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ABSTRACT: Tuna Swarm Optimization (TSO) which is developed by being inspired by the hunting 

strategies of the tuna fish is a metaheuristic optimization algorithm (MHA). TSO is able to solve some 

optimization problems successfully. However, TSO has the handicap of having premature 

convergence and being caught by local minimum trap. This study proposes a mathematical model 

aiming to eliminate these disadvantages and to increase the performance of TSO. The basic 

philosophy of the proposed method is not to focus on the best solution but on the best ones. The 

Proposed algorithm has been compared to six current and popular MHAs in the literature. Using 

classical test functions to have a preliminary evaluation is a frequently preferred method in the field 

of optimization. Therefore, first, all the algorithms were applied to ten classical test functions and the 

results were interpreted through the Wilcoxon statistical test. The results indicate that the proposed 

algorithm is successful. Following that, all the algorithms were applied to three engineering design 

problems, which is the main purpose of this article. The original TSO has a weak performance on 

design problems. With optimal costs like 1.74 in welded beam design problem, 1581.47 in speed 

reducer design problem, and 38.455 in I-beam design problem, the proposed algorithm has been the 

most successful one. Such a case leads us to the idea that the proposed method of this article is 

successful for improving the performance of TSO. 

Keywords: Tuna Swarm Optimization, Swarm-Based Metaheuristic Algorithm, Engineering Design 

Problems. 
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1.INTRODUCTION 

Today, real world problems are identified through complex mathematical equations which 

include many parameters. In the field of optimization, these mathematical equations are named 

objective functions (Noureddine, 2015). Depending on the kind of the problem, the output of the 

objective function may be required to be minimum or maximum (Mareli and Twala, 2018). At the 

same time, these problems have many limitations. These limitations are generally about the 

interrelation of the parameters in the objective functions. The overall purpose of optimization is to 

optimally determine the parameters in the objective function under certain limitations (Hashim et al., 

2022). In the early stages of optimization studies, gradient descent (GD) methods were used. GD is 

unlikely to be preferred by researches because of its incapability in solving nonlinear design 

problems. Besides, for engineering problems with wide search space, computation times are long and 

they are not able to present optimum solutions (S. Kumar et al., 2023). As a result of such 

disadvantages of GD, researchers focused on metaheuristic algorithms (MHA) (Feng et al., 2021). 

Depending on the improvement procedures within their structure, MHAs aim to find the most 

reasonable result within the most reasonable period of time without scanning the search space. MHAs 

are classified into four subgroups depending on their source of inspiration. These are 

 

 Evolution-based Algorithms: They are improved by being inspired by the biological behaviours 

of living creatures. They are based on evolutionary laws like crossover and mutation. Primary 

evolution-based algorithms are genetic algorithms (Mirjalili, 2019), differential evolution (Deng 

et al., 2021), genetic programming (F. Zhang et al., 2021), evolutionary strategies (Rosso et al., 

2022), and evolutionary programming (Gul et al., 2021). 

 Swarm-based Algorithms: They are improved by being inspired by the social behaviours of 

animals like insects and birds within their group. Particle swarm optimization (PSO) (Gad, 2022), 

ant colony optimization (Wu et al., 2023), grey wolf optimizer (GWO) (Mirjalili et al., 2014), 

monarch butterfly optimization (G.-G. Wang et al., 2019), earthworm optimizer (G.-G. Wang et 

al., 2018), moth search algorithm (G.-G. Wang, 2018), firefly algorithm (V. Kumar and Kumar, 

2021), artificial bee colony (Öztürk et al., 2020), bat algorithm (BA) (Y. Wang et al., 2019) and 

Tuna swarm optimization (Xie et al., 2021) are some examples of MHA in this group. 

 Physical-based Algorithms: They are improved through various physic laws. Simulated 

annealing (Amine, 2019), gravitational search algorithm (Rashedi et al., 2009), nuclear reaction 

optimization (Wei et al., 2019), water cycle algorithm (Korashy et al., 2019), sine cosine 

algorithm (SCA) (Abualigah and Diabat, 2021), big bang-big crunch (Mbuli and Ngaha, 2022), 

black hole (Abdulwahab et al., 2019) and harmony search (Abualigah et al., 2020) are the 

example of physics-based algorithms.  

 Human-based algorithms: They are improved by being inspired by the social behaviours of 

humans. Teaching-learning-based optimization (Li et al., 2019), social evolution and learning 

optimization (M. Kumar et al., 2018), group teaching optimizer (Y. Zhang and Jin, 2020), heap-

based optimizer (Askari, Saeed, et al., 2020), political optimizer (Askari, Younas, et al., 2020), 

taboo search (Prajapati et al., 2020), Exchange market algorithm (Jafari et al., 2020) and brain 

storm optimizer (Xue et al., 2022) are examples of this group. 

 

MHAs are stochastic. They have two search procedures; exploration and exploitation (Raja et 

al., 2022). During the exploration phase, MHAs determine the promising sections of search space. 
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During exploitation phase, the determined sections are surveyed in detail. In order to succeed, one of 

the most significant characteristic of MHAs is the balance between exploitation and exploration (S. 

Kumar et al., 2023). In some MHAs, this balance is constructed by a probability key that is determined 

randomly and ranges between 0 and 1 (Ramachandran et al., 2022).  Besides, in some MHAs, 

exploration is performed in early iteration numbers and exploitation is performed in advanced 

iteration numbers (Xie et al., 2021). Some optimization problems have one local minimum, which is 

the global minimum at the same time. Some problems have more than one local minimum of which 

only one is global minimum. Therefore, it is more difficult to solve these problems. Most of the 

MHAs improved to solve this kind of problems have the disadvantages of premature convergence 

and being caught by local minimum trap. Moreover, as it is stated by no free lunch theorem, an 

optimization algorithm cannot solve all optimization problems (Wolpert and Macready, 1997). 

Hence, researchers tend either to improve new optimizers or to increase the productivity of the 

available ones. 

This study presents an improved version of recently published swarm-based TSO. The proposed 

algorithm is named Improved TSO (ITSO). It specifically focuses on the premature convergence 

problem of TSO. In addition to that, local search procedure is improved in order to prevent it from 

being trapped by local minimum. The improvement is about focusing on the three best points of the 

search space rather than focusing on the best one. This method eliminates the problems caused by the 

premature convergence problem by increasing the efficiency of TSO's global search capability. 

Furthermore, as this method focuses on the three-best solution, it helps to avoid the local minimum 

trap. The contribution of this study is as follows. 

 It introduces a method that allows TSO to escape from premature convergence and local 

minimum trap.  

 It makes betterments in the local search procedure of TSO and presents an improved version of 

it. 

 The proposed algorithm is tested through 10 classical test functions and 3 engineering design 

problems. The results are evaluated through Wilcoxon test. 

 The proposed algorithm is compared to the popular MHAs in the literature. 

 

In earlier studies, TSO is proven to be successful for the solution of optimization problems. 

However, once it is applied to real world problems, it presents some failures. Hence, researchers 

conduct works in order to increase its performance. While doing literature review, this study 

concentrates on works using methods to increase the performance of TSO. In a study on parameter 

identification of photovoltaic cells, the researchers propose the chaotic variant of TSO (C. Kumar and 

Magdalin Mary, 2022). In this study, two parameters determined by number of iterations and other 

randomly determined parameters are assigned through tent chaotic map. The researchers state that 

the results are more successful than the results of the competitive algorithms. However, this study 

does not enable us with the information on how other chaotic maps effect the performance of TSO. 

Besides, no change is made on the mathematical model of TSO. In another study on parameter 

estimation of photovoltaic batteries, the researchers present a hybrid algorithm made of TSO and 

differential evolution algorithm (Tan et al., 2022). In order to increase population diversity and 

convergence efficiency of the proposed algorithm, this study concentrates on strategies such as 

mutation, crossover factor ranking, and linear reduction of the population. The researchers inform us 

that the improved algorithm outperforms its competitors. Neither this study makes a change on the 

mathematical model of TSO. In another study that focuses on estimating the speed of the wind, the 

modified TSO is hybridized with long short-term memory strategy (Tuerxun et al., 2022). In this 
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study, in order to increase the diversity of the initial population of TSO, tent chaotic map is used. 

Moreover, TSO is used for image segmentation as well (J. Wang et al., 2022). Like the previous one, 

this study too uses tent chaotic map in order to increase the diversity of the initial population of TSO. 

