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ABSTRACT 
 

Corrosion damage, which can be considered a construction or service failure during the life of the structure, is an 

important parameter for structural elements. Strength loss due to corrosion is observed in reinforced concrete 

(RC) members and is an important parameter affecting the performance of the structure. Determining the shear 

strength of beams with corroded reinforcement is important in terms of strength loss, design, and reinforcement 

criteria in the structural member. In this context, data from 157 experimental tests of corroded RC beams 

reported in the literature were collected and the ultimate shear strength values of the beams were determined as a 

function of the test parameters. Strength estimation was performed using the machine learning regression 

algorithms XGBoost and AdaBoost. The results obtained were evaluated using the R
2
, RMSE and MAE 

performance metrics and high estimation success was achieved. The study shows that with these systems, which 

can perform learning based on experimental data, it is possible to estimate the shear strength values of corroded 

beams with known production parameters without the need for experimental measurements. 
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Korozyona Uğramış Betonarme Kirişler için Kesme Dayanımını 

Belirlemeye Yönelik Basitleştirilmiş Bir Yaklaşım 
 

ÖZ 
Yapı ömrü boyunca yapım ya da kullanım kusuru sayılabilecek korozyon hasarı yapı elemanları için önemli bir 

parametredir. Korozyon sebebiyle betonarme elemanlarda dayanım kaybı görülmekte bu da yapı performansını 

etkileyen önemli bir parametre olmaktadır. Donatısı korozyona uğramış kirişlerin kayma mukavemetinin 

belirlenmesi, yapı elamanında dayanım kaybı, tasarım ve güçlendirme kriterleri açısından önemli olmaktadır. Bu 

çalışmada yapay zekâ algoritmaları ile betonarme kiriş deneylerinden elde edilen kesme dayanımı değerlerinin 

deneysel çalışmaya gerek kalmadan belirlenmesi amaçlanmaktadır. Bu kapsamda literatürde gerçekleştirilmiş 

korozyona uğramış betonarme kiriş deneyleri verileri toparlanmış, deney parametrelerine bağlı olarak kirişlerin 

nihai kesme dayanımı değerleri tespit edilmiştir. Dayanım tahmini makine öğrenmesi regresyon 

algoritmalarından XGBoost ve AdaBoost ile gerçekleştirilmiştir. Elde edilen sonuçlar R
2
, RMSE ve MAE 

performans metrikleri ile değerlendirilmiş ve yüksek tahmin başarısına ulaşılmıştır. Çalışma göstermektedir ki 

deneysel verilere bağlı öğrenme gerçekleştirebilen bu sistemler ile üretim parametreleri bilinen ve korozyona 

uğramış kesme dayanımı değerlerini deneysel ölçümlere ihtiyaç duymadan tahmin etmek mümkündür.  

 

Anahtar Kelimeler: Korozyonlu kiriş, Kesme dayanımı, Makine öğrenmesi, XGBoost, AdaBoost. 
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I. INTRODUCTION 
 
Corrosion can develop in the reinforcing steel due to effects such as the choice of an inappropriate 

concrete cover in RC structural elements, inappropriate materials and manufacturing practices in the 

concrete mix (aggregate granulometry, use of sea sand, porosity of the concrete, etc.), exposure of the 

elements to a humid environment for a long period of time. The cross-sectional area of the corroded 

reinforcement is reduced and the concrete cover on the reinforcement increases in volume due to the 

volume of rust on the reinforcement, causing the concrete shell to shed over time. There is also 

deterioration of the reinforcement and loss of adhesion between the concrete and the reinforcement. 

With all these effects, rebar corrosion, which occurs as a manufacturing and service failure, is known 

to cause significant capacity loss in RC elements. 

 
Various experimental studies have been carried out to investigate the effects of corrosion on the 

structure and performance of structural elements. Corrosion studies on RC columns have shown 

serious reductions, particularly in the load carrying capacity of the column 1-3. There are several 

studies in the existing literature to investigate the structural behaviour of corroded RC beams 4-7. 

Rodriguez et al. 8,  in their study examined the changes in the load carrying capacity of a corroded 

RC structure and found that corrosion reduces the ultimate strength and also increases the crack widths 

on the element. The study found that the failure mode of the beams with corroded sections changed 

compared to the normal reinforced beams. In addition, the study by Higgins and Farrow's 9 also 

carried out an experimental investigation of corrosion on RC beams, and as a result of the experiment, 

low deformation and shear capacity were observed in the corroded sections. Ye et al. 10 observed the 

effect of corrosion on shear strength by observing the corroded stirrups in the studies and pointed out 

the low shear strength in beams with highly corroded stirrups. Based on real field data as well as 

experimental studies, Poupard et al. 11  carried out investigations on beams exposed to corrosion for 

many years and observed that cracking became widespread in the beam area where high corrosion 

levels were observed. Corrosion damage in RC beams is shown in Figure 1. 
 

