛾𝜇]}⟩

𝑇
                  (13)   

                                            

Π𝜇𝜈
𝑄𝐶𝐷,Ω−

(𝑝, 𝑇) = 𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 

× ⟨{𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑎�́�(𝑥)𝛾𝜇𝑆𝑠
𝑏�́�(𝑥) 

−𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑏�́�(𝑥)𝛾𝜇𝑆𝑠
𝑎�́�(𝑥) 

−𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑎�́�(𝑥)𝛾𝜇𝑆𝑠
𝑏�́�(𝑥) 

+𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑏�́�(𝑥)𝛾𝜇𝑆𝑠
𝑎�́�(𝑥) 

−𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑠

𝑏�́�(𝑥)𝛾𝜈�́�𝑠
𝑎�́�(𝑥)𝛾𝜇] 

+𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑠

𝑏�́�(𝑥)𝛾𝜈�́�𝑠
𝑎�́�(𝑥)𝛾𝜇]⟩

𝑇
.                  (14) 

 

Π𝜇𝜈
𝑄𝐶𝐷,Ξ∗

(𝑝, 𝑇) =
𝑖

3
𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 

× ⟨{2𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑎�́�(𝑥)𝛾𝜇𝑆𝑢
𝑏�́�(𝑥)

− 2𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑎�́�(𝑥)𝛾𝜇𝑆𝑢
𝑏�́�(𝑥)

+ 4𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑢

𝑏�́�(𝑥)𝛾𝜇𝑆𝑠
𝑎�́�(𝑥)

+ 2𝑆𝑢
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑎�́�(𝑥)𝛾𝜇𝑆𝑠
𝑏�́�(𝑥)

− 2𝑆𝑢
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑏�́�(𝑥)𝛾𝜇𝑆𝑠
𝑎�́�(𝑥)

− 𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑠

𝑏�́�(𝑥)𝛾𝜈�́�𝑠
𝑎�́�(𝑥)𝛾𝜇]

+ 𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑠

𝑏�́�(𝑥)𝛾𝜈�́�𝑠
𝑎�́�(𝑥)𝛾𝜇]

−4𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑢

𝑏�́�(𝑥)𝛾𝜈�́�𝑠
𝑎�́�(𝑥)𝛾𝜇]⟩

𝑇
 ,            (15) 

 

Π𝜇𝜈
𝑄𝐶𝐷,Σ∗

(𝑝, 𝑇) = −
2𝑖

3
𝜀𝑎𝑏𝑐𝜀�́��́��́� ∫ 𝑑4𝑥 𝑒𝑖𝑝.𝑥 

× ⟨{𝑆𝑑
𝑐�́�(𝑥)𝛾𝜈�́�𝑢

𝑏�́�(𝑥)𝛾𝜇𝑆𝑠
𝑎�́�(𝑥)

+ 𝑆𝑑
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑎�́�(𝑥)𝛾𝜇𝑆𝑢
𝑏�́�(𝑥)

+ 𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑑

𝑏�́�(𝑥)𝛾𝜇𝑆𝑢
𝑎�́�(𝑥)

+ 𝑆𝑠
𝑐�́�(𝑥)𝛾𝜈�́�𝑢

𝑎�́�(𝑥)𝛾𝜇𝑆𝑑
𝑏�́�(𝑥)

+ 𝑆𝑢
𝑐�́�(𝑥)𝛾𝜈�́�𝑠

𝑏�́�(𝑥)𝛾𝜇𝑆𝑑
𝑎�́�(𝑥)

+ 𝑆𝑢
𝑐�́�(𝑥)𝛾𝜈�́�𝑑

𝑎�́�(𝑥)𝛾𝜇𝑆𝑠
𝑏�́�(𝑥)

+ 𝑆𝑠
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑑

𝑏�́�(𝑥)𝛾𝜈�́�𝑢
𝑎�́�(𝑥)𝛾𝜇]

+ 𝑆𝑢
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑠

𝑏�́�(𝑥)𝛾𝜈�́�𝑑
𝑎�́�(𝑥)𝛾𝜇]

+𝑆𝑑
𝑐�́�(𝑥)𝑇𝑟[𝑆𝑢

𝑏�́�(𝑥)𝛾𝜈�́�𝑠
𝑎�́�(𝑥)𝛾𝜇]⟩

𝑇
 ,             (16) 

    

Here �́� = 𝐶𝑆𝑇𝐶 and 𝑆𝑞(𝑥) is given as 

 

