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Abstract  Öz 

Engineering design problems fall into the category of problems that are 
very difficult to optimize. Nature-inspired metaheuristic techniques can 
be beneficial to solve such problems. In this study, a total of 14 different 
problems, 7 of which are benchmark problems and 7 of which are 
engineering design problems, were optimized using the recently 
proposed multi-objective artificial algae algorithm, MOAAA for short. 
For the performance test of the MOAAA, 4 different metrics named HV, 
SPREAD, EPSILON and IGD were used. Performance comparison was 
made with NSGA-II, PAES, MOCell, IBEA and MOVS algorithms which are 
well known in the literature. The Friedman test was applied to the 
metrics obtained for all algorithms and the average ranks of each 
algorithm were calculated. The results show that MOAAA has better 
performance than other algorithms in 3 of 4 metrics. In addition, the 
Wilcoxon's test reveals that the results obtained by the MOAAA are 
significant in the 95% confidence level. 

 Mühendislik tasarım problemleri, optimize edilmesi oldukça zor olan 
problemler sınıfına girer. Doğadan ilham alan metasezgisel teknikler, 
bu tür problemleri çözmek için faydalı olabilmektedir. Bu çalışmada, 
yakın zamanda önerilen çok amaçlı yapay alg algoritması (MOAAA) 
kullanılarak 7 tanesi benchmark problemi, 7 tanesi mühendislik 
tasarım problemi olmak üzere toplam 14 farklı problem optimize 
edilmiştir. MOAAA’nın performans testi için, HV, SPREAD, EPSILON ve 
IGD olarak isimlendirilen 4 farklı metrik kullanılmıştır. Performans 
karşılaştırması literatürde iyi bilinen NSGA-II, PAES, MOCell, IBEA ve 
MOVS algoritmaları ile yapılmıştır. Tüm algoritmalar için elde edilen 
metriklere Friedman testi uygulanmış ve her algoritmanın ortalama 
başarı sırası hesaplanmıştır. Sonuçlar, MOAAA'nın 4 performans 
metriğinden 3'ünde diğer algoritmalardan daha iyi performansa sahip 
olduğunu göstermektedir. Ayrıca Wilcoxon testi, MOAAA ile elde edilen 
sonuçların %95 güven düzeyinde anlamlı olduğunu ortaya 
koymaktadır. 

Keywords: Artificial algae algorithm, Multi-objective constrained 
optimization, Metaheuristic algorithms, Multi-objective engineering 
design problems. 

 Anahtar kelimeler: Yapay alg algoritması, Çok amaçlı kısıtlı 
optimizasyon, Metasezgisel algoritmalar, Çok amaçlı mühendislik 
tasarım problemleri. 

1 Introduction 

Optimization problems with multiple objectives are called 
multi-objective optimization problems (MOOPs), and 
simultaneous optimization of these objectives is called multi-
objective optimization (MOO). Real-world problems are 
generally in the type of NP-hard MOOPs. NP-hard means that it 
cannot be proven that there is a solution in polynomial time, or 
that the algorithms that can solve it efficiently are not known 
[1]; examples of these problems are found in engineering 
design, product and process design, land-use planning, 
management science, economics etc. In MOOPs, objective 
functions are generally inversely proportional. In other words, 
obtaining a satisfactory solution for an objective function result 
in a poor solution for the other objective function. Thus, it is not 
possible to obtain a global best solution as in single-objective 
problems, but instead, a solution set consisting of the best 
solutions is obtained.  

Studies since the 1950s have shown that classical mathematical 
methods encounter various problems while solving MOOPs. 
These problems can be described as the failure of classical 
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mathematical methods in problems where the Pareto front (PF) 
is concave or discrete, where difficulties are caused by the 
structure of classical mathematical methods and where the 
computational cost is high [2]. Thus, researchers favor multi-
objective evolutionary algorithms (MOEAs) to solve MOOPs. 
MOEAs have a population consisting of multiple solutions, and 
all solutions work in cooperation using intelligent strategies. 
Obtaining successful results independent of the problem 
structure and much lower computational costs have 
encouraged researchers to develop new multi-objective 
evolutionary or heuristic algorithms. Day by day, new 
algorithms are added to well-known existing algorithms such 
as NSGA-II [3], MOPSO [4], SPEA2 [5], PAES [6], PESA [7], 
MOEA/D [8] and IBEA [9]. In parallel “survival of the fittest” 
theory of Darwin, the creation of numerous algorithms and the 
survival of the best of them is a natural process. In addition, 
“No-Free Lunch” theorem [10], which states the performance of 
optimization algorithms is similar on average when 
considering all possible types of problems, supports the 
creation of new algorithms. Some single-objective algorithms 
and corresponding multi-objective versions are given in  
Table 1, [11]: 
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Table 1. Single-objective metaheuristic algorithms and multi-
objective versions. 

Single-objective metaheuristic 
algorithms 

Multi-objective versions 

Particle Swarm Optimization 
(PSO) 

MOCLPSO [12], OMOPSO 
[13], SMPSO [14], MOPSO+LS 

[15], PO-MOPSO [16], 
MPSO/D [17], CEMOPSO [18] 

Artificial Bee Colony (ABC) VEABC [19]; MOABC [20]; 
HMOABC [21],   A-

MOABC/PD,   A-MOABC/NS, 
S-MOABC/NS [22] 

Ant Colony Optimization (ACO) MOACOM [23], ACOAMO 
[24], SACO [25] 

Grey Wolf Optimization (GWO) MOGWO [26] 
Ant Lion Optimization (ALO) MOALO [27] 

Cuckoo Search Algorithm (CSA) MOCS [1] 
Moth Flame optimization (MFO) NS-MFO [11] 

Water Cycle Algorithm (WCA) MOWCA [28] 
Simulated Annealing (SA) OSA [29] 

Artificial Immune Algorithm (AIA) MOAIS [30], NNIA [31], HQIA 
[32] 

Biogeography-based 
optimization(BBO) 

MO-BBO [33] 

Invasive Weed Optimization 
(IWA) 

NSIWO [34] 

Firefly algorithm (FA) MOFA [35] 
Bat Algorithm (BA) MOBA [36] 
Teaching-learning 

Based Optimization (TBLO) 
MOTLBO [37] 

Shuffled Frog Leaping Algorithm 
(SFLA) 

MOSFLA [38], MOSG [39-41] 

Vortex Search Algorithm (VS) MOVS [42] 
Artificial Algae Algorithm (AAA) MOAAA [43] 

Researchers continually propose new multi-objective 
metaheuristic algorithms. One of these is the recently proposed 
multi-objective artificial algae algorithm (MOAAA). MOAAA 
was recently tested on continuous and unconstrained multi-
objective optimization problems, and it performed successfully 
[43]. This study aimed to test the performance of the MOAAA 
on constrained benchmark problems and engineering design 
problems.  

Engineering design problems are one of the most important 
real-world problems, many of which are constrained problems 
[44]. Since optimal solutions of engineering design problems 
are difficult to find, metaheuristic algorithms are used in most 
studies [40],[45],[46].  

The test set consists of 14 problems, two unconstrained and 
twelve constrained. The MOAAA was compared with NSGA-II, 
MOCell, MOVS, IBEA and PAES algorithms. The results obtained 
showed that the MOAAA performed better than the comparison 
algorithms on the used problem set. 

The study is organized as follows. In section 2, MOOPs, the 
concept of Pareto and performance metrics are presented. In 
section 3, AAA is summarized. The MOAAA is explained in detail 
in section 4. Section 5 shows the results and performance 
analysis of the algorithms used on the problems. Finally, section 
6 details conclusion and recommendations for further studies.  

1.1 The major addition of the research 

The MOAAA is a recently proposed technique for the solution of 
MOOPs. The MOAAA was first tested on unconstrained MOOPs 
and produced successful results. The performance of the 
MOAAA is aimed to investigate mainly on constrained MOOPs 
in this study. For this purpose, MOAAA has been run on 14 
different MOOPs including engineering design problems and 

benchmark problems. The solutions obtained were evaluated 
according to 4 different performance metrics: 

i. HV, 
ii. SPREAD,  

iii. EPSILON and 
iv. IGD. The obtained metric results show that the 

MOAAA is generally superior to the comparison 
algorithms. 

