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Abstract
In this study, dark and bright solitons of the (2+1)-dimensional
Kundu-Mukherjee-Naskar equation are constructed with unified solver in
terms of He’s variations method. In accordance with basic properties of
proposed technique, some dark and bright solitons are obtained. Moreover,
giving specific values to the achieved solutions, 2D and 3D graphics are
plotted with the help of software package.The unified solver technique
extract vital solutions in explicit way. It is an easy-to-use method applied
to obtain various exact solutions of nonlinear partial differential equations
arising in fluid mechanics, nuclear, plasma and particle physics.
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Öz
Bu çalışmada, (2+1)-boyutlu Kundu-Mukherjee-Naskar denkleminin dark
ve bright soliton çözümleri varyasyonel metot aracılığıyla birleştirilmiş
çözücü teknikle inşa edilmiştir. tekniğin temel özelliklerine uygun
olarak dark ve bright soliton çözümleri elde edilmiştir. Ayrıca elde
edilen çözümlere spesifik değerler verilerek, çözümlerin iki ve üç
boyutlu grafikleri paket program aracılığıyla çizilmiştir. Birleşik çözüm
tekniği, akışkanlar mekaniği, nükleer, plazma ve parçacık fiziğindeki
kısmi diferansiyel denklemlerin çeşitli tam çözümlerini elde etmek için
uygulanabilen kullanımı kolay bir yöntemdir.

Anahtar Kelimeler: Dalga dönüşümü, birleştirilmiş çözücü teknik,
solitonlar

Introduction

Solitons are the solutions to a broad variety of weakly nonlinear dispersive partial differential equations

that describe physical systems. The transfer of information in optical communication lines is based on

soliton propagation in the study of Doran and Blow [1], Hausand and Wong [2]. For more than a decade

the dynamic of solitons has received considerable interest in fibers [3–5]. Kundu-Mukherjee-Naskar
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(KMN) is a significant equation that explains solitons in optical fibers and contains mixed forms of

nonlinear effects. It is provided as follows:

iψt + αψxy + iβψ(ψψ∗
x − ψ∗ψx) = 0, i =

√
−1, (1)

here ψ(x, y, t) is wave function in nonlinear sense for optical solitons with the independent variables

x, y and t, asterisk sign shows complex conjugation. While t denotes a temporal variable, x and y

symbolize spatial variables. The parameter α represents the dispersion term while β ensures the presence

of the distinct cases of nonlinearity media that does not fall into any of the forms non-Kerr and Kerr

medias. This model can be used to explain the movement of oceanic rogue waves, optical fiber waves

and ion-acoustic waves in a magnetic plasma [7–9]. First time, Kundu and Mukherjee [6] presented this

equation in 2013.

In literarute Biswas,Vega-Guzman and et al. [10], Yıldırım and Mirzazadeh [11] used Sine–Gordon

equation method; Yıldırım [12] used trial equation; Rizvi, Afzal and et al. [13] used tanh–coth; Al-Ghafri

[14] used the ansatz approach; Mamedov, Demirbilek and et al. [15] used improved Bernoulli sub-equation

function; Önder, Seçer and et al. [16] used Sardar sub-equation; Kumar, Paul and et al. [17] used new

auxiliary equation; Günerhan, Khodadad and et al. [18] used extended direct algebraic; Kudryashov [19]

and Petrovic [20] used the Weierstrass and Jacobi elliptic functions methods; Ekici, Sönmezoğlu and et

al. [21] used extended trial function approach; Rezazadeh, Kurt and et al. [22] used functional variable

technique; Çakıcıoğlu, Çınar and et al. [23] used modified extended tanh method; Mohammed, Al-Askar

and et al. [24] used G′/G-expansion to get optical solitons of KMN equation.

In this work, optical soliton solutions of (1) are given via unified solver technique. Considered equation

has still infant stage, therefore future research on it can focus on its potential applications in a variety of

physical fields.

In the organization of this paper, in first section, basic structure of the unified solver technique is

expressed. In second section, considered method is successfully applied to the governing model and

graphical simulations of the solutions are plotted. Finally, some important conclusions and physical

meanings of solutions are given in last section.

Essential Framework of Unified Solver Method

This section contains description of unified solver technique. Consider the nonlinear partial differential

equation (NPDE) of the following form:

F (ϕ, ϕt, ϕx, ϕtt, ϕxx, ...) . (2)

Applying the wave transformation ϕ (x, y, t) = ϕ (ξ) , ξ = k1x + k2y + k3t, (where ki = 1, 3 are

velocity of the wave ) into (2) the following equation is obtained:

N
(
ϕ, ϕ2, ϕ′, ϕ′′, ...