𝑆𝑞
𝑖𝑗(𝑥) = 𝑖

𝑥𝜇𝛾𝜇

2𝜋2𝑥4
𝛿𝑖𝑗 −

𝑚𝑞

4𝜋2𝑥2
𝛿𝑖𝑗 −

〈�̅�𝑞〉

12
𝛿𝑖𝑗 

−
𝑥2

192
𝑚0

2〈�̅�𝑞〉 [1 − 𝑖
𝑚𝑞

6
𝑥𝜇𝛾𝜇] 𝛿𝑖𝑗 

+
𝑖

3
[𝑥𝜇𝛾𝜇 (

𝑚𝑞

16
〈�̅�𝑞〉 −

1

12
〈𝑢Θ𝑓𝑢〉) 

+
1

3
(𝑢 ∙ 𝑥 𝑢𝜇𝛾𝜇〈𝑢Θ𝑓𝑢〉)] 𝛿𝑖𝑗 

−
𝑖𝑔𝑠𝜆𝐴

𝑖𝑗

32𝜋2𝑥2 𝐺𝜇𝜈
𝐴 (𝑥𝜇𝛾𝜇𝜎𝜇𝜈 + 𝜎𝜇𝜈𝑥𝜇𝛾𝜇),           (17) 

 

where 〈�̅�𝑞〉 shows the thermal quark condensate, 

𝑚𝑞 represents the light quark mass, 𝐺𝜇𝜈
𝐴  is the 

gluon field strength tensor at non-zero 

temperature. To proceed, we insert the above-

given 𝑆𝑞(𝑥) into the QCD part of TCF for each 

light baryon.  

 

After we perform the standard Borel 

transformation and continuum subtraction, we 

obtain the QCD side of TCF in the Borel system 

for each light baryon in terms of the functions 

Π1 and Π2  as the hadronic side. In the final step, 

we match the coefficients of these two different 

forms of TCF with the same structures and obtain 

the thermal sum rules in terms of spectroscopic 

parameters of considered light baryon: 
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�̂�Π1
𝑄𝐶𝐷(𝑝0, 𝑇) = −𝜆𝑂(𝐷)

2 (𝑇)𝑒−𝑚𝑂(𝐷)
2 (𝑇) 𝑀2⁄ ,  (18) 

�̂�Π2
𝑄𝐶𝐷(𝑝0, 𝑇) = −𝜆𝑂(𝐷)

2 (𝑇) 𝑚𝑂(𝐷) 

× 𝑒−𝑚𝑂(𝐷)
2 (𝑇) 𝑀2⁄ .                                            (19) 

 

From Eqs. (18) and (19), we extract masses and 

residues for considered light baryons. 

 

3. Numerical Results  

 

The starting point of the numerical analysis is the 

determination of some input parameters required 

in calculations. These input parameters which the 

vacuum values of quark masses, quark 

condensates and gluon condensates are gathered 

in Table 2. 

 

Aside from these input parameters presented for 

𝑇 = 0, there are three more that the thermal 

quark condensate 〈�̿�𝑞〉, the thermal gluon 

condensate 〈𝐺2〉 and energy density of hot 

medium 〈Θ00
𝑓 〉. For 〈�̿�𝑞〉, we use the following 

expression [50] 

 

〈�̿�𝑞〉 = ⟨0|�̿�𝑞|0⟩
1

1+𝑒
𝐴(𝐵𝑇2+𝐶[

1
𝐺𝑒𝑉

]𝑇−1)
,             (20) 

 

where fit parameters are 𝐴 = 18.10042, 𝐵 =

1.84692
1

𝐺𝑒𝑉2, 𝐶 = 4.99216
1

𝐺𝑒𝑉
, and this 

expression is consistent with the Lattice QCD 

studies presented in [51, 52]. 

 
〈𝐺2〉 is given by 

 

〈𝐺2〉 = ⟨0|𝐺2|0⟩ [1 − 1.65 (
𝑇

𝑇𝑐
)

8.735

 

+0.04967 (
𝑇

𝑇𝑐
)

0.7211
],                                               (21) 

 

where 𝑇𝑐 is the critical temperature and ⟨0|𝐺2|0⟩ 

being gluon condensate at 𝑇 = 0. Using the 

graphics drawn in the framework lattice QCD 

[52], we can describe the following fit formula 

for energy density of hot medium 

 

〈Θ00
𝑓 〉 = 〈Θ00

𝑔 〉 = 𝑇4𝑒(𝐷𝑇2−𝐸𝑇) − 𝐹𝑇5,             (22) 

where 𝐷, 𝐸 and 𝐹 are fit parameters that 𝐷 =

113.867
1

𝐺𝑒𝑉2, 𝐸 = 12.190
1

𝐺𝑒𝑉
, 𝐹 = 10.141

1

𝐺𝑒𝑉
, 

and this formula is valid at temperatures up to 

130 𝑀𝑒𝑉. 