2 Multi-objective optimization, the pareto 
theorem and performance metrics 

2.1 Multi-objective optimization problems 

MOOPs are mathematically defined as follows. [28, 47]: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐹(𝑋) = [𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑀(𝑋)]𝑇,
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑋) ≤ 0, 𝑖 = 1,2, … , 𝐼

ℎ𝑗(𝑋) = 0, 𝑗 = 1,2, … , 𝐽

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷]

𝐿𝑑 ≤ 𝑥𝑑 ≤ 𝑈𝑑 , 𝑑 = 1,2, … , 𝐷

 (1) 

Where 𝑀 is the number of functions, 𝐼 is the number of 
inequality constraints, 𝐽 is the number of equality constraints, 
and 𝐷 is the number of decision variables. Also, 𝑔𝑖 assigns the 
𝑖𝑡ℎ  inequality constraint, ℎ𝑗 assigns the 𝑗𝑡ℎ  equality constraint, 

𝑋 is a candidate agents in the search area, 𝐿𝑑  is lower bound and 
𝑈𝑑  is upper bound of the 𝑑𝑡ℎ  decision variable. 

2.2 Pareto theorem 

In the MOOPs, since functions are generally inversely 
proportional to each other, numerous solutions that produce 
different values for different objective functions are formed. 
Researchers generally use the Pareto Theorem to determine 
the best ones by comparing these solutions. Where 𝑄 is the 
ideal set of solutions 

-Those inside the search space that do not violate the problem 
constraints-and 𝐴, 𝐵 ∈ 𝑄, the Pareto Theorem consists of the 
following 4 rules [47]: 

1. Pareto-dominance: If solution A is not poorer than 
solution B for any objective and is better at least in one 
objective, it dominates solution B and it is denoted as 𝐴 ≺
𝐵. For a minimization problem, the mathematical notation 
of this rule is given in Equation (2). 

∀𝑖 ∈ {1,2, … , 𝑀}𝑓𝑖(𝐴) ≤ 𝑓𝑖(𝐵)

∧ ∃𝑗 ∈ {1,2, … , 𝑀}𝑓𝑗(𝐴) < 𝑓𝑗(𝐵)
 (2) 

If solutions A and B produce better values than each other in 
any objective, these are named as non-dominated solutions.  

2. Pareto-optimal (PO): If no element in Q dominates 
solution A, it means that A is a PO solution. 

𝐼𝑓 ¬∃ ∈ 𝑄: 𝐶 ≺  𝐴,    A is a PO solution. 

3. Pareto-optimal-set (PS): A set of position vectors in the 
search area of PO solutions in Q. 

PS = {A ∈ 𝑄|¬∃C ∈ 𝑄: C ≺ A} (3) 

4. Pareto-optimal-front (PF): A set of position vectors in the 
objective space of solutions in PS. 

𝑃𝐹 = {𝐹(𝐴)|𝐴 ∈ 𝑃𝑆} (4) 
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2.3 Performance metrics 

In MOO, Pareto-optimal-fronts generated by the algorithms 
(Pareto front-estimated,𝑃𝐹𝑒) are expected to ideally estimate 
the true Pareto-optimal-fronts (Pareto-front-true, 𝑃𝐹𝑡). 
Prediction success depends on two criteria: 

i. Convergence: Convergence of 𝑃𝐹𝑒  to 𝑃𝐹𝑡 , 

ii. Diversity: Distribution of 𝑃𝐹𝑒  over 𝑃𝐹𝑡 . 

The quality of the algorithms was determined by comparing the 
𝑃𝐹𝑒  solutions they produced. When the 𝑃𝐹𝑒  solutions produced 
by two different algorithms are similar, it is not possible to 
distinguish the better one by observation. Therefore, 
researchers have developed mathematical performance 
metrics that calculate convergence and diversity of the 𝑃𝐹𝑒 
solutions. Some of these metrics calculate either convergence 
or diversity, while others calculate both. The inverted 
generational distance (IGD), Hypervolume (HV), EPSILON and 
SPREAD metrics used in this study are explained below: 

• HV [47],[48]: Reference point W is found by taking the 
worst value in PFt for every objective function. The 
volume HVe is calculated by combining the closed 
space between reference point W and every solution 
in PFe . Similarly, HVt is calculated for PFt and 
normalized HV (denoted as HV in the study) is 
obtained from the term HVe/HVt. The term HV should 
be close to 1, which means that the success of PFe in 
estimating PFt has increased. The HV metric is used to 
calculate convergence and diversity performance of a 
PFe , 

• SPREAD [48]: It evaluates the quality of distribution 
of the objective function vectors in 𝑃𝐹𝑒. It is calculated 
by using the distance ( 𝑑(𝐴, 𝑃𝐹𝑒)) of the vectors in 𝑃𝐹𝑒  
to each other and to extreme solution vectors 
(𝑒1, 𝑒2, … , 𝑒𝑀) in 𝑃𝐹𝑡. It is used to compute the 
diversity performance of a 𝑃𝐹𝑒 , 

• EPSILON[48]: It evaluates the minimum distance 
which is needed for converting every solution in 𝑃𝐹𝑒  
with a view to it is able to dominate the 𝑃𝐹𝑡  of the 
problem, 

• IGD [48, 49]: It is used to measure the average from 
𝑃𝐹𝑡  to 𝑃𝐹𝑒 . 

The mathematical formulas of the performance metrics are 
given below [47],[48]. 

 Evaluated 
Criterion 

Mathematical Formula 
 

HV 
convergence, 

diversity 

HV𝑒 = volume ( ⋃ 𝑣𝑖

    |𝑃𝐹𝑒|

𝑖=1

), 

HV𝑡 = volume ( ⋃ 𝑣𝑖

    |𝑃𝐹𝑡|

𝑖=1

), 

HV = 
HV𝑒

HV𝑡
 

(5) 

SPREAD diversity 

𝛥

=
∑ 𝑑(𝑒𝑚, 𝑃𝐹𝑒)

𝑀

𝑚=1
+ ∑ |𝑑(𝑋, 𝑃𝐹𝑒) − 𝑑|𝑋∈𝑃𝐹𝑒

∑ 𝑑(𝑒𝑚, 𝑃𝐹𝑒)
𝑀

𝑚=1
+ |𝑃𝐹𝑒| · 𝑑

, 

𝑑(𝑋, 𝑃𝐹𝑒) = min
𝑌∈𝑃𝐹𝑒,𝑌≠𝑋

∥ 𝐹(𝑋) − 𝐹(𝑌)

∥2, 

𝑑 =
1

|𝑃𝐹𝑡|
∑ 𝑑(𝑋, 𝑃𝐹𝑒)

𝑋∈𝑃𝐹𝑡
. 

(6) 

EPSILON convergence 
𝐸(𝑃𝐹𝑒 , 𝑃𝐹𝑡) = inf𝜖∈ℝ+{∀�⃗� ∈ 𝑃𝐹𝑡 , ∃�⃗�

∈ 𝑃𝐹𝑒: �⃗� ≺𝜖 �⃗�}, 
(7) 

IGD 
convergence, 

diversity 
IGD(𝑃𝐹𝑒 , 𝑃𝐹𝑡) =

∑𝑣∈𝑃𝐹𝑡
 𝑑(𝑣, 𝑃𝐹𝑒)

|𝑃𝐹𝑡|
, (8) 

3 Artificial algae algorithm (AAA) 

The AAA was inspired by the behaviors of the real algae, such 
as turning towards the source of light, growth by 
photosynthesis, reproduction by mitosis after reaching a 
sufficient size and adaptation to medium for survival. AAA was 
initially applied to solve single-objective problems and 
achieved quite successful results. In Figure 1, the main steps of 
the AAA are given; detailed information about the AAA can be 
obtained from [50]. 

 

Figure 1. Main steps of the AAA. 

