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ABSTRACT 
 

In this paper, we investigate the effect of local disturbances in European airports over the global delay characteristics of the 

air traffic network with and without ground holding program. First, the historical air traffic data is used for analyzing the 

busiest European airports. Then, network models are constructed in order to simulate balancing the demand and capacity and 

delay propagation across the network under disruptive events. These models, which are stochastic Queuing Network Models, 

are used to run in different scenarios where the capacities of airports are reduced to simulate local disturbances (e.g. heavy 

rain in the airport areas, air traffic controller strikes, etc.). The impact of a local capacity reduction in the airports to the 

European network are analyzed, and performances of these models, with and without ground holding implementation (i.e. 

Queuing Network Model (QNM) and Queuing Network Model with Ground Holding (QNM-GH)), are compared. It is shown 

that demand and capacity are in balance for both models. It is seen that the ground delay policy in QNM-GH causes to shift 

the delays from arrival to departure. Furthermore, it is declared that QNM-GH outperforms QNM in uncertainty reduction. 

Moreover, it is seen that the total delay cost of the network with QNM, which is 280845  €, is greater than the total delay 

cost of the network with QNM-GH, which is 268500  €, in same case study.  

 

Keywords: Air transportation, Air traffic modelling and simulation, Demand and capacity balancing 

 

 

1. INTRODUCTION 

 

The air transportation industry and its role in modern life are rapidly growing. It is expected that the 

number of commercial flights will almost double from 26 million to 48.7 million and 13.5 trillion 

passenger-kilometer will be flown by 2030, which is almost the triple of what is flown by airlines today 

[1]. The total number of new deliveries for both passenger and freighter aircraft are expected to be close 

to 32,600, while 14,000 passenger aircraft will be retired or converted to freighter [1]. However, the 

airspaces have a fixed amount of capacity, and the number of airports to be built is not large enough to 

accommodate such increase in the demand. Therefore, the Air Traffic Management (ATM) system must 

go under an operational transformation in order to increase its efficiency to deal with these challenges. 

Meeting the capacity demand and minimizing arrival flight delays are among the most critical challenges 

of Flight Path 2050 [2]. 

 

New procedures and concepts that are being developed in Single European Sky ATM Research 

(SESAR) and Next Generation Air Transportation System (NextGen) are leading to a global paradigm 

shift from air traffic "control" to efficient air traffic "management", which requires redesigning the ATM 

system. The first step to designing such a complex system is to perform rigorous analysis through the 

existing data. Once we have the parametric model on the network, then one can add stochastic behavioral 

dynamics in order to catch the occasional effects on the system. Airports of the air traffic network are 
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most fragile parts of the system as the most influential events to the flow occur in there. Therefore, 

focusing on the airports on model construction is the most common in such studies. 

 

In this work, we have constructed data analytic approach to model the European ATM Network Flow 

to quantify the dynamics of delay propagation across the network and balance the demand and capacity. 

In order to model the European Air Traffic Network, we have utilized historical data of European air 

traffic flow and queuing models of air sectors. Specifically, we have constructed two different ATM 

network models allow us to propagate induced delays, which are airport-based queuing network model 

(QNM) and airport-based queuing network model with ground-holding application (QNM-GH) and 

compared their behaviors under disruptive events (e.g. heavy rain, crew strike) leading airports to 

mandatory capacity reduction. A case study is performed to apply demand and capacity balancing in 

airports. Following subsection provides previous research efforts on modeling air transportation 

network. 

 

1.1. Previous Works  

 

Several researchers focused on different approaches to model the air transportation network. Eulerian 

network models are generated to model en-route air traffic flow and strongly inspired by hydrodynamic 

theory, especially by Daganzo’s Cell Transmission Model [3, 4] and the work of Lighthill, Whitham 

and Richards [5, 6]. The Large-Capacity Cell Transmission Model that uses a graph-theoretic 

representation of air traffic flow is represented in the study of Sun and Bayen [7]. A discrete time 

dynamical system is used to model the traffic flow on the network. In this model, traffic flow is modelled 

by a deterministic linear system with unit time delay. Another model is presented by Menon et al. [8]. 

The modelling technique is to aggregate the air traffic into control volumes, which are line elements. 