TSO is also used in another study that deals with path planning of autonomous underwater vehicle 

(Yan et al., 2023). This study presents TSO based on reinforcement learning. It is emphasized that 

reinforcement learning improves the weak determination of TSO. In another study that regards the 

problems of TSO’s premature convergence and being caught by local optimum trap, the researchers 

adapt circle chaotic map and levy flight to TSO (W. Wang and Tian, 2022). The Circle chaotic map 

is used to increase the diversity of the initial population while Levy flight is integrated to 

mathematical model of TSO. It is reported that these changes increase the performance of TSO. It is 

highly common to use PID method for controlling the engine revolution speed. TSO is used to 

determine the PID coefficient (Guo et al., 2022). The researchers indicate that TSO has a better 

performance compared to conventional methods (Ashraf et al., 2022; Fu and Zhang, 2022). 

Having studied all these methods, it is observed that two methods are used in order to increase 

the performance of TSO. The first one is using chaotic maps to diversify the initial population. The 

second one is determining the parameters within the mathematical model of TSO in various ways. 

On the other hand, in some studies, TSO is used as is. In this study, the mathematical model of TSO 

is changed. The main objective of such a change is to focus not on the best solution but on the best 

ones. This approach leads TSO to escape from premature convergence and local minimum trap. 

The rest of the study is organized as follows. In the second part, TSO is introduced, and 

information about the proposed algorithm is given. In the third section, computational results are 

presented. In the last section, the results of the study are evaluated. 

 

2. MATERIALS AND METHODS 

 2.1 Tuna Swarm Optimization 

Tuna is a carnivorous sea creature (Xie et al., 2021). Thanks to their anatomical structure, they 

can swim really fast. They also have high manoeuvrability. Compared to their sizes, their preys are 

smaller. Such a case enables preys to swim and manoeuvre faster. Therefore, Tuna fish hunt in groups. 

Hunting behaviours of tuna fish have two significant strategies (C. Kumar and Magdalin Mary, 2022). 

The first strategy is the spiral foraging behaviour that directs prey to shallow waters.  The second 

strategy is that each tuna fish swim following another one and form parabolic shapes (Tuerxun et al., 

2022). TSO is a swarm-based MHA improved being inspired by these two hunting strategies of tuna 

(J. Wang et al., 2022). Like other MHAs, the initial population is given randomly (Equation (1)). 

 

X_i=rand(ub-lb)+lb,   i=1,2,...,NP     (1) 

Where, X_i is the initial population, ub,lb is the lower and upper bounds of the search space, 

and NP is the number of the population. 

2.1.1 Spiral foraging 

Once small fish packs fish encounter predators such as tuna fish, in order to distract the 

predators, they continuously change their swimming direction. In order to deal with such a challenge, 

tuna fish generate a spiral area around their prey. While performing this spiral movement, each Tuna 

fish follows another one before it. It means that there is an exchange of information between tuna 
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fish. The mathematical model of the spiral motion of TSO is given in Equation (1). Some parameters 

in this equation are calculated by Equation (2), (3), (4) and (5). 

 

𝑋𝑖
𝑡+1 = {

𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡 , 𝑖 = 1

𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,… ,𝑁𝑃
 (1) 

𝛼1 = 𝑎 + (1 − 𝑎) ∙
𝑡

𝑡𝑚𝑎𝑥
 (2) 

𝛼2 = (1 − 𝑎) − (1 − 𝑎) ∙
𝑡

𝑡𝑚𝑎𝑥
 (3) 

𝛽 = 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑏) (4) 

𝑙 = 𝑒3 𝑐𝑜𝑠(
((𝑡𝑚𝑎𝑥+1/𝑡)−1)𝜋) (5) 

Where, 𝑡 is the current iteration, 𝑡𝑚𝑎𝑥 is the maximum iteration, and 𝑏 is a random number 

evenly distributed between 0 and 1. 𝛼1 and 𝛼2 are weight coefficients controlling the tendency of 

tuna fish to follow each other. The constant 𝑎 determines the characteristic of this tendency. 𝑖𝑡ℎ within 

the 𝑋𝑖
𝑡+1 𝑡 + 1 is an individual. 𝛽 is the equation of spiral movement and 𝑙 is the parameter of this 

equation. The most important disadvantage of the spiral movement is the hunting failure of the 

followed Tuna fish. In such a case, tuna fish continue hunting by choosing a random location. This 

eases each tuna fish to scan a wider area. It also enables TSO to have a more advanced global search 

capability. The mathematical model of this hunting strategy is given in Equation (6). 

 

𝑋𝑖
𝑡+1 = {

𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡 , 𝑖 = 1

𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,… ,𝑁𝑃
 (6) 

 

Here 𝑋𝑟𝑎𝑛𝑑
𝑡  is a randomly picked individual from the group. While some MHAs conduct global 

searches at the early stages of their searching processes, they conduct local searches at the further 

stages. While improving TSO, this approach is embraced. Hence, as the number of iteration increases, 

TSO changes the reference point of spiral movement from random individuals to the best one. The 

final mathematical model of spiral food searching strategy is as follows (Equation (7)). 

 

𝑋𝑖
𝑡+1 =

{
 
 

 
 {

𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡, 𝑖 = 1

𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,… ,𝑁𝑃
, 𝑟𝑎𝑛𝑑 ≥

𝑡

𝑡𝑚𝑎𝑥

{
𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡, 𝑖 = 1

𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,… ,𝑁𝑃
, 𝑟𝑎𝑛𝑑 <

𝑡

𝑡𝑚𝑎𝑥

 (7) 

2.1.2 Parabolic foraging 

Tuna fish hunt also by having parabolic movements around their preys. This movement could be 

around the prey regarded as the best solution as well as it could be around itself. The probability of 

picking either of these two moves is equal. The mathematical model of parabolic motion is given in 

Equation (8) and (9). The pseudo-code of TSO is given in Algorithm 1. 
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𝑋𝑖
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡) + 𝑇𝐹 ∙ 𝑝2 ∙ (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡), 𝑟𝑎𝑛𝑑 < 0.5

𝑇𝐹 ∙ 𝑝2 ∙ 𝑋𝑖
𝑡, 𝑟𝑎𝑛𝑑 ≥ 0.5

 (8) 

𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)
(𝑡/𝑡𝑚𝑎𝑥)

 (9) 

where 𝑇𝐹 is a random number with a value of 1 or -1. 

2.2 Improved Tuna Swarm Optimization 

In TSO, the best solution is the location of the fish to be caught. Tuna fish try to approach the 

prey by following each other. This prevents search space from being scanned efficiently. Especially, 

TSO’s focusing only on the best solution at advanced iteration numbers leads it to be caught by local 

optimum trap. In order to improve the performance of TSO, this study proposes a new local search 

procedure that is inspired by GWO. 

In order to represent the hierarchical order of the wolves in GWO, Alpha, Beta, and Gamma 

wolves are identified (Mirjalili et al., 2014). Alfa wolf leads the pack. Beta ones are the best Alpha 

candidates. Besides, Beta wolves enable communication between the pack and the Alpha wolf. 

Gamma wolves are tertiary wolves and they assist alpha and beta ones to manage the pack. In GWO, 

the three best solutions are represented by Alpha, Beta, and Gamma wolves. The positions of all other 

wolves are updated with respect to the positions of these three wolves (A. Kumar et al., 2017). 

There is no evidence presenting that tuna fish have a hierarchical order. However, during 

hunting, the hunting school could make sudden changes in their directions. This occurs especially 

when the hunters are close to the prey. This act of the hunters leads us to the idea that local search 

procedure of TSO could be improved. Depending on the position of the prey, the hunting school has 

countless probability of changing direction. However, since the number of this probability is so high 

and it will increase the solution time of the algorithm, it should be limited at a reasonable number. In 

this study, being inspired by GWO, the three best solution vectors are used to update the location of 

the tuna fish. The new mathematical model of the proposed ITSO is given in Equation (10) and (11). 