        

  
 

Figure 1. Images of corroded RC beams  

 

In recent years, various artificial intelligence methods have been used to solve complex problems in 

structural and earthquake engineering (Figure 2). The use of machine learning systems in structural 

engineering is quite common in studies in the literature. Although the evaluation process is difficult 

due to the large amount of data in the field of structural health monitoring, machine learning systems 

have been widely used in this field 12, 13. Prediction of post-earthquake seismic response and 

evaluation of structural safety have been another area of study using machine learning applications 

 

Geliş: 05/05/2023, Düzeltme: 17/07/2023, Kabul: 11/08/2023 

 



1960 

 

14, 15. In addition, strength estimation and structural damage modes and estimation in RC elements 

after earthquakes, crack detection in elements have also been among the machine learning applications 

in the literature 16-24.  

 

In this study, the estimation of shear strength was investigated using machine learning algorithms, 

depending on the experimental study data in which the corrosion effect was observed in RC beams. 

The study used machine learning from the field of artificial intelligence, which is one of the innovative 

technologies in the field of engineering. Machine learning, as a product of evolving technology, shed 

light on an important problem in the field of structural engineering in this study, and with the 

statistical approach of artificial intelligence, it was possible to estimate the strength of corroded beams 

by knowing various parameters without the need for experimental analysis. 

 

 
Figure 2. Machine learning studies in structural and earthquake engineering 

 

 

II. MACHINE LEARNING 
 
Machine learning (ML), which is one of the systems of artificial intelligence, is the functioning of 

machines similar to the information transfer, experience and decision mechanisms in humans. It is 

based on a mathematical-statistical system. ML is a system that produces results by evaluating 

multiple parameters and statistical results. With sufficient learning, it can be used as a decision support 

system to solve important problems. In short, it can be defined as the implementation on machines of 

training and learning processes that are possible in human physiology, thanks to the algorithms 

developed. 

 

ML uses coded algorithms to correlate the result with incoming information and the instructions given 

to complete a task. ML has algorithms that can also produce solutions to complex engineering 

problems. How the input and output data are introduced into the network structure while the algorithm 

is being built is important to the success of a network model in coding. ML algorithms allow us to 

perform tasks such as classification, prediction, and object recognition. For these processes, ML is 

divided into two as supervised (trained) and unsupervised (untrained) learning according to the 

training state of the data. Supervised learning is a branch of ML that produces results (output) based 
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on training data. Regression (prediction) and classification are supervised learning methods. 

Unsupervised learning analyses and cluster datasets. Without human intervention, these algorithms 

discover connections between similarities and differences between data sets. This algorithm is ideal 

for data analysis, segmentation, and image recognition. In this study, regression algorithms for ML 

were used as the estimation problem for the data was investigated. 

 
Regression is a statistical measurement that determines the strength of the relationship between a 

dependent variable and other independent variables and makes predictions based on that relationship. 

Regression-based machine learning algorithms are used to estimate unknown values for data. These 

algorithms are used to make predictions from data using indicators of past behaviour. Particularly in 

engineering problems, regression algorithm can be used to find a solution based on the relationship 

between the data. In the case of dependent variable (y) and independent variable (x) from more than 

one variable, the regression method, which is defined as a function of (y) dependent on (x), is 

diversified according to the type of function among the variables in the data. 
One of the most popular regression algorithms is Decision Tree, and many new and updated models 

have been developed accordingly. It is a model that brings practicality to problems with complex data. 

Decision trees are an algorithm that is constructed by dividing the input data into smaller clusters, just 

like the physiology of a tree from the root to the leaves. The first cells of the decision trees are called 

root nodes. Root cells have nodes below them. The complexity of the model increases as the number 

of nodes increases. At the bottom of the decision tree are leaf nodes. Leaves give us the result [25].  A 

representative decision tree network structure is shown in Figure 3. 

 

 
 

Figure 3. Decision tree architecture 

 

Boosting algorithms are tree-based algorithms used to strengthen accurate predictions in machine 

learning models. This model, which is an ensemble method, can be used to strengthen weak models. 