4 Multi-objective artificial algae algorithm 
(MOAAA) 

New multi-objective algorithms are proposed by rearranging 
metaheuristic algorithms that succeeded in the field of single-
objective optimization using suitable strategies (Pareto-based, 
decomposition-based etc.). Unfortunately, implementation of 
these strategies is not sufficient for the success of the new 
algorithms because, while single-objective algorithms are 
intended to find a single point that produces the best solution, 
multi-objective algorithms are intended to find the best set of 
solutions (Pareto-front). Therefore, the ability of single-
objective algorithms to distribute solutions needs to be 
improved. The arrangements for using the artificial algae 
algorithms in solving multi-objective problems are explained 
below. 
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4.1 Non-domination rank & Crowding-distance 
strategies  

Non-domination rank (NDR): Non-dominated solutions were 
mentioned while explaining Pareto-dominance in section 2.2. 
When non-domination rank (NDR) strategy is used with NSGA-
II [3], each set consisting of non-dominated solutions is 
indicated by a different number. The first front (FR1) in the 
population contains the best solution and is called the Pareto-
front (PF). Selecting solutions with a small front number as the 
parent solution, or transferring them to the next generation, 
contributes to the convergence performance of the algorithm. 

Crowding-distance (CRD): The NDR information is not 
sufficient to choose a solution from two coexisting solutions in 
the same front. Therefore, Deb et al. proposed the CRD strategy 
to determine which choice of solution will have a valuable 
contribution to the diversity. The CRD is calculated as follows: 

i. The values obtained for each objective function by 
each solution on the same front are sorted in 
ascending order, 

ii. The CRD values of the outermost solutions are 
assigned as infinite, 

iii. The CRD values of the solutions in between are 
calculated for each objective function by normalizing 
the difference between the two closest neighboring 
solutions. The CRD value of a non-extreme solution, 
with the total of M objective functions, is calculated as 
in Eq. 9. 

𝐶𝑅𝐷𝑖 = ∑
𝑓𝑚

𝑖+1 − 𝑓𝑚
𝑖−1

𝑓𝑚
max − 𝑓𝑚

min

𝑀

𝑚=1

 (9) 

In MOAAA, NDR and CRD are used in two cases: 

i. When the parent algal colony cells are selected using 
binary tournament selection, 

ii. When the best N of the 2N solutions-the main 
population (N) and the child solutions (N)-is 
transferred to the next generation at the end of each 
iteration. 

4.2 Calculation of quality ranking (QR) 

Real algae grow by photosynthesizing as they approach a light 
source. The algae that are closer to the light source will grow 
more because the rate of photosynthesis will increase. This is 
modeled in AAA as follows: the algal colony is initialized with 
the same sizes (Greatness) (Algorithm-1 Step 2), the sizes are 
increased at every iteration according to the values of 
Greatness and the objective function (Algorithm-1, Step 3). The 
values of the objective function are normalized in the 
calculateGreatness(Gi, f(Xi)) function. A scaler value 
representing the quality of the solutions is needed for the 
normalization, so using the objective vector in MOO is not 
applicable. Calculation of quality ranking (QR), which calculates 
the quality rankings of the solutions according to NDR and CRD 
values, is proposed to overcome this problem. In this 
calculation, QR values of the extreme solutions in the first front 
are assigned as 1, and other solutions are sorted in descending 
order according to CRD values and their QR values are 
increased by 1. The same procedure is repeated for all 
remaining solutions, where the QR value of the extreme 
solutions in the second front is 1 more than the highest QR 

value in the first front. Figure 2 gives an example of how the QR 
values are calculated. 

 

Figure 2. Calculation of QR value. 

4.3 Polynomial mutation (PM) 

In the original AAA, the evolutionary process and adaptation 
allow the failed algal colony cells to be influenced by the most 
successful colony cells to go to better locations. While the 
strategies comparing the failed solutions to the most successful 
one have a positive contribution to the convergence process, 
they have a negative effect on diversity performance in multi-
objective optimization algorithms. Therefore, polynomial 
mutation [51], which contributes to the diversity, is added in 
MOAAA instead of the evolutionary process and adaptation. 
Main steps of the MOAAA is given in Figure 3. 

 

Figure 3. Main steps of the MOAAA. 
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5 Results and performance analysis 

5.1 The test set 

The test set consists of 14 different multi-objective 
optimization problems: 7 benchmarks and 7 engineering 
designs. While twelve of these problems have various 
constraints, 2 of them are unconstrained problems. The 
number of objective, constraint and decision variables of the 
problem set are given in Table 2. The mathematical formulas of 
the problems are given in [1],[11],[27],[28],[52]. 

Table 2. Benchmarks and engineering desing problems. 

 Problem 
Dec. var. 

No 
Obj. 
No 

Constr. 
No 

B
en

ch
m

ar
k

s 

Binh2 2 2 2 
ConstrEx 2 2 2 
Osyczka2 6 2 6 
Srinivas 2 2 2 
Tanaka 2 2 2 

KITA 4 2 3 
Water 3 5 7 

     

E
n

gi
n

ee
ri

n
g 

 d
e

si
gn

 Four-bar truss 
design 

4 2 - 

Disk brake design 4 2 5 
Gear Train 4 2 - 

Spring 3 2 8 
Cantilever beam 

design 
2 2 2 

Welded Beam 4 2 4 

Speed Reducer 7 2 10 

5.2 Experimental environment 

This study was carried out in the jMetal 4.5 environment, which 
is a multi-objective optimization software package coded in 
Java. While NSGA-II, PAES MOCell and IBEA algorithms used in 
the study were available in the jMetal package, MOVS and 
MOAAA were coded by the authors. Engineering design 
problems and the KITA problem were also coded by the authors 
and added to the package. Since the size of the problems was 
small (between 2 to 7 dimesions), the maximum function 
evaluation numbers (maxFES) of the algorithms were kept 
relatively low. All operations were repeated 50 times for 4000 
maxFES. A parameter analysis study was also carried out in 
order to determine the optimal values of the K and le 
parameters used in the MOAAA for the problem set in this 
study. In the original AAA algorithm, parameter K was used as 
2 and parameter le as 0.3. In this study, the K parameter was 
kept constant at 2, the le parameter was increased by 0.1 
between 0.1 and 1, and 10 different MOAAA versions were run 
on the problem set with 50 repetitions. The results of the 
obtained solution sets in EPSILON metric were ranked by 
Friedman test. The obtained results showed that the parameter 
le obtained the most successful results for the value of 0.3. 
Secondly, the parameter le was kept constant at 0.3 and the 
parameter K was tested by increasing it from 1 to 5. Obtained 
results showed that K parameter gives the most successful 
results for 2 values. The population was taken as 100 for all 
algorithms; other parameters are set to default values as given 
in Table 3. 

5.3 Experimental results 

IGD, SPREAD, EPSILON and HV quality indicators were used to 
compare the performances of the algorithms.  

Table 3. Parameter values of algorithms used in runs. 

Algorithm Parameters 
NSGA-II mutationProbability_   = 1/D 

crossoverProbability_    = 0.9 
mutationDistributionIndex_   = 20.0 
crossoverDistributionIndex_  = 20.0 

PAES archiveSize_ = 100 
biSections_ = 5 
mutationProbability_ = 1/D 
mutationDistributionIndex_   = 20 

MOCell archiveSize_ = 100 
feedback_ = 20 
mutationProbability_ = 1/D 
crossoverProbability_ = 0.9 
mutationDistributionIndex_ = 20.0 
crossoverDistributionIndex_ = 20.0 

IBEA archiveSize_ = 100 
mutationProbability_ = 1/D 
crossoverProbability_ = 0.9 
mutationDistributionIndex_ = 20.0 
crossoverDistributionIndex_ = 20.0 

MOVS No specific parameter 

MOAAA mutationProbability_ = 1/D  
mutationDistributionIndex_ = 20.0  
K = 2 
le = 0.3 

The Pareto-front-true (PFt) solutions for the problems were 
obtained to calculate these indicators. PFt solutions of the 
problems in the jMetal package were taken from the software 
website [53]. PFt solutions of the problems coded by the 
authors were obtained by merging the Pareto-front-estimated 
(PFe) solutions that were generated by solving each problem 
50 times for all algorithms and separating the non-dominated 
solutions (maximum 500 solutions) within these. The values 
obtained by the algorithms for the four performance metrics 
are given in Tables 4 to 7. The values are expected to be high for 
HV and low for the others. For readability, the two best results 
are highlighted in dark gray (the best) and light gray (the 
second best). 