 

Table 2. Vacuum values of input parameters 

involved in calculations [53-56] 

Parameter Vacuum Value Unit 

𝑝0
𝑁 1 [𝐺𝑒𝑉] 

𝑝0
Σ 1.192 [𝐺𝑒𝑉] 

𝑝0
Λ 1.15 [𝐺𝑒𝑉] 

𝑝0
Ξ 1.314 [𝐺𝑒𝑉] 

𝑝0
Δ 1.231 [𝐺𝑒𝑉] 

𝑝0
Σ∗

 1.383 [𝐺𝑒𝑉] 

𝑝0
Ξ∗

 1.531 [𝐺𝑒𝑉] 

𝑝0
Ω−

 1.672 [𝐺𝑒𝑉] 

𝑚𝑢 2.3−0.5
+0.7 [𝑀𝑒𝑉] 

𝑚𝑑 4.8−0.3
+0.5 [𝑀𝑒𝑉] 

𝑚𝑠 95 ± 5 [𝑀𝑒𝑉] 

𝑚0
2 0.8 ± 0.2 [𝐺𝑒𝑉]2 

⟨0|�̅�𝑢|0⟩=⟨0|�̅�𝑑|0⟩ −(0.24 ± 0.01)3 [𝐺𝑒𝑉]3 

⟨0|�̅�𝑠|0⟩ −0.8(0.24
± 0.01)3 

[𝐺𝑒𝑉]3 

⟨0|
1
𝜋

𝛼𝑠𝐺2|0⟩ 
(0.012 ± 0.004) [𝐺𝑒𝑉]4 

 

To complete the numerical calculations, we need 

to determine the three auxiliary parameters, the 

Borel parameter 𝑀2, the thermal version of the 

continuum threshold 𝑠0(𝑇) and the parameter 𝑥 

(𝑥 = 𝑐𝑜𝑠𝜃, 𝑡 = 𝑡𝑎𝑛𝜃). According to the QCD 

sum rule principle, physical quantities should be 

roughly independent with respect to these 

parameters in suitable working ranges. To 

determine the suitable working ranges for 𝑀2 

and 𝑥, we investigate the behaviour of the 

physical parameters of the corresponding light 

baryon according to these auxiliary parameters in 

vacuum. We realize that they weakly depend on 

these parameters for selected regions.  

 

Therefore, we take the working ranges of 𝑥 

[±0.6 ∓ 0.2] and [±0.8, ∓0.4] for nucleon and 

hyperon, respectively. The working ranges of 𝑀2 

are taken as           [0.8𝐺𝑒𝑉2 − 1.2𝐺𝑒𝑉2], 
[1.0𝐺𝑒𝑉2 − 1.6𝐺𝑒𝑉2], [1.0𝐺𝑒𝑉2 − 1.6𝐺𝑒𝑉2],
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[1.2𝐺𝑒𝑉2 − 1.8𝐺𝑒𝑉2], [1.5𝐺𝑒𝑉2 − 3.0𝐺𝑒𝑉2], 
[1.7𝐺𝑒𝑉2 − 3.5𝐺𝑒𝑉2], [2.0𝐺𝑒𝑉2 − 3.8𝐺𝑒𝑉2], 
[2.2𝐺𝑒𝑉2 − 4.0𝐺𝑒𝑉2]  for the 

𝑁, Σ, Λ, Ξ, Δ, Σ∗, Ξ∗, Ω−, respectively. 

 

At the end of this section, we would like to show 

the thermal behaviour of spectroscopic 

parameters of light baryons and residue at non-

zero temperatures. For this aim, we display the 

mass and residue at selected 𝑠0 and 𝑀2 values 

versus temperature for the corresponding light 

baryon in Figure 1 and Figure 2, respectively. 

Selected 𝑠0 and 𝑀2 values in these graphs are 

given in Table 3. It is seen that masses and 

residues of 𝑁, Σ, Λ, Ξ, Δ, Σ∗, Ξ∗, Ω− light baryons 

remain approximately unchanged until the 

temperature reaches 𝑇 ≅ 0.13 − 0.15 𝐺𝑒𝑉 and 

then they start to rapidly fall with the temperature 

increases. By using Figs. 1 and 2, we also obtain 

the following fit functions for the thermal mass 

and residue as 

 

𝑚𝐿[𝜆𝐿](𝑇) = Γ(1 − 𝛿𝑇𝑛),                            (23) 

 

Here, Γ, 𝛿 and 𝑛 are fitting parameters and their 

values are given in Table 4 and 5 for mass and 

residue of the corresponding light baryon, 

respectively. At 𝑇 → 0 limit, it is shown that 

above our fit function for both mass and residue 

of corresponding light baryon are consistent with 

other studies and experimental results in vacuum. 