)
= 0, (3)

here N is a nonlinear ordinary differential equation (NODE) that has partial derivatives of ϕ dependent

on ξ. Based on He’s semi-inverse method [25–27], the variational model for (3) can be obtained by the
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semi-inverse method [27] which reads:

I(ϕ) =

∫
Ldξ, (4)

where L is Lagrangian function connected with the derivative of ϕ given in the form:

L =
1

2

(
ϕ′
)2 −Q, (5)

here Q is the potential function. We look for a solitary wave solution in the form

ϕ (x, y, t) = λsech (µξ) , ϕ (x, y, t) = λsech2 (µξ) , ϕ (x, y, t) = λ tanh (µξ) , (6)

where λ and µ are constants to be determined later. Assume that systems of equations can be reduced to

the form:

Ω1ϕ
′′ +Ω2ϕ

3 +Ω3ϕ = 0, (7)

in which Ωi, i = 1, 3 are real coefficients. Multiplying (7) by ϕ′ and taking integral with respect to ξ:

1

2

(
ϕ′
)2

+ γ2
Ω2

4Ω1
ϕ4 +

Ω3

2Ω1
ϕ2 +Ω0 = 0, (8)

where Ω0 is a constant of integration. Thus (7) can be written in the form:

ϕ′′ = −∂Q
∂ϕ

, Q = −
(
γ2ϕ

4 + γ1ϕ
2 + γ0

)
, (9)

where

γ2 = − Ω2

4Ω1
, γ1 = − Ω3

2Ω1
, γ0 = −Ω0. (10)

Implementing the semi-inverse method [25–27] to solve (7) that constructs the following variational

formulation from (8):

I =

∫ [
1

2

(
ϕ′
)2

+ γ2ϕ
4 + γ1ϕ

2 + γ0

]
dξ. (11)

Substituting (6) into (11) then making I stationary according to λ and µ:

∂I

∂λ
= 0;

∂I

∂µ
= 0. (12)

Solving (12), we get λ and µ. Thus the solitary wave solution given by (6) is well determined.

The first family

The first family of solution is as follows:

ϕ (ξ) = λsechθ, θ = µξ, (13)
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Substituting (13) into (11), we get

I =
1

µ

∞∫
0

[
1

2
λ2µ2sech2θ tanh2 θ + γ2λ

4sech4θ + γ1λ
2sech2θ + γ0

]
dθ.

Taking γ0 = 0 as an integration constant, it is obtained:

I =
λ

12µ

[
2λµ2 + 8γ2λ

3 + 12γ1λ
]
. (14)

Making I stationary in relation to λ and µ results in

∂I

∂λ
=

1

12µ

[
32γ2λ

3 + 24γ1λ+ 4λµ2
]
= 0, (15)

∂I

∂µ
= − λ

12µ2
[
8γ2λ

3 + 12γ1λ− 2λµ2
]
= 0. (16)

Solving these equations and using (13), the solution of (9) takes the form:

ϕ(ξ) = ±
√

−γ1
γ2

sech
(
±
√

2γ1ξ
)
. (17)

Using (10), the first family of solution can be written as:

ϕ(ξ) = ±
√

−2Ω3

Ω2
sech

(
±
√

−Ω3

Ω1
ξ

)
. (18)

The second family

The second family of solution is as follows:

ϕ (ξ) = λsech2θ, θ = µξ. (19)

The substitution of (19) into (11) leads to

I =
λ

µ

∞∫
0

[
2λµ2sech4θ tanh2 θ + γ2λ

3sech8θ + γ1λsech4θ +
γ0
λ

]
dθ. (20)

Suppose that γ0 = 0 then

I =
2λ2

105µ

[
14λµ2 + 24γ2λ

3 + 35γ1λ
]
. (21)

Making I stationary in relation to λ and µ results in

14λµ2 + 48γ2λ
3 + 35γ1λ = 0, (22)
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14λµ2 − 24γ2λ
3 − 35γ1λ = 0. (23)

Solving (22)-(23) and using (19), solutions of (9) and (7) have following format:

ϕ(ξ) = ±
√

−35γ1
36γ2

sech2
(
±
√

5

6
γ1ξ

)
(24)

Using (10), the second family of solution can be written as:

ϕ(ξ) = ±
√

−35Ω3

18Ω2
sech2

(
±
√

− 5Ω3

12Ω1
ξ

)
. (25)

The third family

Third family of solution is as follows:

ϕ (ξ) = λ tanh (θ) , θ = µξ. (26)

Substituting (26) into (11), we have

I =
1

µ

∞∫
0

[
1

2
λ2µ2sech4θ + γ2λ

4 tanh4 θ + γ1λ
2 tanh2 θ + γ0

]
dθ

=
1

µ

∞∫
0

[
λ2
(
γ2λ

2 +
1

2
µ2
)

sech4θ − λ2
(
2γ2λ

2 + γ1
)

sech2θ
]
dθ

+
1

µ

(
γ2λ

4 + γ1λ
2 + γ0

) ∞∫
0

dθ.