The HV metrics in Table 4 show that the MOAAA takes first or 
second place in 8 (6+2) of the 14 problems. NSGA-II, MOCell, 
MOVS and IBEA take first or second place in 9 (3+6), 7 (3+4), 2 
(1+1) and 2 (1+1) problems respectively. 

The SPREAD metrics in Table 5 show that the MOCell is the 
most successful algorithm by taking first or second place in 13 
(9+4) problems. The MOAAA, NSGA-II and PAES takes first or 
second place in 10 (4+6), 4 (1+3) and 1 (0+1) problems 
respectively. 

The EPSILON metrics in Table 6 show that the MOAAA is the 
most successful algorithm by taking first or second place in 10 
(6+4) problems. NSGA-II, MOCell, MOVS and IBEA take first or 
second place in 5 (3+2), 5 (3+2), 5 (1+4) and 3 (1+2) problems 
respectively. 

The IGD metrics in Table 7 show that, the MOAAA is the most 
successful algorithm by taking first or second place in 9 (7 + 2) 
problems. NSGA-II, MOCell and MOVS takes first or second 
place in 8 (3+5), 5 (3+2) and 5 (1+4) problems respectively. 

 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 29(2), 183-193, 2023 
A. Özkış, A. Babalık 

 

188 
 

 

Table 4. HV metrics of the algorithms. 

 NSGA-II PAES MOCell IBEA MOVS MOAAA 
 Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

Binh2 8.10e-01 2.8e-04 8.06e-01 7.9e-03 8.11e-01 8.4e-05 8.07e-01 1.9e-03 8.09e-01 3.5e-04 8.10e-01 2.2e-04 
ConstrEx 7.73e-01 4.2e-04 7.30e-01 5.7e-02 7.71e-01 3.1e-03 7.57e-01 4.5e-03 7.70e-01 1.9e-03 7.70e-01 1.0e-03 
Osyczka2 6.90e-01 4.6e-02 3.74e-01 1.1e-01 5.86e-01 1.4e-01 6.81e-01 5.0e-02 6.89e-01 1.7e-02 7.09e-01 1.3e-02 
Srinivas 5.32e-01 3.3e-04 5.29e-01 8.9e-04 5.34e-01 1.1e-04 5.34e-01 1.5e-04 5.32e-01 4.2e-04 5.32e-01 3.2e-04 
Tanaka 3.01e-01 1.5e-03 2.86e-01 1.3e-02 2.99e-01 4.3e-03 2.92e-01 2.5e-03 2.97e-01 3.3e-03 2.96e-01 2.3e-03 

KITA 6.42e-01 1.8e-03 6.15e-01 2.3e-02 6.41e-01 2.6e-03 6.36e-01 2.1e-03 6.33e-01 3.4e-03 6.36e-01 2.4e-03 
Water 3.93e-01 9.6e-03 2.81e-01 8.7e-02 4.01e-01 8.1e-03 2.70e-01 4.1e-02 4.08e-01 6.6e-03 3.97e-01 9.3e-03 

FourBarTruss 7.11e-01 4.0e-04 6.80e-01 3.2e-02 7.09e-01 9.2e-03 7.13e-01 2.4e-03 7.11e-01 3.1e-04 7.12e-01 3.6e-04 
DiscBrake 8.74e-01 9.3e-04 8.71e-01 1.3e-03 8.70e-01 6.0e-03 8.69e-01 4.0e-03 8.74e-01 1.0e-03 8.75e-01 8.9e-04 

WeldedBeam 9.02e-01 1.4e-02 8.67e-01 4.8e-02 8.75e-01 3.5e-02 8.75e-01 1.3e-02 8.95e-01 9.2e-03 9.04e-01 4.9e-03 
CantileverBeam 8.71e-01 1.8e-04 8.70e-01 2.2e-03 8.72e-01 2.9e-05 7.88e-01 3.2e-02 8.70e-01 1.9e-04 8.71e-01 1.9e-04 
SpeedReducer 9.64e-01 2.7e-03 8.43e-01 8.3e-02 9.42e-01 3.8e-02 9.62e-01 2.4e-03 9.63e-01 2.5e-03 9.67e-01 6.7e-04 

Spring 7.44e-01 9.6e-03 7.02e-01 2.8e-02 7.33e-01 1.8e-02 6.80e-01 4.3e-02 7.32e-01 1.8e-02 7.48e-01 5.0e-03 
GearTrain 9.02e-01 6.3e-03 7.86e-01 1.5e-01 8.96e-01 1.7e-02 8.99e-01 8.3e-03 9.04e-01 1.4e-03 9.05e-01 2.5e-04 

B+S (3+6) (0+0) (3+4) (1+1) (1+1) (6+2) 

B: Best. S: Second best. 

Table 5. SPREAD metrics of the algorithms. 

 NSGA-II PAES MOCell IBEA MOVS MOAAA 
 Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

Binh2 4.01e-01 3.2e-02 6.70e-01 5.5e-02 1.64e-01 1.1e-02 5.45e-01 1.2e-02 4.70e-01 3.8e-02 3.45e-01 3.0e-02 
ConstrEx 4.68e-01 4.1e-02 8.73e-01 9.7e-02 3.84e-01 7.2e-02 1.12e+00 3.8e-02 5.78e-01 4.8e-02 4.86e-01 3.8e-02 
Osyczka2 1.01e+00 9.9e-02 1.17e+00 1.2e-01 8.65e-01 1.0e-01 1.06e+00 5.6e-02 1.01e+00 8.6e-02 9.80e-01 1.0e-01 
Srinivas 4.06e-01 3.0e-02 6.17e-01 4.5e-02 1.14e-01 1.4e-02 3.73e-01 2.4e-02 4.39e-01 4.1e-02 3.37e-01 2.8e-02 
Tanaka 1.12e+00 6.3e-02 1.52e+00 6.1e-02 9.52e-01 6.7e-02 1.44e+00 6.8e-02 1.22e+00 5.6e-02 8.25e-01 5.2e-02 

KITA 6.78e-01 1.6e-01 1.20e+00 9.8e-02 5.98e-01 1.2e-01 1.18e+00 6.4e-02 1.00e+00 9.2e-02 7.32e-01 1.5e-01 
Water 5.65e-01 4.1e-02 6.38e-01 5.9e-02 5.56e-01 3.5e-02 7.33e-01 1.1e-01 5.76e-01 4.5e-02 5.31e-01 4.0e-02 

FourBarTruss 3.87e-01 3.5e-02 7.81e-01 7.8e-02 2.27e-01 9.4e-02 4.47e-01 3.5e-02 4.69e-01 3.1e-02 4.00e-01 3.7e-02 
DiscBrake 5.25e-01 8.1e-02 7.60e-01 5.4e-02 5.24e-01 6.7e-02 7.50e-01 3.2e-02 5.77e-01 4.0e-02 4.60e-01 4.3e-02 

WeldedBeam 6.07e-01 7.2e-02 8.82e-01 5.3e-02 6.24e-01 1.5e-01 9.64e-01 3.8e-02 6.87e-01 3.8e-02 6.10e-01 5.5e-02 
CantileverBeam 3.94e-01 3.0e-02 6.54e-01 5.1e-02 1.26e-01 1.8e-02 6.80e-01 4.1e-02 5.14e-01 3.6e-02 3.86e-01 2.9e-02 
SpeedReducer 7.52e-01 1.0e-01 1.03e+00 7.6e-02 7.40e-01 7.7e-02 9.30e-01 3.8e-02 7.54e-01 5.8e-02 4.77e-01 5.0e-02 

Spring 1.26e+00 6.0e-02 1.43e+00 7.0e-02 6.21e-01 7.5e-02 1.17e+00 1.2e-01 1.33e+00 1.9e-01 7.84e-01 1.4e-01 
GearTrain 1.44e+00 5.5e-02 1.33e+00 1.3e-01 7.81e-01 3.9e-02 1.41e+00 8.9e-02 1.50e+00 2.9e-02 1.50e+00 2.9e-02 

B+S (1+3) (0+1) (9+4) (0+0) (0+0) (4+6) 

B: Best. S: Second best. 