This method uses sequential rather than parallel computation (Figure 4). XGBoost, AdaBoost, 

GradientBoost and CatBoost algorithms are types of Boosting algorithms. XGBoost (eXtreme 

Gradient Boosting) was developed in 2016 by Chen and Guestrin [26] using a gradient boosting 

framework designed for speed and performance. The main feature of the algorithm is that it works 

faster than other regression models. Process of XGBoost is calculated by Eq. 1 [27]. Number of trees 

are important parameters for XGBoost model. Target loss function shown in Eq. 2. and Eq.3 is found 

with the help of Eq. 1 and Eq. 2. The final target loss function is then converted to Eq. 4 and the 

XGBoost model is trained according to this target. Regularization term is calculated in Eq. 5. For all 

equations; 𝑦𝑖 is the actual value, �̈�𝑖
(𝑡)

is the final tree model; �̈�𝑖
(𝑡−1)

is the previously generated tree 

model; 𝑓𝑡(𝑥𝑖) is the newly generated tree model, and t is the total number of tree models; gi and hi are 

the first and second order gradient statistics on the loss function. 
 

𝑦𝑖
(𝑡)

= ∑ 𝑓𝑘

𝑡

𝑘=1

(𝑥𝑖) = �̈�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖) 

 (1) 
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𝑂𝑏𝑗𝑡 = ∑ 𝐿

𝑡

𝑘=1

(𝑦𝑖, �̈�𝑖
(𝑡)

 ) + ∑ 

𝑡

𝑘=1

(𝑓𝑖) 

(2) 

  

𝑂𝑏𝑗𝑡 = ∑ 𝐿

𝑡

𝑘=1

(𝑦𝑖, �̈�𝑖
(𝑡−1)

 ) + 𝑓𝑡(𝑥𝑖) + (𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(3) 

  

𝑂𝑏𝑗𝑡 = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑡

𝑘=1

+ (𝑓𝑡) 

(4) 

  

 

 

(f)=T+1/2
2
 

(5) 

 

Adaptive boosting (AdaBoost) is one of the simplest boosting algorithms. Although it is similar to 

Random Forest in terms of the prediction system, the training set is trained with the first weak learner. 

The training data that gives incorrect results in the estimation of the training result are                                                                                                                                                                      

retrained by increasing the weights of the training data. This is continued by training the output of the 

weak learner as the input to the other learner, and finally the results are combined to form the final 

result.   Since there are models that perform slightly better than random prediction, weak learners are 

trained until they reach at least random prediction performance. In this algorithm model, decision trees 

are used in the training series. The AdaBoost model is calculated using Eq. 6 and 7. For equations t: 

number of trees, w: leaf weights, s: single tree structure.  
 

𝑦 = ∑ 𝑓𝑡

𝑡

𝑡=1

(𝑥) 

 

(6) 

𝐹 = {𝑓𝑡 = 𝑤𝑠(𝑥)} 

 

(7) 

  

 
 

Figure 4. Boosting algorithms 
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III. ANALYTICAL STUDY 
 

A. PREPARING THE DATA SET 

 
Within the scope of the study, the shear strength values determined as a result of the tests performed 

on the corroded RC beams are to be determined using machine learning algorithms provided that 

similar production parameters are known. For this purpose, data from experimental studies in which 

the shear strength was determined for corrosion-damaged RC beams were collected from in the 

literature. For the experimental studies, the beam test data in the studies of Fu and Feng [28] studies 

[8, 9, 28-38] were compiled. Beam dimensions and shear span to depth ratio, concrete compressive 

strength, yield strength of longitudinal and transverse reinforcement, stirrup spacing, reinforcement 

ratios, corrosion parameter of longitudinal and transverse reinforcement are used as input parameters 

for algorithms, and shear strength value is output (target) in experimental studies. Parameters for the 

algorithm are given for algorithm as input and output parameter definition, values as range of change 

and units in Table 1. 