 

𝑋𝑖
𝑡+1 =

{
 
 
 
 

 
 
 
 {

𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡, 𝑖 = 1

𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2, … , 𝑁𝑃
, 𝑟𝑎𝑛𝑑 ≥

𝑡

𝑡𝑚𝑎𝑥

{
 
 

 
 
𝑋1 = 𝛼1 ∙ (𝑋𝛼

𝑡 + 𝛽 ∙ |𝑋𝛼
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 ,

𝑋2 = 𝛼1 ∙ (𝑋𝛽
𝑡 + 𝛽 ∙ |𝑋𝛽

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡,

𝑋3 = 𝛼1 ∙ (𝑋𝛾
𝑡 + 𝛽 ∙ |𝑋𝛾

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡,

𝑋1 + 𝑋2 + 𝑋3
3

,

           𝑖 = 1,… ,𝑁𝑃, 𝑟𝑎𝑛𝑑 <
𝑡

𝑡𝑚𝑎𝑥

 (10) 

𝑋𝑖
𝑡+1 =

{
  
 

  
 

{
 
 

 
 
𝑋1 = 𝛼1 ∙ (𝑋𝛼

𝑡 + 𝛽 ∙ |𝑋𝛼
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 ,

𝑋2 = 𝛼1 ∙ (𝑋𝛽
𝑡 + 𝛽 ∙ |𝑋𝛽

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡,

𝑋3 = 𝛼1 ∙ (𝑋𝛾
𝑡 + 𝛽 ∙ |𝑋𝛾

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡,

𝑋1 + 𝑋2 + 𝑋3
3

,

             𝑖 = 1,… ,𝑁𝑃, 𝑟𝑎𝑛𝑑 < 0.5

{𝑇𝐹 ∙ 𝑝2 ∙ 𝑋𝑖
𝑡 ,                                                                    𝑖 = 1,… ,𝑁𝑃, 𝑟𝑎𝑛𝑑 ≥ 0.5

 (11) 

In the equations, 𝑋𝛼, 𝑋𝛽, and 𝑋𝛾 respectively, represent the best, the second best, and the third 

best solution. 𝑋1, 𝑋2, and 𝑋3 are respectively the location vectors acquired by 𝑋𝛼, 𝑋𝛽, and 𝑋𝛾. The 
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new position vector is determined by the mean of 𝑋1, 𝑋2, and 𝑋3. Other parameters in the equations 

are calculated as in section 2.2. The pseudocode of ITSO is given in Algorithm 1. 

Algorithm 1. TSO and ITSO pseudocode 

TSO pseudocode ITSO pseudocode 

Input: NP: Population size, 𝑡𝑚𝑎𝑥: maximum iteration Input: NP: Population size, 𝑡𝑚𝑎𝑥: maximum iteration 

Output: 𝑋𝑏𝑒𝑠𝑡: The best individual, 𝑓𝑏𝑒𝑠𝑡: Its fitness value Output: 𝑋𝛼: The best individual, 𝑓𝛼: Its fitness value 

Initialize the random population of tunas (𝑋𝑖 , 𝑖 = 1,2, . . . , 𝑁𝑃) 

and assign parameters a and z 

Initialize the random population of tunas (𝑋𝑖 , 𝑖 = 1,2, . . . , 𝑁𝑃) 

and assign parameters a and z 

While (𝑡 < 𝑡𝑚𝑎𝑥) 

     Calculate the fitness values and update 𝑋𝑏𝑒𝑠𝑡  
     For (each tuna) do 

     Update 𝛼1, 𝛼2, 𝑝 using equation (2), (3), (9) 

     If (𝑟𝑎𝑛𝑑 < 𝑧) then 

   Update 𝑋𝑖
𝑡+1 using equation (1) 

     Else if (𝑟𝑎𝑛𝑑 ≥ 𝑧) then 

          If (𝑟𝑎𝑛𝑑 < 0.5) then 

               If (𝑡/𝑡𝑚𝑎𝑥 < 𝑟𝑎𝑛𝑑) then 

                    Update 𝑋𝑖
𝑡+1 using equation (6) 

               Else if (t/tmax ≥ rand) then 

                    Update Xi
t+1 using equation (1) 

          Else if (rand ≥ 0.5) then 

               Update Xi
t+1 using equation (8) 

     𝑡 = 𝑡 + 1 

Return: 𝑋𝑏𝑒𝑠𝑡 , 𝑓𝑏𝑒𝑠𝑡  

While (𝑡 < 𝑡𝑚𝑎𝑥) 

  Calculate the fitness values and update 𝑋𝛼, 𝑋𝛽 ve 𝑋𝛾 

     For (each tuna) do 

     Update 𝛼1, 𝛼2, 𝑝 using equation (2), (3), (9) 

     If (𝑟𝑎𝑛𝑑 < 𝑧) then 

          Update 𝑋𝑖
𝑡+1 using equation (1) 

     Else if (𝑟𝑎𝑛𝑑 ≥ 𝑧) then 

          If (𝑟𝑎𝑛𝑑 < 0.5) then 

               If (𝑡/𝑡𝑚𝑎𝑥 < 𝑟𝑎𝑛𝑑) then 

                    Update 𝑋𝑖
𝑡+1 using equation (10) 

               Else if (t/tmax ≥ rand) then 

                    Update Xi
t+1 using equation (10) 

          Else if (rand ≥ 0.5) then 

               Update Xi
t+1 using equation (11) 

     𝑡 = 𝑡 + 1 

Return: 𝑋𝛼, 𝑓𝛼 

 

3. RESULTS AND DISCUSSION 

This section provides us with the results that the proposed algorithm and competitor algorithms 

presents from a series of optimization problems. The results are also interpreted through the Wilcoxon 

statistical test. All algorithms were first applied to 10 well-known classical test functions. Then it was 

applied to 3 engineering design problems.  

3.1 Compared Algorithms and Experimental Setup 

The proposed algorithm is an improved version of TSO. Therefore, TSO was chosen as one of 

the competing algorithms. The proposed algorithm is inspired by GWO while improving. Therefore, 

GWO is defined as one of the competing algorithms. Moreover, the proposed algorithm is compared 

to Cuckoo Search (CS), BAT, SCA, and Covariance Matrix Adaptation Evolution Strategy (CMA-

ES). The reason why these MHAs are chosen is that they are popular and validated. Besides, these 

algorithms have been used for the solutions of many optimization problems in medicine, economy, 

and engineering. The structure of these algorithms is simple and they generate consistent results. All 

algorithms are coded in Python language. Tests are conducted on a computer with Windows 10 64-

bit Professional and 64GB of RAM. The stopping criteria of the algorithms is the number of iterations. 

The results of 30 independent runs of all algorithms are recorded at every different population number 

of all the algorithms. All MHAs are sensitive to initial parameters. Hence, for a just comparison, the 

parameters of the competing algorithms are adjusted in the way that they are given in their original 

articles. Table 1 presents information about the parameter settings, iteration and population numbers 

of all algorithms. 
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Table 1. Parameter settings for algorithms 

Algorithm Parameters Iteration Population 

CMA-ES (Hansen et al., 2003) 𝑚0 = 0, 𝜎0 = 0.5, 𝐶0 = 1, 𝑝0 = 0, 𝑠0 = 0, 𝑘 = 0, 𝜇 = 𝜆/2 

200 50, 100, 200 

SCA (Mirjalili, 2016) 𝑎 = 2, 𝑟1 = 𝑟𝑎𝑛𝑑[0, 2𝜋]  
BAT (Gandomi et al., 2013) 𝐴 = 0.5, 𝑟 = 0.5, 𝑄𝑚𝑖𝑛 = 0,𝑄𝑚𝑎𝑥 = 2 

CS (Rajabioun, 2011) 𝑝𝑎 = 0.25, 𝛼 = 0.1, 𝛽 = 1.5 

GWO (Mirjalili et al., 2014) 𝑎 = 2 

TSO (Xie et al., 2021) 𝑧 = 0.5, 𝑎 = 0.7 

ITSO 𝑧 = 0.5, 𝑎 = 0.7 

 

3.2 Classic Test Functions 

In this section, in order to evaluate its performance, the proposed algorithm is tested through 

10 well-known functions. 6 of these functions (F1-F6) are unimodal and 4 of them (F7-F10) are 

multimodal functions. Unimodal functions have one global minimum. Hence, it is used to test the 

local search capability of MHAs. Multimodal functions have more than one local minimum. Only 

one of these local minimums is the global minimum. This kind of functions are used to examine the 

global search capability of MHAs and their ability to avoid the local minimum trap. Descriptive 

information about classical test functions is given in Table 2. 

While performing the first experiment, population is set to be 50. In Table 3, all algorithms' the 

minimum, average and worst results by the classical test functions are given. In addition, the 

convergence curves of the algorithms are given in Figure 1. In minimum value metric, the proposed 

algorithm is the most successful one by generating the most successful results in 7 of 10 functions 

(F1-F4, F7, F9, F10). On the other hand, CMA-ES generates the best results in 3 functions which 

leads it to be the second most successful algorithm (F5, F6, F8). In mean value metric, the proposed 

algorithm generates the best results in 8 of 10 functions (F1-F4, F7, F10) while CMA-ES is successful 

in 2 functions (F5, F6). In the worst value metric, the proposed algorithm happens to be the most 

successful one by successfully solving 8 functions (F1-F4, F7-F10) while CMA-ES is successful in 

2 functions (F5, F6). 