Table 6. EPSILON metrics of the algorithms. 

 NSGA-II PAES MOCell IBEA MOVS MOAAA 
 Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

Binh2 9.72e-01 1.8e-01 2.17e+00 2.9e+00 4.72e-01 5.0e-02 1.15e+00 3.4e-01 1.02e+00 1.7e-01 8.58e-01 1.4e-01 
ConstrEx 1.59e-02 2.5e-03 8.59e-02 7.4e-02 2.13e-02 1.0e-02 4.34e-01 9.8e-02 2.11e-02 6.4e-03 1.98e-02 2.5e-03 
Osyczka2 2.66e+01 1.7e+01 1.03e+02 4.1e+01 5.19e+01 4.0e+01 3.56e+01 1.8e+01 2.60e+01 9.3e+00 1.48e+01 6.3e+00 
Srinivas 3.37e+00 5.9e-01 4.91e+00 1.3e+00 1.80e+00 2.6e-01 2.10e+00 2.2e-01 3.13e+00 5.6e-01 3.06e+00 6.2e-01 
Tanaka 2.14e-02 4.5e-03 7.46e-02 7.6e-02 3.40e-02 1.7e-02 4.14e-02 6.6e-03 3.89e-02 1.4e-02 2.90e-02 7.4e-03 

KITA 4.76e-02 9.1e-03 1.60e-01 6.9e-02 5.36e-02 1.3e-02 7.25e-02 8.8e-03 8.56e-02 2.1e-02 5.79e-02 7.1e-03 
Water 7.92e+04 1.8e+04 1.16e+06 9.6e+05 5.81e+04 1.2e+04 1.17e+06 3.1e+05 6.39e+04 1.5e+04 7.49e+04 1.6e+04 

FourBarTruss 1.04e+00 1.2e+00 5.81e+01 5.6e+01 1.67e+01 2.6e+01 4.10e+00 1.0e+01 1.13e-03 1.8e-04 1.14e-03 2.2e-04 
DiscBrake 6.42e-02 1.3e-02 9.08e-02 3.0e-02 1.53e-01 1.1e-01 2.88e-01 1.0e-01 6.85e-02 1.7e-02 6.09e-02 1.1e-02 

WeldedBeam 7.95e-01 8.1e-01 2.47e+00 2.1e+00 2.22e+00 1.5e+00 5.83e-01 4.5e-01 1.27e+00 6.1e-01 4.96e-01 4.4e-01 
CantileverBeam 5.32e-04 4.5e-04 6.70e-03 2.3e-02 5.32e-04 4.9e-04 3.10e-04 9.1e-05 6.95e-04 7.2e-04 5.57e-04 5.2e-04 
SpeedReducer 2.53e+01 1.8e+01 1.14e+02 4.9e+01 5.96e+01 6.8e+01 3.13e+01 2.4e+01 3.66e+01 1.6e+01 1.44e+01 2.6e+00 

Spring 3.51e+03 4.3e+03 1.69e+04 1.1e+04 8.00e+03 7.8e+03 2.35e+04 1.2e+04 2.32e+03 3.4e+03 7.25e+02 6.3e+02 
GearTrain 7.46e-01 8.4e-01 5.95e+00 6.2e+00 1.35e+00 1.3e+00 7.87e-01 9.8e-01 1.83e-02 2.6e-02 3.50e-03 5.5e-03 

B+S (3+2) (0+0) (3+2) (1+2) (1+4) (6+4) 

B: Best. S: Second best. 

Table 7. IGD metrics of the algorithms. 

 NSGA-II PAES MOCell IBEA MOVS MOAAA 
 Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

Binh2 1.49e-04 7.6e-06 7.13e-04 7.7e-04 1.11e-04 2.5e-06 1.56e-03 3.5e-04 1.58e-04 8.0e-06 1.41e-04 6.8e-06 
ConstrEx 2.02e-04 3.5e-05 2.37e-03 2.7e-03 3.31e-04 3.3e-04 4.87e-03 1.1e-03 2.60e-04 8.5e-05 2.63e-04 5.6e-05 
Osyczka2 3.45e-03 2.1e-03 1.07e-02 2.8e-03 6.65e-03 3.0e-03 5.42e-03 1.9e-03 2.86e-03 1.5e-03 1.59e-03 8.4e-04 
Srinivas 1.45e-04 7.9e-06 2.00e-04 2.7e-05 1.03e-04 3.4e-06 1.26e-04 7.0e-06 1.48e-04 1.0e-05 1.35e-04 7.9e-06 
Tanaka 1.02e-03 1.8e-04 3.23e-03 2.7e-03 1.36e-03 5.7e-04 5.46e-03 4.2e-04 1.52e-03 4.2e-04 1.22e-03 1.9e-04 

KITA 5.56e-04 8.6e-05 2.12e-03 1.8e-03 6.28e-04 1.6e-04 9.38e-04 1.3e-04 9.19e-04 2.1e-04 7.08e-04 7.8e-05 
Water 2.48e-03 1.2e-04 1.04e-02 3.7e-03 2.33e-03 1.3e-04 1.50e-02 1.5e-03 2.30e-03 1.2e-04 2.48e-03 2.0e-04 

FourBarTruss 2.86e-04 1.9e-05 4.56e-03 3.8e-03 1.10e-03 1.6e-03 5.06e-04 5.9e-04 2.99e-04 1.2e-05 2.83e-04 1.9e-05 
DiscBrake 8.37e-04 5.6e-04 2.42e-03 9.4e-04 1.94e-03 1.2e-03 4.97e-03 4.3e-04 8.50e-04 7.0e-04 3.80e-04 5.3e-05 

WeldedBeam 1.86e-03 1.7e-03 4.53e-03 3.0e-03 4.44e-03 2.5e-03 1.02e-02 2.1e-03 2.82e-03 1.4e-03 1.27e-03 9.6e-04 
CantileverBeam 2.99e-04 1.7e-05 6.42e-04 1.0e-03 2.24e-04 4.6e-06 1.15e-02 1.6e-03 3.28e-04 1.8e-05 3.02e-04 1.9e-05 
SpeedReducer 3.30e-03 2.9e-03 7.19e-03 3.3e-03 8.20e-03 2.8e-03 1.07e-02 1.8e-04 8.84e-04 6.9e-04 2.72e-04 5.4e-05 

Spring 3.48e-03 1.7e-03 9.51e-03 4.7e-03 5.20e-03 3.1e-03 1.24e-02 5.2e-03 4.28e-03 1.9e-03 2.50e-03 1.2e-03 
GearTrain 1.32e-02 6.4e-03 3.53e-02 2.1e-02 1.87e-02 8.0e-03 3.46e-02 5.4e-03 9.51e-03 2.6e-03 9.34e-03 2.7e-03 

B+İ (3+5) (0+0) (3+2) (0+1) (1+4) (7+2) 

B: Best. S: Second best. 
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In Table 8, the Friedman test [54] results, which compare the 
average rankings of the algorithms, are given for each 
performance metric. In the Friedman test, it is desirable that the 
average ranking is high for HV and low for others. According to 
the results, the MOAAA has the best ranking for all metrics 
except the SPREAD metric. The MOAAA has the second-best 
ranking for the SPREAD metric. The NSGA-II has the second-
best ranking of all the metrics, except for SPREAD. The MOCell 
has the best ranking for SPREAD. 

Table 8. The average rankings of the algorithms for metrics. 