Under the condition

γ0 = −λ2
(
γ2λ

2 + γ1
)
, (27)

we find that

I =
−λ2

3µ

[
4γ2λ

2 + 3γ1 − µ2
]
. (28)

By resolving the two requirements, the values of λ and µ that makes I to be stationary with respect to λ

and µ are found:

∂I

∂λ
=

−λ
3µ

[
16γ2λ

2 + 6γ1 − 2µ2
]
= 0, (29)
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∂I

∂µ
= − λ2

3µ2
[
4γ2λ

2 + 3γ1 + µ2
]
= 0. (30)

Solving (29)-(30) and using (26), solution of (9) take the form:

ϕ(ξ) = ±
√

−γ1
2γ2

tanh
(
±
√
−γ1ξ

)
. (31)

Resultantly, the third family of solution in (7) has the following structure:

ϕ(ξ) = ±
√

−Ω3

Ω2
tanh

(
±
√

Ω3

2Ω1
ξ

)
. (32)

Application of The Proposed Method

Let us take the following stance to obtain the precise exact solutions of (1):

ψ (x, y, t) = u (ξ) eiΦ(x,y,t), (33)

u(ξ), Φ(x, y, t) represent the amplitude and phase portion in the order given,

ξ = δ1x+ δ2y − δ3t,Φ(x, y, t) = −η1x− η2y + η3t, (34)

where δi, ηi (i = 1, 2, 3) are real parameters different than zero. Also δ1 and δ2 are the width of the soliton

along x− and y− directions respectively, whereas δ3 is the velocity of the soliton. The parameters η1
and η2 indicate the soliton frequencies in the x- and y- directions respectively, η3 represents the soliton

wave number. Taking (34) and (33) into (1) produces imaginary and real parts as:

δ3 = −α(η2δ1 + η1δ2), (35)

αδ1δ2ψ
′′ − (η3 + αη1η2)ψ − 2βη1ψ

3 = 0. (36)

If we compare (36) with (7) it can be easily seen that

Ω1 = αδ1δ2, Ω2 = −(η3 + αη1η2), Ω3 = −2βη1. (37)

Having described the unified solver in previous section, below the formulae can be used to provide

solutions to (1):
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The first family solution

Taking into account (18), (32) and (33) the first family solution of (1) is get as:

ψ1,2 (x, y, t) = ±i

√
4βη1

(η3 + αη1η2)
sech

(
±
√

2βη1
αδ1δ2

(δ1x+ δ2y − δ3t)

)
e−i(η1x−η2y+η3t). (38)

Figure 1. 3D graphs of ψ1 (x, y, t) for α = 1; β = 0.5; η1 = 2; η2 = 2.5; η3 = 5; y = 1; δ1 = 1;
δ2 = 2.5; δ3 = 0.5; −5 < x < 5,−5 < t < 5, 2D plot for t = 1.

The second family solution

Considering (25), (33) and (34) the second family solution of (1) is obtained as:

ψ3,4 (x, y, t) = ±i

√
4βη1

18 (η3 + αη1η2)
sech2

(
±
√

5βη1
6αδ1δ2

(δ1x+ δ2y − δ3t)

)
e−i(η1x−η2y+η3t). (39)

Figure 2. 3D graphs of ψ3 (x, y, t) for α = 1; β = 0.5; η1 = 2; η2 = 2.5; η3 = 5; y = 1; δ1 = 1;
δ2 = 2.5; δ3 = 0.5; −5 < x < 5, 0 < t < 5, 2D plot for t = 1.

The third family solution

Considering (32), (33) and (34) the third family solution of (1) is obtained as:

ψ5,6 (x, y, t) = ±

√
2βη1

(η3 + αη1η2)
tanh

(
±i
√

βη1
αδ1δ2

(δ1x+ δ2y − δ3t)

)
e−i(η1x−η2y+η3t). (40)
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Figure 3. 3D graphs of ψ5 (x, y, t) for α = 1; β = 0.5; η1 = 2; η2 = 2.5; η3 = 5; y = 1; δ1 = 1;
δ2 = 2.5; δ3 = 0.5;, −5 < x < 5, 0 < t < 5, 2D plot for t = 1.