The model accounts ATC actions and handles merging and diverging air traffic flows. Bayen et al.  [9] 

use the partial differential equations derived from conservation of mass in a control volume and it relies 

on a modified version of the Lighthill-Whitham-Richards (LWR) partial differential equations [5, 6]. 

Controller design strategies are also applied to these models to regulate the aircraft count in differential 

sectors under a legal threshold [10-12]. 

 

Machine learning is another approach to model the delay prediction in air transportation. In [13, 14], a 

network-based delay prediction model is constructed. The model uses Random Forest (RF) algorithm 

and the aim of this approach is to predict the departure delay state of a certain route in the network 

instead of predicting individual flight delays. The study in [15] also focuses on departure delay 

prediction using machine learning techniques borrowing ideas from Genetic Algorithm. Moreover, 

MITRE Corporation focused on network modelling to mimic local delay propagation and developed 

two different models to simulate of delay propagation on the nationwide airport and airspace network 

in the United States. The Detailed Policy Assessment Tool (DPAT) [16], which is the successor of the 

National Airspace System Performance Analysis Capability (NASPAC) tool, is able to propagate delays 

across the network when the capacity of an airport is reduced due to external events, but it does not 

utilize the information regarding aircraft itineraries, which might lead to unreliable predictions. 

 

On the other hand, there are also agent-based simulation models for delay propagation, such as Future 

ATM Concepts Evaluation Tool (FACET) [17]. LMINET (Logistics Management Institute – Network) 

and LMINET2 [18] are national queuing network models, which represent airports airports as 

M(t)/Ek(t)/1 queues. In queuing theory, a system is represented in a form of A|B|m, where A and B 

indicate the probability distribution of user inter-arrival times and of service times, respectively, and m 

is the number of identical parallel servers in the queueing system. In M(t)/Ek(t)/1, the aircraft arrival 

time is modeled as an Exponential distribution and the airport service time is modeled with Erlang 

Distribution. The Approximate Network Delays (AND) model is another popular model that is designed 

by [19, 20]. The modelling approach in AND and LMINET2 are similar. However, calculating strategies 

of the local queuing delays are different. The advantages of this approach are that it is computationally 
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cheap, and it can model both deterministic and stochastic effects. Another methodology, which is seen 

in [21, 22], focuses on optimization based or algorithmic approaches. In [22], a slot allocation model is 

generated by considering the structure of the air traffic network as a mathematical programming 

problem, so the interdependence of the slots at different airports is also considered. By using this 

methodology, allocation with grandfather rights are compared with free allocation. In [21], it is also 

used similar methodology where an integer programming model for large-scale instances of the air 

traffic flow management problem is presented. Sectors and airports are modelled with their capacities 

in this model. Further, a network-based air traffic model is developed by Hong and Harker [23]. The 

values of landing slots at airports are estimated using this model. An algorithm integrated with constraint 

programming optimization paradigm is presented by [24] to reschedule the flight plan using delays and 

swaps. In [25], several different meta-heuristic such as hill-climbing, simulated annealing, and genetic 

algorithm are used to solve the recovery problem. 

 

The paper is organized as follows. The Section 2 explains historical traffic data processing and 

dimensionality reduction in number of airports in the European Network. The validation of the applied 

strategy is also given in Section 2. Section 3 presents the data-driven network models and their design 

principles. Then, Section 4 provides simulation results for percentile capacity reduction and gives 

comparison of these network models.  

 

2. TRAFFIC DISTRIBUTION IN EUROPE 

 

This section provides the analysis of traffic flow and characteristics of European's airports. For these 

purposes, 2 months of historical traffic data, which contains flights (including transits) in Europe during 

June 2014 and November 2014, is used. Historical air traffic data has been extracted from the ALLFT+ 

data set, collected by EUROCONTROL.  

 

The all movements for an airport are extracted through all flights, which are both departure and arrival 

flights, for the airport and the given month. The average daily movement is calculated by dividing the 

number of total flights to the number of days for the given month. Then, the busiest airports in 2014 are 

given in Table 1. It is observed that approximately 20% of all movements in Europe originated from or 

arrived at these 8 busiest airports. 