  HV  SPREAD  EPSILON  IGD 

NSGA-II 4.64 2.85 2.64 2.35 

PAES 1.35 5.42 5.64 5.28 

MOCell 3.85 1.42 3.42 3.21 

IBEA 2.64 4.78 4.14 5.28 

MOVS 3.71 4.35 3.21 2.99 

MOAAA 4.78 2.14 1.92 1.85 

The Wilcoxon’s rank sum test was applied at a 95% confidence 
level to show whether the metric values obtained by the 
MOAAA are statistically different to the other algorithms or not. 
If the p (probability) value is smaller than 0.05, it is denoted by 
“+” and shows that MOAAA statistically differs from the other 
algorithms. The Wilcoxon rank sum test results in Tables 9 to 
12 show that results produced by the MOAAA are statistically 
different compared to the other algorithms. Estimated Pareto 
fronts (PFe) obtained by the algorithms are compared with the 
real Pareto fronts (PFt) in Figure 4. When the figures are 
examined, it is observed that the proposed MOAAA generally 
estimates the PFt more successfully than the other algorithms. 
The box plot showing the results of the problems executed 50 
times for each metric is given in Figure 5. When the box plot is 
examined, it is seen that MOAAA is a successful algorithm that 
produces robust results in solving the multi-objective 
optimization problems in the test set. 

 

Table 9. Wilcoxon’s rank sum test results for HV metric. 

MOAAA vs NSGA-II PAES MOCell IBEA MOVS 
 p-value Sign p-value Sign p-value Sign p-value Sign p-value Sign 

Binh2 1.17e-07 + 8.46e-18 + 7.07e-18 + 4.16e-12 + 4.73e-17 + 
CantileverBeam 4.18e-01 - 2.33e-17 + 7.07e-18 + 7.07e-18 + 1.64e-14 + 

ConstrEx 7.97e-18 + 4.00e-08 + 1.08e-06 + 7.50e-18 + 1.57e-01 - 
DiscBrake 1.94e-04 + 1.13e-16 + 4.36e-09 + 1.05e-15 + 2.38e-07 + 

FourBarTruss 2.02e-16 + 7.07e-18 + 1.12e-01 - 1.52e-11 + 2.65e-13 + 
GearTrain 6.32e-01 - 8.47e-17 + 2.00e-02 + 1.43e-17 + 4.10e-05 + 

SpeedReducer 4.73e-17 + 2.14e-16 + 6.69e-16 + 7.07e-18 + 2.62e-17 + 
KITA 2.14e-16 + 9.54e-15 + 2.27e-13 + 7.59e-01 - 3.18e-05 + 

Osyczka2 2.81e-05 + 7.07e-18 + 5.84e-12 + 1.58e-09 + 5.14e-09 + 
Spring 1.20e-01 - 2.78e-17 + 1.77e-07 + 8.46e-18 + 5.56e-12 + 

Srinivas 2.44e-11 + 7.07e-18 + 7.07e-18 + 7.07e-18 + 4.16e-12 + 
Tanaka 7.92e-16 + 4.49e-08 + 9.33e-08 + 2.02e-11 + 1.30e-01 - 
Water 9.59e-02 - 6.32e-16 + 3.58e-03 + 7.07e-18 + 1.12e-09 + 

WeldedBeam 2.01e-01 - 3.16e-10 + 1.45e-09 + 4.46e-17 + 3.85e-08 + 

Table 10. Wilcoxon’s rank sum test results for SPREAD metric. 

MOAAA vs NSGA-II PAES MOCell IBEA MOVS 
 p-value Sign p-value Sign p-value Sign p-value Sign p-value Sign 

Binh2 7.80e-12 + 7.07e-18 + 7.07e-18 + 7.07e-18 + 8.46e-18 + 
CantileverBeam 2.21e-01 - 7.07e-18 + 7.07e-18 + 7.07e-18 + 1.14e-17 + 

ConstrEx 2.40e-02 + 7.07e-18 + 2.02e-10 + 7.07e-18 + 1.43e-13 + 
DiscBrake 1.08e-08 + 7.07e-18 + 3.70e-08 + 7.07e-18 + 2.14e-16 + 

FourBarTruss 7.93e-02 - 7.07e-18 + 2.79e-13 + 3.56e-08 + 2.39e-13 + 
GearTrain 2.14e-06 + 7.61e-10 + 7.05e-18 + 1.11e-04 + 6.97e-01 - 

SpeedReducer 6.72e-17 + 7.07e-18 + 9.54e-18 + 7.07e-18 + 7.07e-18 + 
KITA 6.32e-02 - 1.21e-17 + 5.46e-06 + 7.50e-18 + 1.21e-12 + 

Osyczka2 9.32e-02 - 7.09e-12 + 3.31e-07 + 1.30e-05 + 2.08e-01 - 
Spring 5.64e-17 + 7.07e-18 + 1.23e-10 + 9.38e-16 + 8.00e-17 + 

Srinivas 4.69e-15 + 7.07e-18 + 7.07e-18 + 1.32e-08 + 1.13e-16 + 
Tanaka 7.07e-18 + 7.07e-18 + 5.88e-14 + 7.07e-18 + 7.07e-18 + 
Water 1.70e-04 + 2.03e-14 + 2.56e-03 + 1.60e-16 + 3.21e-06 + 

WeldedBeam 7.33e-01 - 7.07e-18 + 9.37e-01 - 7.07e-18 + 1.03e-10 + 

Table 11. Wilcoxon’s rank sum test results for EPSILON metric. 

MOAAA vs NSGA-II PAES MOCell IBEA MOVS 

 p-value Sign p-value Sign p-value Sign p-value Sign p-value Sign 
Binh2 6.69e-04 + 4.70e-11 + 7.07e-18 + 1.30e-05 + 3.67e-06 + 

CantileverBeam 8.77e-01 - 2.56e-07 + 6.62e-01 - 7.47e-02 - 4.93e-01 - 
ConstrEx 3.56e-11 + 1.76e-13 + 2.24e-01 - 7.07e-18 + 8.01e-01 - 
DiscBrake 1.84e-01 - 3.39e-11 + 9.14e-09 + 7.07e-18 + 2.40e-02 + 

FourBarTruss 7.06e-18 + 7.06e-18 + 7.06e-18 + 7.06e-18 + 6.97e-01 - 
GearTrain 8.30e-06 + 1.18e-16 + 8.04e-10 + 8.58e-14 + 2.73e-05 + 

SpeedReducer 1.34e-09 + 1.73e-17 + 9.64e-03 + 3.29e-02 + 1.54e-17 + 
KITA 1.26e-08 + 7.07e-18 + 1.13e-02 + 7.44e-12 + 2.79e-13 + 

Osyczka2 8.98e-08 + 1.01e-17 + 4.44e-15 + 1.73e-14 + 7.29e-10 + 
Spring 2.70e-08 + 1.45e-17 + 6.88e-14 + 1.63e-17 + 9.68e-07 + 

Srinivas 4.09e-03 + 5.29e-14 + 8.99e-17 + 2.69e-16 + 3.26e-01 - 
Tanaka 5.59e-09 + 1.55e-12 + 6.87e-01 - 3.42e-12 + 2.07e-05 + 
Water 2.90e-01 - 7.07e-18 + 3.69e-07 + 7.07e-18 + 6.52e-04 + 

WeldedBeam 7.25e-02 - 2.53e-10 + 3.90e-11 + 3.23e-01 - 1.34e-09 + 
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Table 12. Wilcoxon’s rank sum test results for IGD metric. 