Conclusion

This paper finds entirely soliton solutions for governing model with the help of unified solver technique.

The acquired solutions are hyperbolic function solutions. These solutions explain some interesting

physical phenomena in applied science and physics.

The hyperbolic secant (bright soliton) arises in the profile of a laminar jet, the hyperbolic tangent (dark

soliton) arises in the calculation of magnetic moment. Indeed, the options given comprised bright

and dark as well as soliton solutions. In this sense, ψ1,2 (x, y, t) and ψ3,4 (x, y, t) are bright solitons,

ψ5,6 (x, y, t) are dark solitons of the considered model respectively.

By the selection of suitable values for the model’s parameters, structures of solitons are clearly depicted.

Graphs are presented to prescribe the dynamical behavior of selected solutions. Also the obtained

solitons with special parameters in the figures satisfy the KMN equation.

In the light of this results, it seems that the unified solver method has been influential for the analytical

solutions of nonlinear partial differential equations emerging in natural science.
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[4] Başkonuş, H. M., Sulaiman, T. A., & Bulut, H. (2018). Dark, bright and other optical solitons to the
decoupled nonlinear Schrödinger equation arising in dual-core optical fibers. Optical and Quantum
Electronics, 50, Article 165. https://doi.org/10.1007/s11082-018-1433-0

[5] Al-Ghafri, K., Krishnan, E., & Biswas, A. (2021). W-shaped and other solitons in optical nanofibers.
Results in Physics, 23, Article 103973. https://doi.org/10.1016/j.rinp.2021.103973

[6] Kundu, A., & Mukherjee A. (2013). Novel integrable higher-dimensional nonlinear
Schroedinger equation: properties, solutions, applications. arXiv:1305.4023v1 [nlinSI]
https://doi.org/10.48550/arXiv.1305.4023

[7] Kundu A, Mukherjee A, & Naskar T. (2014). Modelling rogue waves through exact dynamical lump
soliton controlled by ocean currents. Proceedings of the Royal Society A-Math Phy., 470(2164), 1-20.
https://doi.org/10.1098/rspa.2013.0576

[8] Mukherjee, A., & Kundu, A. (2019). Novel nonlinear wave equation: Regulated
rogue waves and accelerated soliton solutions. Physics Letters A, 383(10), 985-990.
https://doi.org/10.1016/j.physleta.2018.12.023

[9] Mukherjee, A., Janaki, M., & Kundu, A. (2019). A new (2+1)-dimensional integrable evolution
equation for an ion acoustic wave in a magnetized plasma. Physics of Plasmas, 22, Article 072302.
https://doi.org/10.1063/1.4923296

[10] Biswas, A., Vega-Guzman, J., Bansal, A., Kara, A. H., Alzahrani, A. K., Zhou, Q.,
& Belic, M. R. (2020). Optical dromions, domain walls and conservation laws with
Kundu-Mukherjee-Naskar equation via traveling waves and Lie symmetry. Results in Physics, 16,
102850. https://doi.org/10.1016/j.rinp.2019.102850

[11] Yıldırım, Y., & Mirzazadeh, M. (2019). Optical pulses with Kundu-Mukherjee-Naskar
model in fiber communication systems. Chinese Journal of Physics, 64, 183-193.
https://doi.org/10.1016/j.cjph.2019.10.025

[12] Yıldırım, Y. (2019). Optical solitons to Kundu–Mukherjee–Naskar model with trial equation
approach. Optik, 183, 1061–1065. https://doi.org/10.1016/j.ijleo.2019.02.117

[13] Rizvi, S. T. R., Afzal, I., & Ali, K. (2020). Dark and singular optical solitons
for Kundu-Mukherjee-Naskar model. Modern Physics Letters B, 34(6), 1-9.
https://doi.org/10.1142/S0217984920500748

[14] Al-Ghafri, K. S. (2021). Soliton structures in optical fiber communications
with Kundu–Mukherjee–Naskar model. Open Physics, 19, 679-682.
https://doi.org/10.1515/phys-2021-0074

[15] Mamedov, K. R., Demirbilek, U., & Ala, V. (2022). Exact solutions of the (2+1)-dimensional
Kundu–Mukherjee–Naskar Model via IBSEFM. Bulletin of the South Ural State University
Series, Mathematical Modelling, Programming, Computer Software, 15(2), 17–26.
https://doi.org/10.14529/mmp220202

73



Ala Sinop Uni J Nat Sci 8(1): 65-74 (2023)
ISSN: 2536-4383
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