 

Table 2. Description of benchmark functions 

Function Range Dim 𝒇𝒎𝒊𝒏 

𝐹1(𝑧) = ∑𝑧𝑖
2

𝑑𝑖𝑚

𝑖=1

 [-100, 100] 30 0 

𝐹2(𝑧) = ∑|𝑧𝑖|

𝑑𝑖𝑚

𝑖=1

+∏|𝑧𝑖|

𝑑𝑖𝑚

𝑖=1

 [-10, 10] 30 0 

𝐹3(𝑧) = ∑(∑𝑧𝑗

𝑖

𝑗=1

)

2
𝑑𝑖𝑚

𝑖=1

 [-100, 100] 30 0 

𝐹4(𝑧) = 𝑚𝑎𝑥𝑖{|𝑧𝑖|, 1 ≤ 𝑖 ≤ 𝑑𝑖𝑚} [-100, 100] 30 0 

𝐹5(𝑧) = ∑ [100(𝑧𝑖+1 − 𝑧𝑖
2)
2
+ (𝑧𝑖 − 1)

2]

𝑑𝑖𝑚−1

𝑖=1

 [-30, 30] 30 0 

𝐹6(𝑧) = ∑ 𝑖𝑧𝑖
4

𝑑𝑖𝑚

𝑖=1

+ 𝑟𝑎𝑛𝑑 [0,1] [-1.28, 1.28] 30 0 
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𝐹7(𝑧) =∑[𝑎𝑖 −
𝑧1(𝑏𝑖

2 + 𝑏𝑖𝑧2)

𝑏𝑖
2 + 𝑏𝑖𝑧3 + 𝑧4

]

211

𝑖=1

 [-5, 5] 4 ≈ 0,0003075 

𝐹8(𝑧) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1

 [0, 10] 4 −10,1532 

𝐹9(𝑧) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

7

𝑖=1

 [0, 10] 4 −10,4028 

𝐹10(𝑧) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

10

𝑖=1

 [0, 10] 4 −10,536 

 

Table 3. Results on benchmark functions (Population: 50)  

Obj. Func. ITSO TSO GWO CMA-ES CS BAT SCA 

F1 

Min. 1.68E-46 2.99E-35 1.12E-13 3.49E-24 1.20E+03 7.60E+03 8.13E+00 

Mean 3.12E-32 1.73E-15 1.35E-12 9.77E-12 1.81E+03 1.54E+04 4.20E+02 

Worst 8.48E-31 4.57E-14 7.81E-12 1.86E-10 3.21E+03 3.10E+04 1.93E+03 

F2 

Min. 1.72E-24 2.81E-18 1.40E-08 1.17E-15 3.10E+01 3.19E+01 8.59E-02 

Mean 5.67E-18 1.61E-08 5.43E-08 6.93E-07 4.67E+01 2.97E+04 6.75E-01 

Worst 9.24E-17 2.70E-07 1.34E-07 4.83E-06 6.72E+01 8.03E+05 2.15E+00 

F3 

Min. 4.39E-43 9.48E-41 2.84E-02 5.64E-12 7.54E+03 1.42E+04 6.87E+03 

Mean 4.34E-23 4.27E-11 9.12E-01 7.03E-05 1.23E+04 4.78E+04 1.51E+04 

Worst 1.25E-21 1.20E-09 3.46E+00 1.17E-03 1.62E+04 8.11E+04 2.71E+04 

F4 

Min. 1.28E-23 3.35E-16 2.58E-03 1.10E-11 2.89E+01 3.13E+01 2.31E+01 

Mean 3.36E-17 2.26E-09 1.17E-02 6.92E-06 3.35E+01 4.61E+01 4.51E+01 

Worst 7.02E-16 2.87E-08 3.43E-02 5.16E-05 4.02E+01 6.48E+01 7.56E+01 

F5 

Min. 4.00E-03 2.82E-03 2.60E+01 1.21E-05 1.03E+05 2.93E+06 1.14E+04 

Mean 4.49E+00 8.01E-01 2.72E+01 1.39E-02 3.92E+05 1.31E+07 7.41E+05 

Worst 2.87E+01 6.25E+00 2.88E+01 1.01E-01 8.01E+05 3.17E+07 2.77E+06 

F6 

Min. 4.78E-06 2.71E-04 1.43E-04 8.49E-08 1.01E+03 8.24E+03 1.49E+01 

Mean 9.44E-03 7.10E-03 5.92E-01 1.70E-04 1.81E+03 1.56E+04 4.44E+02 

Worst 1.84E-02 6.85E-02 1.30E+00 7.88E-04 3.52E+03 2.63E+04 3.02E+03 

F7 

Min. 1.88E-05 3.03E-05 1.24E-03 5.35E-05 2.62E-01 1.35E+00 3.37E-02 

Mean 2.65E-04 1.56E-03 4.69E-03 7.47E-04 5.73E-01 7.36E+00 5.56E-01 

Worst 8.62E-04 5.07E-03 8.58E-03 3.42E-03 1.16E+00 1.84E+01 3.19E+00 

F8 

Min. -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -4.99E+00 

Mean -1.02E+01 -1.01E+01 -8.32E+00 -6.07E+00 -1.01E+01 -5.57E+00 -2.82E+00 
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Worst -1.01E+01 -9.77E+00 -2.29E+00 -5.05E+00 -1.01E+01 -2.63E+00 -8.78E-01 

F9 

Min. -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -9.42E+00 

Mean -1.04E+01 -1.04E+01 -1.00E+01 -5.43E+00 -1.02E+01 -6.25E+00 -3.73E+00 

Worst -1.03E+01 -9.99E+00 -5.09E+00 -1.84E+00 -5.09E+00 -1.84E+00 -9.02E-01 

F10 

Min. -1.05E+01 -1.05E+01 -1.05E+01 -5.13E+00 -1.05E+01 -1.05E+01 -9.11E+00 

Mean -1.05E+01 -1.05E+01 -1.03E+01 -5.04E+00 -1.05E+01 -5.90E+00 -4.49E+00 

Worst -1.05E+01 -9.98E+00 -4.92E+00 -2.42E+00 -1.03E+01 -1.68E+00 -2.00E+00 

 

   

   

   

 
Figure 1. Convergence curve ITSO and other optimizers (Population: 50) 

 

While performing the second experiment, population is set to be 100. In Table 4, all algorithms' 

the minimum, average and worst results by the classical test functions are given. In addition, the 

convergence curves of the algorithms are given in Figure 2. In minimum value metric, the proposed 

algorithm is the most successful one in 6 of 10 functions (F1-F4, F6, F7) while BAT is successful in 
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2 functions (F8-F10). On the other hand, TSO and CMA-ES are successful in one function each (F5, 

F9). In the mean value metric, the proposed algorithm is the most successful one in 8 out of 10 

functions (F1-F4, F7-F10). CMA-ES is successful in two functions (F5, F6). In the worst value 

metric, the proposed algorithm is the most successful one by successfully solving 8 functions (F1-F4, 

F7-F10). CMA-ES is successful in two functions (F5, F6). 