 

4. Discussion and Conclusion 

 

In this article, we wanted to determine the 

thermal behaviour of light baryons at 𝑇 ≠ 0. To 

this aim, we evaluated the mass and residue of 

light baryons by means of the TQCDSR in hot 

medium. In these calculations, we used the 

selected interpolating current for the 

corresponding light baryon and determined 

working ranges of auxiliary parameters partaken 

sum rules. We also obtained the thermal 

continuum threshold for considered light baryon 

in terms of their vacuum values.  

 

Using the additional thermal condensates at    

𝑇 ≠ 0, we numerically analyzed for 

𝑁, Σ, Λ, Ξ, Δ, Σ∗, Ξ∗, Ω− light baryons masses and 

residues. We see that the physical parameters of 

light baryons stay approximately the same until 

the temperature reaches 𝑇 ≅ 0.13 − 0.15 𝐺𝑒𝑉 

and then they fall with the temperature increases.  

If we compare this thermal reduction behavior 

with other studies in the literature, we see that the 

behaviour with respect to temperature on the 

mass and residue of 𝑁, Σ, Λ, Ξ octet baryons is 

rapport with studies given in [32, 33, 35, 47].On 

the other hand, the behaviour of the Δ, Σ∗, Ξ∗, Ω− 

decuplet baryon’s mass with respect to the 

temperature in this work is agreed with results 

given in [44,45].   

 

As a result, this melting of physical parameters 

of light baryons with increasing temperature may 

be interpreted as a transition to the quark-gluon 

plasma phase from the hadron phase.  Also, it is 

seen that the vacuum values of physical 

parameters in this study are in good conform with 

other studies in the literature.  

 

We obtained the fit functions at non-zero 

temperature for the mass and residue of light 

baryons in this article. These fit functions may be 

used to investigate other spectroscopic 

parameters of light baryons in a hot medium. We 

hope that our results may help analyses of heavy 

ion collision experiments in later times. 

 

 

Figure 1. Mass-temperature graph for the 

corresponding light baryon at selected 𝑠0 

and 𝑀2 
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Figure 2. Residue-temperature graph for the 

corresponding light baryon at selected 𝑠0 

and 𝑀2 

 

Table 3. Selected 𝑠0 and 𝑀2 values in Figs. 1 and 2 

particle 𝒔𝟎(𝑮𝒆𝑽𝟐) 𝑴𝟐(𝑮𝒆𝑽𝟐) 

𝑁 1.5 1.0 

Σ 2.8 1.3 

Λ 2.6 1.3 

Ξ 3.2 1.5 

Δ 2.9 1.5 

Σ∗ 3.5 1.7 

Ξ∗ 4.1 2.0 

Ω− 4.7 3.0 

 
Table 4. The values of parameters Γ, 𝛿 and 𝑛 in the 

fit function defined for 𝑚𝐿(𝑇) 

particle Γ(GeV ) 
𝜹 (

𝟏

𝑮𝒆𝑽
)

𝒏

 
n 

𝑁 0.81 3.67 × 1011 16 

Σ 1.37 1.37 × 107 16 

Λ 1.24 1.29 × 107 10 

Ξ 1.38 1.27 × 107 10 

Δ 1.24 2.23 × 1011 10 

Σ∗ 1.39 2.32 × 1011 16 

Ξ∗ 1.52 2.34 × 1011 16 

Ω− 1.69 2.31 × 1011 16 

 
Table 5. The values of parameters Γ, 𝛿 and 𝑛 in the 

fit function defined for 𝜆𝐿(𝑇) 

particle Γ(GeV ) 
𝜹 (

𝟏

𝑮𝒆𝑽
)

𝒏

 
n 

𝑁 0.03 3.55 × 109 14 

Σ 0.01 2.14 × 108 12 

Λ 0.01 2.14 × 108 12 

Ξ 0.02 1.80 × 108 12 

Δ 0.03 9.42 × 106 10 

Σ∗ 0.04 9.68 × 106 10 

Ξ∗ 0.04 9.63 × 106 10 

Ω− 0.05 9.50 × 106 10 
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