 
Table 1. Statistical values of experimental database 

 

 Parameters  Details Min Max Mean Units 

Material 

fc  Concrete compressive strength 20 44.40 28.12 MPa 

fyl  Yield strength of reinforcement  210 706 430.59 MPa 

fyw  Yield strength of stirrup  275 626 397.49 MPa 

Cross 

sectional 

hb  Cross sectional height  180 610 257.34 mm 

bb  Cross sectional width  120 254 159.19 mm 

d  Effective depth 130 521 214.32 mm 

a/d  Shear span to depth ratio  1 4.7 2.33 (%) 

Reinforcement 

l  
 Longitudinal tension 

reinforcement ratio  
1.22 3.27 2.17 (%) 

w   Stirrup ratio 0.14 0.90 0.36 (%) 

S  Space of stirrup 80 305 155.68 mm 

l 
 Section loss ratio of longitudinal 

reinforcement 
0 26 3.02 (%) 

w  Section loss ratio of stirrup 0 97.2 23.44 (%) 

Output Vexp 

 The sectional shear strength at 

beams obtained from the 

experiment 

26.60 594 118.55 kN 

 
In the data, the effect of each input data, namely the parameters effective in beam production, on the 

shear strength of the beams was examined and the statistical distribution of the parameters depending 

on the target value is shown in Figure 5. From the interaction relationships between the parameters 

shown in Figure 5, it can be seen that the beam dimensions change the beam shear strength 

proportionally. It is clear that the increasing the values of these parameters increase the capacity. It can 

be seen that the corrosion occurring in the longitudinal reinforcement in the beam has a greater effect 

on the strength value. In addition, there is no linear change between material strengths and beam shear 

strength. This situation also shows that linear approaches do not give accurate results when estimating 

the shear capacity of the beam. This result also shows that this problem cannot be solved with linear 

models from machine learning prediction algorithms. 
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Figure 5. Correlation between the input parameters and the corroded shear strength (output) 

 

B. APPLICATION OF ALGORITHM MODELS 
 

Machine learning algorithms, one of the methods artificial intelligences, were used to estimate of shear 

capacity as a function of parameters in corroded RC beams. In the study, the shear strength was 

estimated from the test data based on RC beam dimensions, material information and corrosion 

parameters. For this reason, "XGBoost" and "AdaBoost" algorithms, which are among the machine 

learning regression (prediction) algorithms and the most recently developed models in the literature, 

were used in the study. These algorithms are considered to be more successful algorithm architectures, 

because they use multiple decision tree models to reach the final prediction value, are ensemble 

models, and have more accurate decision-making capabilities compared to a single algorithm model. 

 

During the development of the algorithm, the coding process was carried out in the open-source 

software Python [39]. The Numpy and Pandas libraries, which are required libraries on the software, 

were loaded into the Python environment to process the data and apply algorithms in Regression 

models. First, the data was pre-processed. The data is introduced to the system as input and output, 

and then separated into training and test data. Prediction algorithms are trained using the training set 

and the algorithm is provided to learn in this way. The algorithm then tests the predictive success of 

the model using the test data. By using the random split method in the data, the size of test data was 

determined to be 0.15. This means: Approximately 85% of all data was randomly allocated as training 

set and 15% as test set. Therefore, 133 data out of 157 beam test data were randomly assigned as 

training set and 24 data were randomly assigned as test set. 

  

The Sci-Kit Learn (sklearn) library was used to train and predict on the data. The data was trained 

using the “fit()” function of the Sklearn library, and the predictions were made using the “predict()” 

function. The estimated shear strength values obtained from the regression algorithms are shown in 

Table 2 in comparison with the actual (experimental) data. 

 

The predicted corroded shear strength values obtained from XGBoost and AdaBoost algorithm models 

were compared with experimental shear strength values from literature and are shown in Figure 6. 

 
Table 2. Comparison of experimental and predicted shear strength results for RC beams 

(ML regression algorithms) 

 

VExperimental 

(kN) 

Vpredicted 

(kN) 

VExperimental 

(kN) 

Vpredicted 

(kN) 

VXGBoost VAdaBoost VXGBoost VAdaBoost 

60 55.7844 75.1097 67 63.7804 86.9622 

77.4 84.4685 96.0281 96 81.6249 88.3667 

89 80.0155 93.1793 443 452.157 438 

91 77.6275 93.1793 136 148.504 145.01 

119.4 105.134 107.663 138.2 135.954 119.15 

133.9 136.474 119.150 121.6 122.845 109.261 
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145.4 153.894 141.255 112 122.873 107.663 

29.1 32.1221 57.3692 121.7 112.378 115.144 

90 85.2479 98.9606 75.9 82.6737 88.3667 

124.3 113.230 109.261 131 123.107 105.807 

204 169.634 148.924 105 90.8575 115.977 

139.2 140.314 140.087 115 119.847 93.1793 
 

 
Figure 6. The predicted (ML) and actual shear strength values of beam for regression model 

 