 

   

   

   

 
Figure 2. Convergence curve ITSO and other optimizers (Population: 100) 
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Table 4. Results on benchmark functions (Population: 100) 

Obj. Func. ITSO TSO GWO CMA-ES CS BAT SCA 

F1 

Min. 1.32E-50 4.97E-36 2.13E-16 3.53E-22 1.33E+03 4.74E+03 3.87E+00 

Mean 2.05E-36 7.85E-18 1.48E-15 3.06E-13 2.76E+03 8.69E+03 3.24E+02 

Worst 5.96E-35 1.33E-16 5.67E-15 5.89E-12 3.96E+03 1.39E+04 3.86E+03 

F2 

Min. 2.23E-27 8.28E-22 3.54E-10 7.99E-20 3.85E+01 1.07E+01 4.57E-02 

Mean 2.05E-20 2.23E-09 1.46E-09 2.48E-07 5.42E+01 5.73E+04 5.86E-01 

Worst 3.40E-19 3.26E-08 3.81E-09 2.31E-06 7.49E+01 1.71E+06 2.14E+00 

F3 

Min. 1.56E-42 7.71E-37 9.12E-04 2.88E-16 9.99E+03 1.12E+04 3.91E+03 

Mean 1.51E-27 2.64E-14 2.96E-02 1.21E-06 1.57E+04 2.77E+04 1.25E+04 

Worst 2.29E-26 7.61E-13 2.61E-01 1.61E-05 2.23E+04 7.81E+04 2.80E+04 

F4 

Min. 5.55E-26 6.91E-21 4.11E-04 2.28E-10 3.02E+01 2.78E+01 1.97E+01 

Mean 1.07E-17 2.34E-10 1.46E-03 8.66E-07 3.95E+01 3.81E+01 3.90E+01 

Worst 1.88E-16 4.99E-09 6.71E-03 5.08E-06 4.48E+01 4.88E+01 6.00E+01 

F5 

Min. 2.01E-04 2.02E-09 2.60E+01 5.04E-07 5.10E+05 6.01E+05 3.91E+03 

Mean 3.79E-01 3.45E-01 2.67E+01 1.98E-03 9.41E+05 3.46E+06 3.83E+05 

Worst 1.46E+00 1.18E+00 2.94E+01 2.16E-02 1.50E+06 7.29E+06 2.17E+06 

F6 

Min. 1.84E-07 8.53E-05 1.34E-04 2.88E-07 1.82E+03 4.27E+03 1.33E+01 

Mean 3.37E-03 1.71E-03 3.83E-01 2.14E-05 2.99E+03 9.56E+03 1.76E+02 

Worst 7.36E-03 3.06E-02 1.01E+00 2.26E-04 4.66E+03 1.63E+04 4.96E+02 

F7 

Min. 7.01E-07 6.57E-05 6.00E-04 2.03E-06 3.41E-01 5.45E-01 2.44E-02 

Mean 1.78E-04 9.98E-04 2.04E-03 2.82E-04 1.00E+00 2.20E+00 4.60E-01 

Worst 8.15E-04 6.53E-03 4.86E-03 2.90E-03 1.60E+00 5.12E+00 2.27E+00 

F8 

Min. -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -4.96E+00 

Mean -1.02E+01 -1.01E+01 -9.92E+00 -5.90E+00 -1.01E+01 -6.46E+00 -3.75E+00 

Worst -1.02E+01 -1.01E+01 -3.41E+00 -5.06E+00 -1.01E+01 -2.63E+00 -8.79E-01 

F9 

Min. -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.03E+01 

Mean -1.04E+01 -1.04E+01 -1.02E+01 -6.68E+00 -1.04E+01 -5.42E+00 -4.32E+00 

Worst -1.04E+01 -1.03E+01 -5.09E+00 -5.09E+00 -1.03E+01 -1.84E+00 -9.08E-01 

F10 

Min. -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -6.54E+00 

Mean -1.05E+01 -1.05E+01 -1.03E+01 -5.47E+00 -1.05E+01 -6.41E+00 -4.07E+00 

Worst -1.05E+01 -1.04E+01 -2.42E+00 -2.81E+00 -1.04E+01 -1.68E+00 -9.41E-01 

 

While performing the third experiment, population is set to be 200. In Table 5, all algorithms' 

the minimum, average and worst results by the classical test functions are given. In addition, the 
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convergence curves of the algorithms are given in Figure 3. In the minimum value metric, the 

proposed algorithm is the most successful one in 6 out of 10 functions (F1-F5, F7) while CMA-ES is 

successful in 4 functions (F6, F8-F10). In the mean value metric, the proposed algorithm is the most 

successful algorithm in 8 out of 10 functions (F1-F4, F7-F10). CMA-ES is successful in two functions 

(F5, F6). In the worst value metric, the proposed algorithm is the most successful one by presenting 

the best results in 8 out of 10 functions (F1-F4, F7-F10). CMA-ES solves 2 functions successfully 

(F5, F6). 

 

Table 5. Results on benchmark functions (Population: 200) 

Obj. Func. ITSO TSO GWO CMA-ES CS BAT SCA 

F1 

Min. 2.59E-52 2.87E-35 2.72E-19 2.27E-24 2.21E+03 1.97E+03 1.87E+00 

Mean 2.87E-41 2.21E-19 2.18E-18 1.22E-14 3.81E+03 4.55E+03 1.69E+02 

Worst 5.87E-40 6.27E-18 1.00E-17 2.03E-13 5.17E+03 7.27E+03 1.37E+03 

F2 

Min. 1.07E-25 3.02E-20 7.77E-12 7.86E-20 4.66E+01 1.68E+00 6.39E-02 

Mean 1.32E-21 5.16E-12 3.03E-11 3.26E-08 6.22E+01 2.76E+02 4.08E-01 

Worst 1.65E-20 1.06E-10 1.16E-10 1.21E-07 7.81E+01 5.70E+03 1.14E+00 

F3 

Min. 9.02E-44 1.60E-38 4.05E-06 8.54E-13 1.28E+04 6.01E+03 1.90E+03 

Mean 1.54E-30 2.40E-17 3.22E-04 4.45E-08 1.65E+04 1.49E+04 7.33E+03 

Worst 4.05E-29 6.77E-16 1.33E-03 7.71E-07 2.04E+04 3.51E+04 1.59E+04 

F4 

Min. 6.86E-27 1.60E-22 2.56E-05 3.13E-11 3.87E+01 2.19E+01 1.65E+01 

Mean 1.54E-20 3.44E-12 1.08E-04 1.46E-07 4.36E+01 2.82E+01 3.39E+01 

Worst 2.54E-19 6.05E-11 5.03E-04 1.18E-06 4.85E+01 3.78E+01 6.23E+01 

F5 

Min. 1.47E-08 3.97E-05 2.52E+01 1.95E-07 7.83E+05 7.82E+04 7.69E+02 

Mean 9.25E-02 1.74E-01 2.63E+01 4.56E-04 1.76E+06 5.60E+05 9.83E+04 

Worst 4.06E-01 1.18E+00 2.79E+01 9.14E-03 2.81E+06 2.14E+06 1.33E+06 

F6 

Min. 1.62E-04 1.19E-07 8.34E-05 1.29E-08 2.39E+03 7.31E+02 1.08E+01 

Mean 1.67E-03 4.58E-04 1.27E-01 1.45E-06 3.69E+03 4.52E+03 7.92E+01 

Worst 4.20E-03 2.20E-03 5.11E-01 9.50E-06 4.88E+03 7.08E+03 2.15E+02 

F7 

Min. 8.35E-06 8.73E-05 4.14E-04 9.61E-06 3.68E-01 4.10E-01 8.97E-03 

Mean 1.10E-04 4.47E-04 9.89E-04 1.41E-04 1.42E+00 1.04E+00 1.76E-01 

Worst 6.21E-04 1.18E-03 1.84E-03 7.08E-04 2.23E+00 2.27E+00 8.30E-01 

F8 

Min. -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -6.67E+00 

Mean -1.02E+01 -1.01E+01 -9.47E+00 -6.92E+00 -1.01E+01 -6.64E+00 -4.38E+00 

Worst -1.02E+01 -1.01E+01 -5.06E+00 -5.06E+00 -1.01E+01 -2.63E+00 -8.79E-01 

F9 

Min. -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -8.81E+00 

Mean -1.04E+01 -1.04E+01 -1.02E+01 -6.15E+00 -1.04E+01 -6.90E+00 -4.99E+00 
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Worst -1.04E+01 -1.04E+01 -5.12E+00 -5.09E+00 -1.04E+01 -1.84E+00 -9.09E-01 

F10 

Min. -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -8.64E+00 

Mean -1.05E+01 -1.05E+01 -1.05E+01 -5.64E+00 -1.05E+01 -6.07E+00 -5.11E+00 

Worst -1.05E+01 -1.05E+01 -1.05E+01 -1.68E+00 -1.05E+01 -2.42E+00 -3.09E+00 

 

   

   

   

 
Figure 3. Convergence curve ITSO and other optimizers (Population: 200) 

 

The results of an MHA informs us about its success. However, whether its success is 

statistically meaningful or not should be indicated. The Wilcoxon test is a non-parametric test that is 

frequently used for the comparison of optimization algorithms. The significance level of Wilcoxon 

test is set to be 5%. In Table 6, the results of the proposed algorithm’s results of its comparison to its 

competitors are given. In the tables, “+” symbolizes that the proposed algorithm is better than its 

competitors while “-” indicates that it is worse.  
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Table 6. Wilcoxon rank-sum test 
 Pop: 50 Pop: 100 Pop: 200 

Fnc. TSO GWO CMA-ES CS BAT SCA TSO GWO CMA-ES CS BAT SCA TSO GWO CMA-ES CS BAT SCA 

F1 + + + + + + + + + + + + + + + + + + 

F2 + + + + + + + + + + + + + + + + + + 

F3 + + + + + + + + + + + + + + + + + + 

F4 + + + + + + + + + + + + + + + + + + 

F5 - + - + + + - + - + + + + + - + + + 

F6 - + - + + + - + - + + + - + - + + + 

F7 + + + + + + + + + + + + + + + + + + 

F8 + + + + + + + + + + + + + + + + + + 

F9 + + + + + + + + + + + + + + + + + + 

F10 + + + + + + + + + + + + + + + + + + 

 

3.3 Engineering Design Problems 

In this section, the proposed algorithm and competitor algorithms are applied to 3 engineering 

design problems. These problems have more than one local minimum and constraints. Results of 30 

independent runs of all algorithms are recorded. Moreover, the population number and the number of 

iterations are respectively set to be 100 and 200. 