 

Table 1. Busiest Airports in Europe (June - November 2014) 

 
June 2014 November 2014 

# Airport Mov./Day # Airport Mov./Day 

1 EDDF 1394 1 EGLL 1252 

2 LFPG 1385 2 EDDF 1228 

3 EGLL 1340 3 LFPG 1204 

4 EHAM 1325 4 LTBA 1148 

5 LTBA 1232 5 EHAM 1141 

6 EDDM 1096 6 EDDM 1021 

7 LEMD 1000 7 LEMD 920 

8 LIRF 962 8 LIRF 779 

19% of all movements in Europe 22% of all movements in Europe 

 

It is obvious that an airport generates delays when it reaches its capacity limit. In Europe, most of the 

airports have daily movements under a 100, meaning that their hourly movements are less than 4. If an 

airport has only 1 runway, then the hourly capacity of this airport will be around 30. It is assumed that, 

these kinds of airports operate with far less demand than their limits, and do not injects additional delay 

into the network. Considering this operational reality, we have chosen to aggregate these airports as a 

single entity for the sake of low dimensionality.  
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In addition to the airports in Europe, non-European airports also inject traffics into European airports. 

Figure 1 depicts the traffic flow over Europe in directed graphs that are generated by using the actual 

flight dataset. Vertices represent specific regions and weights on the edges represent the percentage of 

air traffic flow from one region to another. The letters in the graphs represent the regions, which are 

provided by ICAO, i.e. L: Southern Europe, Israel and Turkey; E: Northern Europe; U: Russia; K: 

United States; O: Pakistan, Afghanistan and most of Western Asia; G: Western parts of West Africa and 

Maghreb. 

 

 
 

Figure 1. Regional Air Traffic Flow in Europe (a) in June 2014 and (b) in November 2014 

 

In this study, the analysis and model development focuses on the European region. Moreover, due to 

the data availability, all of the non-European airports are considered as an aggregated airport. Focusing 

Europe airports represent a strong approximation with at least 78% actual flow coverage, which is seen 

in Figure 1. 

These assumptions allow us to aggregate all “minor” airports and non-European as a single airport. For 

the modelling purpose, the total number of airports has been reduced to 103 airports, including 102 

European major airports and an aggregated airport for Network Model. 

 

3. DATA DRIVEN NETWORK MODEL WITH/WITHOUT GROUND HOLDING POLICY  

 

In this section, we explain data-driven network model, which is a queuing network model with ground 

delay policy, for European Air Traffic Network. Uncertainties in the network are inherently reflected 

through stochastic nature of the queuing network model. One can also construct pure deterministic 

models by following very similar data-driven approach as well. 

 

To design an airport-based queuing network model, this study closely follows [19, 20] such that very 

similar recursive methodology is used. Specifically, the airport-based queuing network model (QNM) 

consists of two layers, which are the local queuing delay calculator (LQDC) and the global delay 

propagation (GDP) algorithm. These layers follow each other in a recursive fashion. 

 



Başpınar and Koyuncu / Anadolu Univ. J. of Sci. and Technology  A – Appl. Sci. and Eng. 18 (2) – 2017 
 

364 

LQDC generates local delays according to First Come First Served (FCFS) procedure. During the delay 

generation process, each airport is modelled as a single server that serves both arrival and departure 

flights. In queuing theory, a system is represented in a form of A|B|m, where A and B indicate the 

probability distribution of user inter-arrival times and of service times, respectively, and m is the number 

of identical parallel servers in the queueing system. M, D, Ek and G letters are commonly used letters 

used to represent different types of probability distributions, where M symbolizes the Poisson (i.e., 

negative exponential pdf for user inter-arrival times or for service times) and stands for "memoryless", 

D symbolizes deterministic (i.e., inter-arrival or service times are constant), Ek symbolizes kth-order 

Erlang distribution and G symbolizes general distribution (i.e., any type of the model). In model, airports 

can be modelled as D(t)/D(t)/1, which represents the deterministic arrival and service times, or 

M(t)/Ek(t)/1, which represents the exponential aircraft arrival times and Erlang airport service times. 

Parameters of these distributions are inferred from the flight data and capacity declarations of airports. 

LQDC calculates local delays for each airport separately, and the global effects of local delays are 

calculated through the propagation algorithm (Figure 2). 