C. PERFORMANCE METRICS 
 

In this study, prediction of shear strength for corroded RC beams has been evaluated with various 

statistical performance parameters using the proposed ML algorithms. R
2
 value, Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE) success and error metrics have been used depending 

on the correlation of predicted shear strength values and those obtained from experimental data for 

performance values.  Metric formulae are given in Eqs.8-10. 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̅�)2𝑛

𝑖=1

(𝑦𝑖 − 𝑦𝑖′)2
 

 

 

(8) 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖′ − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 

 

 

(9) 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑖′|𝑛

𝑖=1

𝑛
 

 

 

(10) 

In these equations; y is the actual experimental value, yi’ is the predicted value, 𝑦�̅� is the actual mean 

value and n is the number of dataset. The best for success is values where R
2
 is close to one, MAE and 

RMSE is close to zero. 

 

The performance success of the models trained in this study; measured by the metrics “r2_score (R
2
)”, 

“mean_absolute_error (MAE)”, “root_mean_square_error (RMSE)” metrics. The performance success 

of the ML models is shown in Table 3 and Figure 7. The real data, which is the Numpy array for 

measurement, and the prediction data obtained from the model in which the predict () function works 

were compared and the success metrics of the model were tested with the success of the model. For 

RC beam shear strength, the convergence between the actual value as a result of the experimental 
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study and the estimated values obtained from the algorithms is best seen in the XGBoost model. A 

high R
2
 accuracy rate of 97.81% was obtained from the XGBoost algorithm. Among the error metrics, 

8.74 MAE values and 11.08 RMSE values converged to zero and a high estimation success was 

achieved. The AdaBoost algorithm, which is an alternative machine learning method for this important 

problem in the field of structural engineering, also gave very good results. 

 
Table 3. Corroded shear strength results of ML regression algorithm 

 

ML Algorithm R
2 
score (%) MAE RMSE 

XGBoost  97.8180 8.7456 11.0805 

AdaBoost 94.3453 13.8876 17.8377 

 

 
 

Figure 7. Performance of ML Models 

 

 

IV. CONCLUSION and DISCUSSION 

 
In this study, an artificial intelligence-based machine learning algorithm has been developed that can 

predict the changes in shear strength due to the effect of damage such as corrosion on beam elements 

in RC structures. It was found that the developed algorithms can be used with high accuracy, 

especially in cases where experimental work is costly and difficult, but the effect of corrosion on the 

shear strength of the beam needs to be known. 

 

A data pool of 157 RC beam experiments was used to develop the algorithm. The XGBoost and 

AdaBoost machine learning algorithms developed in recent years were used to determine the shear 

strength of corroded beams and their performance was tested. This is the first time in the literature that 

the XGBoost and AdaBoost algorithms have been applied to this type of structural problem. 

 

The results of the study show that: A fast and simple application infrastructure has been developed to 

be used in the determination of shear strength in RC beams after corrosion with the proposed machine 

learning models. The XGBoost and AdaBoost machine learning algorithms have undergone a good 

training process and have provided sufficient learning to achieve successful prediction results. The 

main promise of this system is that, if the beam manufacturing parameters and the corrosion level are 

known, it can help to determine the shear strength without the need for experimental study. According 

to the results obtained, the strength values obtained from the analysis performed with the XGBoost 

algorithm have a 97% estimation success when compared to the values found in the experimental 
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study. Similarly, the AdaBoost algorithm estimated the shear strength in corroded beams with 94% 

accuracy. 

 

In the results obtained by Fu and Feng [28] from the literature study using the data set, it was observed 

that the Gradient Boosting Method, one of the boosting models, gave much more successful results. 

Also, the Gradient Boosting algorithm, one of the machine learning models used to estimate the 

bending capacity of corroded beams, gave very satisfactory results by Abushanab et al. [40]. 

Comparing the results of this study, it can be said that the boosting algorithms are quite successful in 

the strength determination problems of corroded members. 

 

The most important contribution of the study with a high success rate to practice and literature is the 

success of the practical application. In corrosion testing, a special test setup should be established to 

bring the structure to the corrosion level it will reach over the years in a short period of time. In 

addition, it is very important to study the loss of strength value in the corroded structural element in 

corrosion research, but with this developed model it will be possible to get results in a short time to see 

the loss of shear strength. 

 

It is very important to test the algorithms developed in the machine learning studies on a larger data 

set. For this reason, it will be possible to develop algorithms by collecting more data with corrosion-

oriented experimental studies and to derive a mathematical model from data set. 
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