MOAAA vs NSGA-II PAES MOCell IBEA MOVS 
 p-value Sign p-value Sign p-value Sign p-value Sign p-value Sign 

Binh2 6.62e-08 + 7.07e-18 + 7.07e-18 + 7.07e-18 + 9.54e-15 + 
CantileverBeam 6.47e-01 - 2.07e-17 + 7.07e-18 + 7.07e-18 + 6.68e-10 + 

ConstrEx 1.99e-12 + 1.58e-13 + 6.72e-02 - 7.07e-18 + 2.63e-01 - 
DiscBrake 3.59e-12 + 7.07e-18 + 7.07e-18 + 7.07e-18 + 1.55e-15 + 

FourBarTruss 2.57e-01 - 7.07e-18 + 1.67e-01 - 9.88e-10 + 2.76e-07 + 
GearTrain 3.28e-04 + 2.79e-13 + 3.86e-12 + 7.02e-18 + 9.07e-01 - 

SpeedReducer 1.91e-16 + 7.07e-18 + 7.07e-18 + 7.07e-18 + 2.95e-17 + 
KITA 3.59e-12 + 2.02e-16 + 1.87e-06 + 3.19e-15 + 7.80e-12 + 

Osyczka2 4.86e-08 + 7.97e-18 + 1.74e-15 + 2.56e-15 + 2.30e-08 + 
Spring 3.16e-04 + 1.39e-15 + 9.52e-09 + 4.73e-17 + 1.49e-08 + 

Srinivas 3.84e-09 + 7.07e-18 + 7.07e-18 + 4.12e-10 + 2.21e-10 + 
Tanaka 4.67e-08 + 1.13e-16 + 8.77e-01 - 7.07e-18 + 1.08e-06 + 
Water 4.54e-01 - 7.07e-18 + 5.11e-06 + 7.07e-18 + 7.42e-08 + 

WeldedBeam 1.41e-01 - 9.81e-11 + 1.03e-10 + 7.50e-18 + 3.12e-09 + 
 

  

  

  

Figure 4. The Pareto fronts produced by algorihtms for the ConstrEx, Disc brake, Osyczka2, Speed reducer, Spring, Welded beam 
problems. 
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Figure 5. The box plots produced by algorihtms for ConstrEx, Disc brake, Osyczka2, Speed reducer, Spring, Welded beam 
problems. 

 

6 Conclusions and recommendations 

In this study, the performance of the MOAAA, a recently 
proposed multi-objective optimization algorithm, has been 
tested for constrained benchmarks and engineering design 
problems. The test set consisted of 14 well-known problems. 
The values obtained for HV, SPREAD, EPSILON and IGD from 
the MOAAA test set are compared with the well-known NSGA-
II, PAES, MOCell, IBEA algorithms and the recently proposed 
MOVS algorithms. When the Friedman test, which compares the 
average rankings of the algorithms was applied, it was 
observed that MOAAA had the best ranking of all metrics, 

except for SPREAD. Furthermore, when the Pareto fronts and 
the boxplots were analyzed, it is seen that MOAAA was a 
consistent and stable algorithm that successfully estimated the 
Pareto fronts. Finally, the Wilcoxon rank sum test showed that 
MOAAA is a unique algorithm that produces statistically 
significant results different to the compared algorithms. The 
results show that MOAAA is an alternative method that 
generates successful results in solving real-world multi-
objective problems. 
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In further studies, researchers could suggest modifications to 
enhance the distribution performance-SPREAD-of the MOAAA, 
or use MOAAA in solving discrete, dynamic or hybrid multi-
objective real-world problems. 

7 Author contribution statement 

In this study, ÖZKIŞ focused on forming the idea, conducting 
experimental studies and evaluating the results; BABALIK, on 
the other hand, contributed to the review of the literature, 
spelling and checking the article in terms of content. 

8 Ethics committee approval and conflict of 
interest statement 

There is no need for an ethics committee approval in the 
prepared article. There is no conflict of interest with any 
person/institution in the prepared article. 

9 References 

[1] Yang XS, Deb S. "Multiobjective cuckoo search for design 
optimization". Computers & Operations Research,  
40(6), 1616-1624, 2013. 

[2] Yu CL, Lu Y, Chu J. "Multi-objective optimization with 
combination of particle swarm and extremal optimization 
for constrained engineering design". WSEAS Transactions 
on Systems and Control, 4(7), 129-138, 2012. 

[3] Deb K, Pratap A, Agarwal S,Meyarivan T. "A fast and elitist 
multiobjective genetic algorithm: NSGA-II". IEEE 
Transactions on Evolutionary Computation, 6(2), 182-197, 
2002. 

[4] Coello CAC, Pulido GT, Lechuga MS. "Handling multiple 
objectives with particle swarm optimization".  
IEEE Transactions on Evolutionary Computation,  
8(3), 256-279, 2004. 

[5] Zitzler E, Laumanns M, Thiele L. "SPEA2: Improving the 
strength Pareto evolutionary algorithm". TIK-Report. 
Zurich, Switzerland, 103, 2001. 

[6] Knowles J, Corne D. "The pareto archived evolution 
strategy: A new baseline algorithm for pareto 
multiobjective optimisation". Proceedings of the 1999 
Congress on Evolutionary Computation-CEC99, 
Washington, DC, USA, 6-9 July 1999. 

[7] Corne DW, Knowles JD, Oates MJ. "The Pareto envelope-
based selection algorithm for multiobjective optimization".  
Parallel Problem Solving from Nature PPSN VI: 6th 
International Conference, Paris, France, 18-20 September 
2000. 

[8] Li H, Zhang Q. "Multiobjective optimization problems with 
complicated Pareto sets, MOEA/D and NSGA-II". IEEE 
Transactions on Evolutionary Computation,  
13(2), 284-302, 2009. 

[9] Zitzler E, Künzli S. "Indicator-based selection in 
multiobjective search". Parallel Problem Solving from 
Nature PPSN VIII: 8th International Conference, 
Birmingham, UK, 18-22 September 2004. 

[10] Wolpert DH, Macready WG. "No free lunch theorems for 
optimization". IEEE Transactions on Evolutionary 
Computation, 1(1), 67-82, 1997. 

[11] Savsani V, Tawhid MA. "Non-dominated sorting moth 
flame optimization (NS-MFO) for multi-objective 
problems". Engineering Applications of Artificial 
Intelligence, 63, 20-32, 2017. 

 
 

[12] Huang VL, Suganthan PN, Liang JJ. "Comprehensive 
learning particle swarm optimizer for solving 
multiobjective optimization problems". International 
Journal of Intelligent Systems, 21(2), 209-226, 2006. 

[13] Sierra MR, Coello CC. "Improving PSO-based multi-
objective optimization using crowding, mutation and e-
dominance". Third International Conference on 
Evolutionary Multi-Criterion Optimization, Guanajuato, 
Mexico, 9-11 March 2005. 

[14] Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello CC, Luna F,Alba 
E. "Smpso: A new pso-based metaheuristic for multi-
objective optimization". Computational İntelligence in 
Miulti-Criteria Decision-Making (MCDM). Nashville, TN, 
USA, 30 March 2009-02 April 2009. 

[15] Moslehi G, Mahnam M. "A Pareto approach to multi-
objective flexible job-shop scheduling problem using 
particle swarm optimization and local search". 
International Journal of Production Economics,  
129(1), 14-22, 2011. 

[16] Wang Y, Yang Y. "Particle swarm optimization with 
preference order ranking for multi-objective 
optimization". Information Sciences, 179(12), 1944-1959, 
2009. 

[17] Dai C, Wang Y, Ye M. "A new multi-objective particle 
swarm optimization algorithm based on decomposition". 
Information Sciences, 325, 541-557, 2015. 

[18] Zhang Y, Gong DW, Geng N. "Multi-objective optimization 
problems using cooperative evolvement particle swarm 
optimizer". Journal of Computational and Theoretical 
Nanoscience, 10(3), 655-663, 2013. 

[19] Omkar S, Senthilnath J, Khandelwal R, Naik GN, 
Gopalakrishnan S. "Artificial Bee Colony (ABC) for multi-
objective design optimization of composite structures". 
Applied Soft Computing, 11(1), 489-499, 2011. 

[20] Akbari R, Hedayatzadeh R, Ziarati K,Hassanizadeh B. "A 
multi-objective artificial bee colony algorithm".  
Swarm and Evolutionary Computation, 2, 39-52, 2012. 

[21] Zhang H, Zhu Y, Zou W,Yan X. "A hybrid multi-objective 
artificial bee colony algorithm for burdening optimization 
of copper strip production". Applied Mathematical 
Modelling, 36(6), 2578-2591, 2012. 