 

a)  

b)  c)  

Figure 4. Engineering design problems a) Welded beam design problem b) Speed reducer design problem c) I-beam 

design problem 

3.3.1 Welded beam design problem 

The aim of the welded beam design problem is to minimize the production cost (Xie et al., 

2021). The parameters and schematic representation of the problem are given in Figure 4a. The design 

is expected to stand the P load. The problem has 4 design parameters: welding thickness (h), length 

of welded joint (𝑙), bar height (𝑡) and bar thickness (𝑏). The parameters (Equation (12)), objective 
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function (Equation (13)) and constraints (Equation (14), (15), (16)) of the problem are given in the 

following equations. 

 

Consider: �⃗� = [𝑥1 𝑥2 𝑥3 𝑥4] = [ℎ 𝑙 𝑡 𝑏] (12) 

Minimize: 𝑓𝑐𝑜𝑠𝑡(�⃗�) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) (13) 

Subject to: 𝑔1(�⃗�) = 𝜏(�⃗�) − 𝜏𝑚𝑎𝑥 ≤ 0, 𝑔2(�⃗�) = 𝜎(�⃗�) − 𝜎𝑚𝑎𝑥 ≤ 0, 𝑔3(�⃗�) = 𝛿(�⃗�) − 𝛿𝑚𝑎𝑥 ≤
0, 𝑔4(�⃗�) = 𝑥1 − 𝑥4 ≤ 0, 𝑔5(�⃗�) = 𝑃 − 𝑃𝑐(�⃗�) ≤ 0, 𝑔6(�⃗�) = 0.125 − 𝑥1 ≤ 0, 𝑔7(�⃗�) =

0.11047𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0 

(14) 

Range: 0.1 ≤ 𝑥1 ≤ 2,  0.1 ≤ 𝑥2 ≤ 10, 0.1 ≤ 𝑥3 ≤ 10, 0.1 ≤ 𝑥4 ≤ 2 (15) 

Where: 
𝜏(�⃗�) = √(𝜏′)2 + 2𝜏′𝜏′′

𝑥2

2𝑅
+ (𝜏′′)2, 𝜏′ =

𝑃

√2𝑥1𝑥2
, 𝜏 =

𝑀𝑅

𝐽
,  𝑀 = 𝑃 (𝐿 +

𝑥2

2
) , 𝑅 =

√𝑥2
2

4
+ (

𝑥1+𝑥3

2
)
2
, 𝐽 = 2 {√2𝑥1𝑥2 [

𝑥2
2

4
+ (

𝑥1+𝑥3

2
)
2
]} , 𝜎(�⃗�) =

6𝑃𝐿

𝑥4𝑥3
2 , 𝛿(�⃗�) =

4𝑃𝐿3

𝐸𝑥3
3𝑥4
, 𝑃𝑐(�⃗�) =

4.013𝐸√
𝑥3
2𝑥4
6

36

𝐿2
(1 −

𝑥3

2𝐿
√
𝐸

4𝐺
) , 𝑃 = 6,000 𝑙𝑏, 𝐿 = 14 𝑖𝑛, 𝛿𝑚𝑎𝑥 = 0.25 𝑖𝑛, 𝐸 = 30 ×

106  𝑝𝑠𝑖, 𝐺 = 12 × 106  𝑝𝑠𝑖, 𝜏𝑚𝑎𝑥 = 13,600 𝑝𝑠𝑖, 𝜎𝑚𝑎𝑥 = 30,000 𝑝𝑠𝑖 

(16) 

 

The results of by all algorithms from the welded beam design problem are given in Table 7. 

Examining the results, it is observed that with 1.74 optimal cost, the proposed algorithm is the most 

successful one. GWO is the second and the CMA-ES is the third most successful algorithm with 

optimal costs like 1.74 and 1.835. With an optimal cost of 2.25, TSO is one of the algorithms having 

the worst result. 

 

Table 7. Comparison of results for welded beam design problem 

Optimizer 

Optimal values for variables 

Optimal cost 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

ITSO 0.204 3.520 9.110 0.205 1.740 

TSO 0.100 0.100 0.100 0.100 2.250 

GWO 0.185 3.940 9.240 0.205 1.780 

CMA-ES 0.200 3.633 9.105 0.206 1.835 

CS 0.236 3.200 8.390 0.239 1.860 

BAT 0.136 7.540 7.380 0.308 2.510 

SCA 0.213 3.610 8.720 0.233 1.900 

 

3.3.2 Speed Reducer Design 

The main goal of the speed reducer design problem is to minimize the weight of the design 

(Ahmadianfar et al., 2020). Speed Reducer Design has 7 design variants which are face width (𝑥1), 

module of teeth (𝑥2), number of teeth on pinion (𝑥3), length of shaft 1 between bearings (𝑥4), length 

of shaft 2 between bearings (𝑥5), diameter of shaft 1 (𝑥6), and diameter of shaft 2 (𝑥7) (Figure 4b). 

The objective function (Equation (17)) and constraints (Equation (18), (19)) of the problem are given 

in the following equations. 

 

Minimize: 𝑓𝑐𝑜𝑠𝑡(�⃗�) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2 + 14.9334𝑥3 − 43.0934) − 1.508𝑥1(𝑥6
2 + 𝑥7

2)
+ 7.4777(𝑥6

3 + 𝑥7
3) + 0.7854(𝑥4𝑥6

2 + 𝑥5𝑥7
2) 

(17) 

Subject to: 𝑔1(�⃗�) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤ 0, 𝑔2(�⃗�) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 ≤ 0, 𝑔3(�⃗�) =
1.93𝑥4

3

𝑥2𝑥3𝑥6
4 − 1 ≤ 0 (18) 
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𝑔4(�⃗�) =
1.93𝑥5

3

𝑥2𝑥3𝑥7
4 − 1 ≤ 0, 𝑔5(�⃗�) =

1

110𝑥6
3
√(

745𝑥4

𝑥2𝑥3
)
2
+ 16.9 × 106 − 1 ≤ 0 

𝑔6(�⃗�) =
1

85𝑥7
3
√(

745𝑥5

𝑥2𝑥3
)
2
+ 157.5 × 106 − 1 ≤ 0, 𝑔7(�⃗�) =

𝑥2𝑥3

40
− 1 ≤ 0, 

𝑔8(�⃗�) = 5
𝑥2

𝑥1
− 1 ≤ 0, 𝑔9(�⃗�) =

𝑥1

12𝑥2
− 1 ≤ 0, 𝑔10(�⃗�) =

1.5𝑥6+1.9

𝑥4
− 1 ≤ 0, 

𝑔11(�⃗�) =
1.1𝑥7 + 1.9

𝑥5
− 1 ≤ 0 

Range: 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 7.3 ≤ 𝑥4 ≤ 8.3, 
 7.3 ≤ 𝑥5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, 5 ≤ 𝑥7 ≤ 5.5 

(19) 

 

The results of all algorithms from the speed reducer design problem are given in Table 8. With 

1581.47 optimal cost, the proposed algorithm is the most successful one while Bat is the second with 

1581.494 optimal cost and CS is the third with 1582.539 optimal cost. Having the 1612.18 optimal 

cost, TSO is the one with the worst result. 