 

LQDC considers demand profiles for each airport. These profiles have a discrete structure: one day is 

split into 15-minutes time windows. 𝜇𝑎(ℎ) represents demand in an airport 𝑎 at time window ℎ. It is the 

total number of flight for both take-off and landing. The other input is 𝜆𝑎(ℎ), which represents the 

service rate. Through these inputs, LQDC generates 𝑊𝑎(𝑡) local delay function dependent on time in 

airport 𝑎.  

 

In GDP level, the algorithm uses 𝑊𝑎(𝑡) sequences, connected flights, scheduled and adjusted departure-

arrival times for each flight. 𝑓 represents the current flight while 𝑓′ represents the previous flight of the 

same aircraft (i.e. same tail number). At the beginning of the propagation algorithm, delay situations are 

determined. The delay is accepted as "significant" if the departure or arrival time of 𝑓 needs to be 

adjusted, meaning that a shift to other slots is essential because of its previous move 𝑓′. Departure and 

arrival times of all flights are regulated through propagation algorithm and evaluated with the following 

equations: 

 

𝐴𝐷(𝑓) =  max [𝑆𝐷(𝑓), 𝑆𝐷(𝑓) + (𝐴𝐴(𝑓′) − 𝑆𝐴(𝑓′)) + 𝑊𝑑(𝑓′)(𝐴𝐴(𝑓′)) − 𝑠𝑙𝑎𝑐𝑘(𝑓′, 𝑓)]         (1) 

𝐴𝐴(𝑓) =  max[𝑆𝐴(𝑓), 𝐴𝐷(𝑓) + 𝑊𝑜(𝑓)(𝐴𝐷(𝑓)) + (𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 𝑜(𝑓) 𝑡𝑜 𝑑(𝑓))]    (2) 

 
In these equations, 𝐴𝐷(𝑓) is the regulated departure time of flight 𝑓. 𝐴𝐴 is the regulated arrival time, 

𝑆𝐷 is the scheduled departure time and 𝑆𝐴 is the scheduled arrival time. 𝑜(𝑓) is the origin airport of the 

flight 𝑓 and 𝑑(𝑓) is the destination airport. Let 𝑡𝑢𝑟𝑛(𝑓′, 𝑓) be the turnaround time, which is evaluated 

as 𝑡𝑢𝑟𝑛(𝑓′, 𝑓) = 𝑆𝐷(𝑓) − 𝑆𝐴(𝑓′). Let 𝑚𝑖𝑛𝑡𝑢𝑟𝑛(𝑓′, 𝑓)  be minimum time to handle the ground 

services of flight 𝑓. The 𝑠𝑙𝑎𝑐𝑘(𝑓′, 𝑓) can be given as 𝑠𝑙𝑎𝑐𝑘(𝑓′, 𝑓) = 𝑡𝑢𝑟𝑛(𝑓′, 𝑓) − 𝑚𝑖𝑛𝑡𝑢𝑟𝑛(𝑓′, 𝑓). 

Once we have the regulated departure and arrival times, demand profiles are updated for each airport. 

This recursive process between LQDC and propagation algorithm repeats until any significant delay 

does not stay in the network. This process is given in Figure 2. 
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Figure 2. Flow Chart for Algorithm of Queuing Network Model 

 

In QNM, delays are equally distributed to departure and arrival traffic through FCFS procedure in LQDC 

stage. This approach simply holds that if a departing aircraft takes 𝑥 minutes of delay, the following 

arrival aircraft, which is served in the same runway, will take approximately the same amount of delay. 

Considering fuel consumption and operational costs, the ground delay is preferred to airborne delay. 