[22] Akay B. "Synchronous and asynchronous Pareto-based 
multi-objective artificial bee colony algorithms".  
Journal of Global Optimization, 57, 415-445, 2013. 

[23] Gravel M, Price WL, Gagné C. "Scheduling continuous 
casting of aluminum using a multiple objective ant colony 
optimization metaheuristic". European Journal of 
Operational Research, 143(1), 218-229, 2002. 

[24] McMullen PR. "An ant colony optimization approach to 
addressing a JIT sequencing problem with multiple 
objectives". Artificial Intelligence in Engineering, 1 
5(3), 309-317, 2001. 

[25] T'kindt V, Monmarché N, Tercinet F, Laügt D. "An ant 
colony optimization algorithm to solve a 2-machine 
bicriteria flowshop scheduling problem". European 
Journal of Operational Research, 142(2), 250-257, 2002. 

[26] Mirjalili S, Saremi S, Mirjalili SM, Coelho LdS.  
"Multi-objective grey wolf optimizer: a novel algorithm for 
multi-criterion optimization". Expert Systems with 
Applications,  47, 106-119, 2016. 

 
 
 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 29(2), 183-193, 2023 
A. Özkış, A. Babalık 

 

193 
 

[27] Mirjalili S, Jangir P, Saremi S. "Multi-objective ant lion 
optimizer: a multi-objective optimization algorithm for 
solving engineering problems". Applied Intelligence,  
46(1), 79-95, 2017. 

[28] Sadollah A, Eskandar H, Kim JH. "Water cycle algorithm for 
solving constrained multi-objective optimization 
problems". Applied Soft Computing, 27, 279-298, 2015. 

[29] Suman B, Hoda N, Jha S. "Orthogonal simulated annealing 
for multiobjective optimization". Computers & Chemical 
Engineering, 34(10), 1618-1631, 2010. 

[30] Aydin I, Karakose M, Akin E. "A multi-objective artificial 
immune algorithm for parameter optimization in support 
vector machine". Applied soft computing, 11(1), 120-129, 
2011. 

[31] Gong M, Jiao L, Du H,Bo L. "Multiobjective immune 
algorithm with nondominated neighbor-based selection". 
Evolutionary Computation, 16(2), 225-255, 2008. 

[32] Gao J, Wang J. "A hybrid quantum-inspired immune 
algorithm for multiobjective optimization". Applied 
Mathematics and Computation, 217(9), 4754-4770, 2011. 

[33] Jamuna K, Swarup K. "Multi-objective biogeography based 
optimization for optimal PMU placement". Applied Soft 
Computing, 12(5), 1503-1510, 2012. 

[34] Nikoofard AH, Hajimirsadeghi H, Rahimi-Kian A,Lucas C. 
"Multiobjective invasive weed optimization: Application 
to analysis of Pareto improvement models in electricity 
markets". Applied Soft Computing, 12(1), 100-112, 2012. 

[35] Yang XS. "Multiobjective firefly algorithm for continuous 
optimization". Engineering with Computers,  
29(2), 175-184, 2013. 

[36] Yang XS. "Bat algorithm for multi-objective optimisation". 
International Journal of Bio-Inspired Computation,  
3(5), 267-274, 2011. 

[37] Krishnanand K, Panigrahi BK, Rout PK, Mohapatra A. 
"Application of multi-objective teaching-learning-based 
algorithm to an economic load dispatch problem with 
incommensurable objectives". International Conference on 
Swarm, Evolutionary, and Memetic Computing, Andhra 
Pradesh, India, 19-21 December 2011. 

[38] Arshi SS, Zolfaghari A, Mirvakili SM. "A multi-objective 
shuffled frog leaping algorithm for in-core fuel 
management optimization". Computer Physics 
Communications, 185(10), 2622-2628, 2014. 

[39] Karakoyun M, Gülcü Ş, Kodaz H. "D-MOSG: Discrete multi-
objective shuffled gray wolf optimizer for multi-level 
image thresholding". Engineering Science and Technology, 
an International Journal, 24(6), 1455-1466, 2021. 

[40] Karakoyun M, Kodaz H. "Çok amaçlı mühendislik tasarımı 
ve kısıtlı problemler için hibrit birçok amaçlı 
optimizasyon algoritması". Mühendislik Bilimleri ve 
Tasarım Dergisi, 9(4), 1200-1211, 2021. 

[41] Karakoyun M, Ozkis A, Kodaz H. "A new algorithm based 
on gray wolf optimizer and shuffled frog leaping algorithm 
to solve the multi-objective optimization problems". 
Applied Soft Computing, 96, 1-26, 2020. 

[42] Özkış A, Babalık A. "A novel metaheuristic for multi-
objective optimization problems: The multi-objective 
vortex search algorithm". Information Sciences,  
402, 124-148, 2017. 

[43] Babalik A, Ozkis A, Uymaz SA, Kiran MS. "A multi-objective 
artificial algae algorithm". Applied Soft Computing,  
68, 377-395, 2018. 

[44] Augusto OB, Bennis F, Caro SJPO. "Multiobjective 
engineering design optimization problems: a sensitivity 
analysis approach". Pesquisa Operacional,  
32, 575-596, 2012. 

[45] Tawhid MA, Savsani VJAI. "A novel multi-objective 
optimization algorithm based on artificial algae for multi-
objective engineering design problems". Applied 
Intelligence, 48, 3762-3781, 2018. 

[46] Tawhid MA, Savsani VJNC, Applications. "Multi-objective 
sine-cosine algorithm (MO-SCA) for multi-objective 
engineering design problems". Neural Computing and 
Applications, 31, 915-929, 2019. 

[47] Deb K. Multi-Objective Optimization Using Evolutionary 
Algorithms. 1st ed. Chichester, UK, Wiley, 2001. 

[48] Durillo JJ, Nebro AJ. "jMetal: A Java framework for multi-
objective optimization". Advances in Engineering Software,  
42(10), 760-771, 2011. 

[49] Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W,Tiwari S. 
"Multiobjective optimization test instances for the CEC 
2009 special session and competition". University of 
Essex, Colchester, UK and Nanyang technological 
University, Singapore, Special Session On Performance 
Assessment Of Multi-Objective Optimization Algorithms, 
Technical Report, 264, 2008. 

[50] Uymaz SA, Tezel G, Yel E. "Artificial algae algorithm (AAA) 
for nonlinear global optimization". Applied Soft 
Computing, 31, 153-171, 2015. 

[51] Agrawal RB, Deb K, Agrawal R. "Simulated binary 
crossover for continuous search space". Complex Systems,  
9(2), 115-148, 1995. 

[52] Tawhid MA, Savsani V. "∊-constraint heat transfer search 
(∊-HTS) algorithm for solving multi-objective engineering 
design problems". Journal of Computational Design and 
Engineering, 5(1), 104-119, 2018. 

[53] Kashan MH, Nahavandi N, Kashan AH. "DisABC: a new 
artificial bee colony algorithm for binary optimization". 
Applied Soft Computing, 12(1), 342-352, 2012. 

[54] Derrac J, García S, Molina D,Herrera F. "A practical tutorial 
on the use of nonparametric statistical tests as a 
methodology for comparing evolutionary and swarm 
intelligence algorithms". Swarm and Evolutionary 
Computation, 1(1), 3-18, 2011. 

 
 
 
 
 
 

 


	1 Introduction
	1.1 The major addition of the research

	2 Multi-objective optimization, the pareto theorem and performance metrics
	2.1 Multi-objective optimization problems
	2.2 Pareto theorem
	2.3 Performance metrics

	3 Artificial algae algorithm (AAA)
	4 Multi-objective artificial algae algorithm (MOAAA)
	4.1 Non-domination rank & Crowding-distance strategies
	4.2 Calculation of quality ranking (QR)
	4.3 Polynomial mutation (PM)

	5 Results and performance analysis
	5.1 The test set
	5.2 Experimental environment
	5.3 Experimental results

	6 Conclusions and recommendations
	7 Author contribution statement
	8 Ethics committee approval and conflict of interest statement
	9 References