 

Table 8. Comparison of results for speed reducer problem 

Optimizer 
Optimal values for variables 

Optimal cost 
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 

ITSO 3.500 0.700 17.000 8.015 8.008 3.777 5.297 1581.470 

TSO 2.605 0.700 17.079 7.293 7.296 2.903 4.994 1612.180 

GWO 3.500 0.700 17.000 8.300 8.054 3.900 5.384 1584.598 

CMA-ES 3.500 0.700 17.000 7.300 8.300 3.437 5.500 1589.722 

CS 3.500 0.700 17.000 8.300 8.300 3.900 5.500 1582.539 

BAT 3.500 0.700 17.000 8.300 8.070 3.900 5.413 1581.494 

SCA 3.502 0.700 17.000 8.300 8.300 3.900 5.500 1588.522 

 

3.3.3 I-beam design problem 

The main purpose of this problem is to minimize the vertical deflection of the I beam 

(Ahmadianfar et al., 2020). I beam has 4 variants which are length (𝑙), height (h), and two thickness 

(𝑡𝑤, 𝑡𝑓) (Figure 4c). The parameters (Equation (20)), objective function (Equation (21)) and 

constraints (Equation (22), (23)) of the problem are given in the following equations. 

 

Consider: �⃗� = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ℎ, 𝑙, 𝑡𝑤, 𝑡𝑓] (20) 

Minimize: 
𝑓𝑐𝑜𝑠𝑡(�⃗�) =

5000

1
12 𝑡𝑤(ℎ − 2𝑡𝑓)

3
+
1
6 𝑙𝑡𝑓

3 + 2𝑙𝑡𝑓 (
ℎ − 𝑡𝑓
2 )

2 
(21) 

Subject to: 𝑔1(�⃗�) = 2𝑙𝑡𝑓 + 𝑡𝑤(ℎ − 2𝑡𝑓)
3
≤ 300 

𝑔2(�⃗�) =
180000ℎ

𝑡𝑤(ℎ − 2𝑡𝑓)
3
+ 2𝑙𝑡𝑓[4𝑡𝑓

2 + 3ℎ(ℎ − 2𝑡𝑓)]
+

15000𝑙

(ℎ − 2𝑡𝑓)𝑡𝑤
3 + 2𝑡𝑓𝑙

3
≤ 6 

(22) 

Range: 10 ≤ ℎ ≤ 80, 10 ≤ 𝑙 ≤ 50, 0.9 ≤ 𝑡𝑤 ≤ 5, 0.9 ≤ 𝑡𝑓 ≤ 5 (23) 

 

The results of all algorithms from the I-beam design problem are given in Table 9. With 38.455 

optimal cost, the proposed algorithm is the most successful one while GWO is the second with 38.61 

optimal cost and CMA-ES is the third with 38.668 optimal cost. TSO is algorithm with the worst 

result as it has 44.777 optimal cost. 
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Table 9. Comparison of results for I- beam design problem 

Optimizer 
Optimal values for variables 

Optimal cost 
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 

ITSO 13.583 25.857 0.900 5.000 38.455 

TSO 10.000 10.000 0.900 0.900 44.777 

GWO 13.535 25.998 0.900 5.000 38.610 

CMA-ES 13.561 25.934 0.900 5.000 38.668 

CS 13.608 25.732 0.900 5.000 38.949 

BAT 13.582 25.864 0.900 5.000 41.129 

SCA 13.616 25.549 0.900 5.000 39.421 

 

4. CONCLUSION 

TSO is a swarm-based MHA that is improved by being inspired by the fishing strategies of tuna 

fish. The biggest disadvantage of TSO is that it gets caught by the local minimum trap. In order to 

solve this problem of TSO, this article proposes a new local search procedure. The main philosophy 

of the proposed approach is not focusing only on the best solution but on the best ones. The new 

proposed algorithm is applied to 10 classical test functions and welded beam design problem, speed 

reducer design problem and I-beam design problem. The results indicate the success of the proposed 

algorithm. The results of this study is as follows. 

 

 Like many other MHAs, TSO focuses on the best results. Focusing not only on the best solution 

but on the best ones allows it to abstain from local minimum trap. 

 The results of the classical test functions indicate that the proposed algorithm is successful at 

solving unimodal and multimodal functions. 

 Besides, statistical results confirm that the improved algorithm’s success for the classical test 

results are meaningful. 

 In engineering design problems, TSO is not able to present competitive results. In all design 

problems, the proposed algorithm is the most successful one though. Such a case indicates that the 

method proposed in this article to improve the performance of TSO is successful.  

 As far as we know, this study is the first one proposing a change in the mathematical model of 

TSO. Considering the results, it could be suggested that TSO is an algorithm that is open to be 

improved. 

 

For further studies, the following issues could be considered. 

 

 Redesigning the mathematical model of TSO's spiral and parabolic search strategies. Moreover, 

TSO could be improved so that it might not need initial parameters. 

 Analysing the parameters of TSO in a wide scale by determining them through 2 or 3 dimensional 

chaotic maps. 

 Finding out its weakness by applying it to more real-world problems. 

 By integrating TSO into machine learning and artificial intelligence, it could be applied in a field 

like image processing. 

 In the optimization of unmanned air vehicles and the solution of mission planning problems, TSO 

could generate successful results. 

 



Gezici, H. JournalMM (2023), 4(2) 424-445 

 

442 

 

5. CONFLICT OF INTEREST 

Author approve that to the best of their knowledge, there is not any conflict of interest or common interest 

with an institution/organization or a person that may affect the review process of the paper.   

 

6. REFERENCES 

Abdulwahab H. A., Noraziah A., Alsewari A. A., Salih S. Q., An Enhanced Version of Black Hole 

Algorithm via Levy Flight for Optimization and Data Clustering Problems. IEEE Access 7, 

142085-142096, 2019. 

Abualigah L., Diabat A., Advances in Sine Cosine Algorithm: A comprehensive survey. Artificial 

Intelligence Review 54(4), 2567-2608, 2021. 

Abualigah L., Diabat A., Geem Z. W., A Comprehensive Survey of the Harmony Search Algorithm 

in Clustering Applications. Applied Sciences 10(11), 3827, 2020. 

Ahmadianfar I., Bozorg-Haddad O., Chu X., Gradient-based optimizer: A new metaheuristic 

optimization algorithm. Information Sciences 540, 131-159, 2020. 

Amine K., Multiobjective Simulated Annealing: Principles and Algorithm Variants. Advances in 

Operations Research 2019, e8134674, 2019. 

Ashraf H., Elkholy M. M., Abdellatif S. O., El‑Fergany A. A., Synergy of neuro-fuzzy controller 

and tuna swarm algorithm for maximizing the overall efficiency of PEM fuel cells stack 

including dynamic performance. Energy Conversion and Management:X 16, 100301, 2022. 

Askari Q., Saeed M., Younas I., Heap-based optimizer inspired by corporate rank hierarchy for 

global optimization. Expert Systems with Applications 161, 113702, 2020. 

Askari Q., Younas I., Saeed M., Political Optimizer: A novel socio-inspired meta-heuristic for 

global optimization. Knowledge-Based Systems 195, 105709, 2020. 

Deng W., Shang S., Cai X., Zhao H., Song Y., Xu J., An improved differential evolution algorithm 

and its application in optimization problem. Soft Computing 25(7), 5277-5298, 2021. 

Feng Y., Deb S., Wang G.-G., Alavi A. H., Monarch butterfly optimization: A comprehensive 

review. Expert Systems with Applications 168, 114418, 2021. 

Fu C., Zhang L., A novel method based on tuna swarm algorithm under complex partial shading 

conditions in PV system. Solar Energy 248, 28-40, 2022. 

Gad A. G., Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. 

Archives of Computational Methods in Engineering 29(5), 2531-2561, 2022. 

Gandomi A. H., Yang X.-S., Alavi A. H., Talatahari S., Bat algorithm for constrained optimization 

tasks. Neural Computing and Applications 22(6), 1239-1255, 2013. 

Gul F., Rahiman W., Alhady S. S. N., Ali A., Mir I., Jalil A., Meta-heuristic approach for solving 

multi-objective path planning for autonomous guided robot using PSO–GWO optimization 

algorithm with evolutionary programming. Journal of Ambient Intelligence and Humanized 

Computing 12(7), 7873-7890, 2021. 

Guo S.-M., Guo J.-K., Gao Y.-G., Guo P.-Y., Fu-Jun a H., Wang S.-C., Lou Z.-C., Zhang X., 

Research on Engine Speed Control Based on Tuna Swarm Optimization. Journal of 

Engineering Research and Reports 23(12), 272-280, 2022. 