Therefore, a ground-holding mechanism is integrated into QNM. The flow chart of Airport Based 

Queuing Network Model with Ground-Holding Program is given in Figure 3. In this algorithm, 

problematic airports are identified at the beginning of the loop. A problematic airport is defined as the 

airport that has local delays greater than 15 minutes. The demand 𝜆𝑎(𝑡𝑤)  and capacity  𝜇𝑎(𝑡𝑤) rates in 

each time window 𝑡𝑤 in these airports are evaluated. The flights in similar time windows holding the 

condition of 𝜆𝑎(𝑡𝑤) 𝜇𝑎(𝑡𝑤)⁄ > 1 are delayed (i.e. ground delay) until the condition 𝜆𝑎(𝑡𝑤) 𝜇𝑎(𝑡𝑤)⁄ ≤
1 is satisfied. Another constraint is that the given delay in this procedure is smaller than 15 minutes. An 

aircraft can be moved to the following time window. More than one shift is not allowed in a single 

iteration. After ground delays are given, demand profiles and local delays are redistributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Başpınar and Koyuncu / Anadolu Univ. J. of Sci. and Technology  A – Appl. Sci. and Eng. 18 (2) – 2017 
 

366 

 
 

Figure 3. Flow Chart for Algorithm of Queuing Network Model with Ground-Holding 

 

4. IMPLEMENTATION, RESULTS AND DISCUSSION 

 

For the implementation purpose, real flight traffic data for a randomly selected day, March 2, 2016, is 

used. Firstly, operations under nominal conditions are investigated. Demand and capacity balancing 

through QNM under nominal conditions in EDDF and LFPG are shown in Figure 4 and Figure 5. 

Secondly, similar capacity reduction scenario is applied to different airports. In this scenario, 45% 

capacity reduction in LFPG (Paris Charles de Gaulle) from 08:00 to 10:00 and 50% capacity reduction 

in EDDF (Frankfurt) from 10:00 to 12:00 is performed. The results and the performances of the network 

models are analyzed and compared from the perspective of demand and capacity balancing (DCB). 

Stochastic versions of both QNM and QNM-GH are evaluated separately. 100 different simulations are 

performed for each stochastic model to show the impacts of stochasticity. Simulation results for different 

network models are given in Figure 6-11. Finally, costs of models are compared considering ground 

holding and airborne delays through deterministic queuing delay calculator (D(t)/D(t)/1) for QNM and 

QNM-GH. In this situation, 45% and 50% capacity reduction for LFPG and EDDF is also applied.  

 

In Figure 4 and Figure 5 related to the nominal operation, deviations from average demands are 

presented with light blue bars, while average demands are presented with dark blue bars. It is shown 

that demands in EDDF and LFPG are regulated where demand trends mostly stay under declared 

capacity curve. However, some capacity excesses are seen due to stochasticity in inter-arrival and 

service times (as seen with light blue bars in Figure 4 and Figure 5). 
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Figure 4. Demand and Capacity Profiles in EDDF as a result of QNM for nominal conditions 

 

 
 

Figure 5. Demand and Capacity Profiles in LFPG as a result of QNM for nominal conditions 

 

Figure 6 and Figure 7 shows the delay profiles in EDDF as a result of capacity reduction scenario, which 

are evaluated through QNM and QNM-GH, respectively. As seen in the figures, departure delay trend 

in QNM-GH is greater than in QNM, while QNM-GH has smaller arrival delay trend. This means that 

ground delay policy in QNM-GH causes to shifting the delays from arrival to departure. Moreover, 

uncertainty bounds in the delay profile due to stochasticity in turnaround times are also given in Figure 

6 and Figure 7. 
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Figure 6. Delay Profiles in EDDF generated by QNM 

 

 
 

Figure 7. Delay Profiles in EDDF generated by QNM-GH 

 

Under capacity reduction, demand and capacity profiles for the results of QNM and QNM-GH are shown 

in Figure 8-11 for EDDF and LFPG. These figures are generated through 100 simulation run for each 

model, and deviations from average demand trend are also shown with light blue bars while average 

demand trend is shown with dark blue bars. Considering average demand profile, it can be said that 

demand and capacity are in balance, however, capacity excesses are seen due to stochastic nature of the 

models. Moreover, it can be seen that QNM-GH outperforms QNM in uncertainty reduction. 
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Figure 8. Demand and Capacity Profiles in EDDF as a result of QNM for capacity reduction scenario 

 

 

 
 

Figure 9. Demand and Capacity Profiles in EDDF as a result of QNM-GH for capacity reduction 

scenario 
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Figure 10. Demand and Capacity Profiles in LFPG as a result of QNM for capacity reduction scenario 

 

 
 

Figure 11. Demand and Capacity Profiles in LFPG as a result of QNM-GH for capacity reduction 

scenario 

 

Finally, using QNM and QNM-GH algorithms with deterministic queuing delay calculator (D(t)/D(t)/1), 

the scenarios with capacity reduction in LFPG and EDDF are performed. Generated delays for the flights 

in the network are used to compare the costs of models by considering ground and airborne delays.  For 

this purpose, the cost definition, which is presented in the document of EUROCONTROL [26] is used 

(Figure 12). In this document, “short” and “long” delays are identified as 15 and 65 minutes, 

respectively. However, delays at different levels might, of course, seen in real situations. Therefore, in 

our calculations, delays with 10 minutes to 30 minutes are defined as “short” delay and delays are greater 

than 30 minutes are described as “long” delays. Moreover, the information about the number of seats 
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for each aircraft are not available in the database used in the calculations. In our simulation day, the 88% 

of aircraft were in “medium” category that is seen in ICAO’s wake turbulence categorization. We have 

chosen to use an average cost for each delay type without considering the number of seats, and these are 

presented in Table 2.   

 

 
 

Figure 12. The cost per minute of airborne and at-gate delays according to aircraft seats [26] 

 
Table 2. Mean Cost per minute for Different Delay Status 

 
Short Delay (10 min – 30 min) Long Delay (>30 min) 

at-gate delay airborne delay at-gate delay airborne delay 

0 € 15 € 75 € 95 € 

 
The amount of total delays obtained from simulations are presented in Table 3. These are the results of 

two different simulations scenarios, which are generated through QNM and QNM-GH models with 

deterministic queuing delay calculator.  

 
Table 3. Generated Total Delays from QNM and QNM-GH 

 
QNM QNM-GH 

Short Delay  Long Delay  Short Delay Long Delay  

Total 

Ground 

Delay 

(minute) 

Total 

Airborne 

Delay 

(minute) 

Total 

Ground 

Delay 

(minute) 

Total 

Airborne 

Delay 

(minute) 

Total 

Ground 

Delay 

(minute) 

Total 

Airborne 

Delay 

(minute) 

Total 

Ground 

Delay 

(minute) 

Total 

Airborne 

Delay 

(minute) 

4088 828 3579 0 4379 0 3580 0 
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Using the cost per minute values and the total amount of delays, the total cost of delay in the network 

for each model is calculated to compare them numerically:  

 

𝐶𝑄𝑁𝑀 = 4088 ∗ 0 + 828 ∗ 15 + 3579 ∗ 75 + 0 ∗ 95 = 280845  €   (3) 

𝐶𝑄𝑁𝑀_𝐺𝐻 = 4379 ∗ 0 + 0 ∗ 15 + 3580 ∗ 75 + 0 ∗ 95 = 268500  €  (4) 

 

It can be seen that the total delay cost of the network with QNM is greater than the total delay cost of 

the network with QNM-GH implementation. It was expected that as the airborne delays in QNM-GH 

implementation are shifted to the ground-waiting, which has relatively lower operational cost. 

 

5. CONCLUSION 

 
This paper presented two different network models to simulate the delay propagation and balance the 

demand and capacity in case of capacity reduction at certain airports in the European air transportation 

network. Through the historical air traffic data, actual movements in the Europe were processed, and 

traffic flow was obtained. Major airports were defined, and other airports were aggregated as to construct 

reduced dimensional model of large-scale European air traffic network. The total number of airports in 

European Air Traffic Network was reduced into 103 airports, which includes 102 major European 

airports and a single aggregated airport. Through dimensionality reduction, two data-driven network 

models, which are airport-based queuing network model (QNM) and airport-based queuing network 

model with the ground-holding program (QNM-GH), were constructed. Design principles and 

algorithms of these approximate models were explained throughout of this paper. Then, the 

performances of these models that parametrically approximates European air traffic network were 

compared in balancing demand/capacity through certain simulation scenarios with capacity reductions 

and uncertainties in airport operations such as turnaround time. The comparison results were given, also 

provides validation for the models. The future work will be to add air sector and trans-sector queues into 

the network in order to capture demand and capacity balancing in en-route sectors, which will enable to 

centrally control traffic flows. 
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