Hansen N., Müller S. D., Koumoutsakos P., Reducing the Time Complexity of the Derandomized 

Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary 

Computation 11(1), 1-18, 2003. 



Gezici, H. JournalMM (2023), 4(2) 424-445 

 

443 

 

Hashim F. A., Houssein E. H., Hussain K., Mabrouk M. S., Al-Atabany W., Honey Badger 

Algorithm: New metaheuristic algorithm for solving optimization problems. Mathematics and 

Computers in Simulation 192, 84-110, 2022. 

Jafari A., Khalili T., Babaei E., Bidram A., A Hybrid Optimization Technique Using Exchange 

Market and Genetic Algorithms. IEEE Access 8, 2417-2427, 2020. 

Korashy A., Kamel S., Youssef A.-R., Jurado F., Modified water cycle algorithm for optimal 

direction overcurrent relays coordination. Applied Soft Computing 74, 10-25, 2019. 

Kumar A., Pant S., Ram M., System Reliability Optimization Using Gray Wolf Optimizer 

Algorithm. Quality and Reliability Engineering International 33(7), 1327-1335, 2017. 

Kumar C., Magdalin Mary D., A novel chaotic-driven Tuna Swarm Optimizer with Newton-

Raphson method for parameter identification of three-diode equivalent circuit model of solar 

photovoltaic cells/modules. Optik 264, 169379, 2022. 

Kumar M., Kulkarni A. J., Satapathy S. C., Socio evolution & learning optimization algorithm: A 

socio-inspired optimization methodology. Future Generation Computer Systems 81, 252-272, 

2018. 

Kumar S., Yildiz B. S., Mehta P., Panagant N., Sait S. M., Mirjalili S., Yildiz A. R., Chaotic marine 

predators algorithm for global optimization of real-world engineering problems. Knowledge-

Based Systems 261, 110192, 2023. 

Kumar V., Kumar D., A Systematic Review on Firefly Algorithm: Past, Present, and Future. 

Archives of Computational Methods in Engineering 28(4), 3269-3291, 2021. 

Li S., Gong W., Yan X., Hu C., Bai D., Wang L., Gao L., Parameter extraction of photovoltaic 

models using an improved teaching-learning-based optimization. Energy Conversion and 

Management 186, 293-305, 2019. 

Mareli M., Twala B., An adaptive Cuckoo search algorithm for optimisation. Applied Computing 

and Informatics 14(2), 107-115, 2018. 

Mbuli N., Ngaha W. S., A survey of big bang big crunch optimisation in power systems. Renewable 

and Sustainable Energy Reviews 155, 111848, 2022. 

Mirjalili S., SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based 

Systems 96, 120-133, 2016. 

Mirjalili S., Evolutionary Algorithms and Neural Networks, Springer International Publishing, First 

Edition, United States, pp. 43-55, 2019. 

Mirjalili S., Mirjalili S. M., Lewis A., Grey Wolf Optimizer. Advances in Engineering Software 69, 

46-61, 2014. 

Noureddine S., An optimization approach for the satisfiability problem. Applied Computing and 

Informatics 11(1), 47-59, 2015. 

Öztürk Ş., Ahmad R., Akhtar N., Variants of Artificial Bee Colony algorithm and its applications 

in medical image processing. Applied Soft Computing 97, 106799, 2020. 

Prajapati V. K., Jain M., Chouhan L., Tabu Search Algorithm (TSA): A Comprehensive Survey, 

3rd International Conference on Emerging Technologies in Computer Engineering: Machine 

Learning and Internet of Things (ICETCE), Jaipur/India, February 7-8, 2020, pp: 1-8. 

Raja B. D., Patel V. K., Yildiz A. R., Kotecha P., Performance of scientific law-inspired 

optimization algorithms for constrained engineering applications. Engineering Optimization 

55(10), 1798-1812, 2023. 

Rajabioun R., Cuckoo Optimization Algorithm. Applied Soft Computing 11(8), 5508-5518, 2011. 



Gezici, H. JournalMM (2023), 4(2) 424-445 

 

444 

 

Ramachandran M., Mirjalili S., Nazari-Heris M., Parvathysankar D. S., Sundaram A., Charles 

Gnanakkan C. A. R., A hybrid Grasshopper Optimization Algorithm and Harris Hawks 

Optimizer for Combined Heat and Power Economic Dispatch problem. Engineering 

Applications of Artificial Intelligence 111, 104753, 2022. 

Rashedi E., Nezamabadi-pour, H., Saryazdi S., GSA: A Gravitational Search Algorithm. 

Information Sciences 179(13), 2232-2248, 2009. 

Rosso M. M., Cucuzza R., Aloisio A., Marano G. C., Enhanced Multi-Strategy Particle Swarm 

Optimization for Constrained Problems with an Evolutionary-Strategies-Based Unfeasible 

Local Search Operator. Applied Sciences 12(5), 2285, 2022. 

Tan M., Li Y., Ding D., Zhou R., Huang C., An Improved JADE Hybridizing with Tuna Swarm 

Optimization for Numerical Optimization Problems. Mathematical Problems in Engineering 

2022, e7726548, 2022. 

Tuerxun W., Xu C., Guo H., Guo L., Zeng N., Cheng Z., An ultra-short-term wind speed prediction 

model using LSTM based on modified tuna swarm optimization and successive variational 

mode decomposition. Energy Science & Engineering 10(8), 3001-3022, 2022. 

Wang G.-G., Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization 

problems. Memetic Computing 10(2), 151-164, 2018. 

Wang G.-G., Deb S., Coelho L. D. S., Earthworm optimisation algorithm: a bio-inspired 

metaheuristic algorithm for global optimisation problems. International Journal of Bio-

Inspired Computation 12(1), 1-22, 2018. 

Wang G.-G., Deb S., Cui Z., Monarch butterfly optimization. Neural Computing and Applications 

31(7), 1995-2014, 2019. 

Wang J., Zhu L., Wu B., Ryspayev A., Forestry Canopy Image Segmentation Based on Improved 

Tuna Swarm Optimization. Forests 13(11), 1746, 2022. 

Wang W., Tian J., An Improved Nonlinear Tuna Swarm Optimization Algorithm Based on Circle 

Chaos Map and Levy Flight Operator. Electronics 11(22), 3678, 2022. 

Wang Y., Wang P., Zhang J., Cui Z., Cai X., Zhang W., Chen J., A Novel Bat Algorithm with 

Multiple Strategies Coupling for Numerical Optimization. Mathematics 7(2), 135, 2019. 

Wei Z., Huang C., Wang X., Han T., Li Y., Nuclear Reaction Optimization: A Novel and Powerful 

Physics-Based Algorithm for Global Optimization. IEEE Access 7, 66084-66109, 2019. 

Wolpert D. H., Macready W. G., No free lunch theorems for optimization. IEEE Transactions on 

Evolutionary Computation 1(1), 67-82, 1997. 

Wu L., Huang X., Cui J., Liu C., Xiao W., Modified adaptive ant colony optimization algorithm 

and its application for solving path planning of mobile robot. Expert Systems with 

Applications 215, 119410, 2023. 

Xie L., Han T., Zhou H., Zhang Z.-R., Han B., Tang A., Tuna Swarm Optimization: A Novel 

Swarm-Based Metaheuristic Algorithm for Global Optimization. Computational Intelligence 

and Neuroscience 2021, e9210050, 2021. 

Xue Y., Zhang Q., Zhao Y., An improved brain storm optimization algorithm with new solution 

generation strategies for classification. Engineering Applications of Artificial Intelligence 

110, 104677, 2022. 

Yan Z., Yan J., Wu Y., Cai S., Wang H., A novel reinforcement learning based tuna swarm 

optimization algorithm for autonomous underwater vehicle path planning. Mathematics and 

Computers in Simulation 209, 55-86 2023. 



Gezici, H. JournalMM (2023), 4(2) 424-445 

 

445 

 

Zhang F., Mei Y., Nguyen S., Zhang M., Tan K. C., Surrogate-Assisted Evolutionary Multitask 

Genetic Programming for Dynamic Flexible Job Shop Scheduling. IEEE Transactions on 

Evolutionary Computation 25(4), 651-665, 2021. 

Zhang Y., Jin Z., Group teaching optimization algorithm: A novel metaheuristic method for solving 

global optimization problems. Expert Systems with Applications 148, 113246, 2020. 

 


